首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new nonsingular analytical theory for the motion of near Earth satellite orbits with the air drag effect is developed for long term motion in terms of the KS uniformly regular canonical elements by a series expansion method, by assuming the atmosphere to be symmetrically spherical with constant density scale height. The series expansions include up to third order terms in eccentricity. Only two of the nine equations are solved analytically to compute the state vector and change in energy at the end of each revolution, due to symmetry in the equations of motion. Numerical comparisons of the important orbital parameters semi major axis and eccentricity up to 1000 revolutions, obtained with the present solution, with KS elements analytical solution and Cook, King-Hele and Walker's theory with respect to the numerically integrated values, show the superiority of the present solution over the other two theories over a wide range of eccentricity, perigee height and inclination.  相似文献   

2.
《Planetary and Space Science》2007,55(10):1388-1397
A new non-singular analytical theory for the motion of near Earth satellite orbits with the air drag effect is developed in terms of the Kustaanheimo and Stiefel (KS) uniformly regular canonical elements, by assuming the atmosphere to be oblate diurnally varying with constant density scale height. The series expansions include up to third-order terms in eccentricity and c (a small parameter dependent on the flattening of the atmosphere). Only two of the nine equations are solved analytically to compute the state vector and change in energy at the end of each revolution, due to symmetry in the equations of motion. Numerical comparisons of the important orbital parameters semimajor axis and eccentricity up to 1000 revolutions, obtained with the present solution, with the third-order analytical theories of Swinerd and Boulton and in terms of the KS elements, with respect to the numerically integrated values, show the superiority of the present solution over the other two theories over a wide range of eccentricity, perigee height and inclination.  相似文献   

3.
We study the interaction of a satellite and a nearby ringlet on eccentric and inclined orbits. Secular torques originate from mean motion resonances and the secular interaction potential which represents the m  = 1 global modes of the ring. The torques act on the relative eccentricity and inclination. The resonances damp the relative eccentricity. The inclination instability owing to the resonances is turned off by a finite differential eccentricity of the order of 0.27 for nearly coplanar systems. The secular potential torque damps the eccentricity and inclination and does not affect the relative semi-major axis; also, it suppresses the inclination instability that persists at small differential eccentricities. The damping of the relative eccentricity and inclination forces an initially circular and planar small mass ringlet to reach the eccentricity and inclination of the satellite. When the planet is oblate, the interaction of the satellite damps the proper precession of a small mass ringlet so that it precesses at the satellite's rate independently of their relative distance. The oblateness of the primary modifies the long-term eccentricity and inclination magnitudes and introduces a constant shift in the apsidal and nodal lines of the ringlet with respect to those of the satellite. These results are applied to Saturn's F-ring, which orbits between the moons Prometheus and Pandora.  相似文献   

4.
We consider the definitions and resulting equations of motion for the Lagrangian orbital elements associated with conventional osculating orbit theory for central forces. The analysis indicates that the definitions themselves lead to difficulties which are most apparent in the circular limit. An alternate set of defining relations is presented which eliminates the problems associated with osculating elements. The remaining equation of motion based on these new definitions is reduced to quadratures. This solution completely expresses the orbits for central force problems with no restriction on the eccentricity. Both bounded and open orbits are considered. A generalized Laplace-Runge-Lenz vector is developed and a number of example solutions are presented.  相似文献   

5.
A new non-singular analytical theory for the motion of near-Earth satellite orbits with the air drag effect is developed in terms of uniformly regular KS canonical elements. Diurnally varying oblate atmosphere is considered with variation in density scale height dependent on altitude. The series expansion method is utilized to generate the analytical solutions and terms up to fourth-order terms in eccentricity and c (a small parameter dependent on the flattening of the atmosphere) are retained. Only two of the nine equations are solved analytically to compute the state vector and change in energy at the end of each revolution, due to symmetry in the equations of motion. The important drag perturbed orbital parameters: semi-major axis and eccentricity are obtained up to 500 revolutions, with the present analytical theory and by numerical integration over a wide range of perigee height, eccentricity and inclination. The differences between the two are found to be very less. A comparison between the theories generated with terms up to third- and fourth-order terms in c and e shows an improvement in the computation of the orbital parameters semi-major axis and eccentricity, up to 9%. The theory can be effectively used for the re-entry of the near-Earth objects, which mainly decay due to atmospheric drag.  相似文献   

6.
In this communication we present an analytical model for the restricted three-body problem, in the case where the perturber is in a parabolic orbit with respect to the central mass. The equations of motion are derived explicitly using the so-called Global Expansion of the disturbing function, and are valid for any eccentricity of the massless body, as well as in the case where both secondary masses have crossing orbits. Integrating the equations of motion over the complete passage of the perturber through the system, we are then able to construct a first-order algebraic mapping for the change in semimajor axis, eccentricity and inclination of the perturbed body.Comparisons with numerical solutions of the exact equations show that the map yields precise results, as long as the minimum distance between both bodies is not too small. Finally, we discuss several possible applications of this model, including the evolution of asteroidal satellites due to background bodies, and simulations of passing stars on extra-solar planets.  相似文献   

7.
We investigate the stability of the periodic motion of a satellite, a rigid body, relative to the center of mass in a central Newtonian gravitational field in an elliptical orbit. The orbital eccentricity is assumed to be low. In a circular orbit, this periodic motion transforms into the well-known motion called hyperboloidal precession (the symmetry axis of the satellite occupies a fixed position in the plane perpendicular to the radius vector of the center of mass relative to the attractive center and describes a hyperboloidal surface in absolute space, with the satellite rotating around the symmetry axis at a constant angular velocity). We consider the case where the parameters of the problem are close to their values at which a multiple parametric resonance takes place (the frequencies of the small oscillations of the satellite’s symmetry axis are related by several second-order resonance relations). We have found the instability and stability regions in the first (linear) approximation at low eccentricities.  相似文献   

8.
The effect of solar pressure on the two-dimensional motion of two cable-connected satellites in the Earth's central gravitational field of force for the elliptical orbit of the centre-of-mass of the system has been analysed. The equations of motion obtianed are nonlinear and non-autonomous.It is concluded with the aid of non-resonant solution that the system experiences resonance main as well as parametric. If the eccentricity is small, the system will always oscillate about the position of equilibrium with tight string like dumb-bell satellite with changing phase and constant amplitude.  相似文献   

9.
This paper presents an analytic solution of the equations of motion of an artificial satellite, obtained using non singular elements for eccentricity. The satellite is under the influence of the gravity field of a central body, expanded in spherical harmonics up to an arbitrary degree and order. We discuss in details the solution we give for the components of the eccentricity vector. For each element, we have divided the Lagrange equations into two parts: the first part is integrated exactly, and the second part is integrated with a perturbation method. The complete solution is the sum of the so-called “main” solution and of the so-called “complementary” solution. To test the accuracy of our method, we compare it to numerical integration and to the method developed in Kaula (Theory of Satellite Geodesy, Blaisdell publ. Co., New York. 1966), expressed in classical orbital elements. For eccentricities which are not very small, the two analytical methods are almost equivalent. For low eccentricities, our method is much more accurate.  相似文献   

10.
We have analysed LAGEOS II perigee rate and eccentricity vector excitation residuals over a period of about 7.8 years, adjusting and computing the satellite orbit with the full set of dynamical models included in the GEODYN II software code. The long-term behaviour of these orbital residuals appears to be characterised by several distinct frequencies which are a clear signature of the Yarkovsky-Schach perturbing effect. This non-gravitational perturbation is not included in the GEODYN II models for the orbit determination and analysis. Through an independent numerical analysis, and using the new LOSSAM model to represent the spin-axis behaviour of the satellite, we propagated the Yarkovsky-Schach effect on LAGEOS II perigee rate and compared the results obtained with the orbital residuals. We have thus been able to satisfactorily fit the amplitude of the Yarkovsky-Schach effect to the observed residuals. Our approach here has proven very successful with very positive results. We have been able to obtain a fractional reduction of about 40% of the post-fit rms with respect to the pre-fit value. When analysing the eccentricity vector residuals, we have been able to obtain a better result in the case of the real component, with a fractional reduction of the post-fit rms of about 49% of the initial value. The analysis of the effect's imaginary component in the eccentricity vector rate is more complicated and deserves additional scrutiny. In this case we need a deeper study which includes the analysis of other unmodelled and mismodelled effects acting on the imaginary component. The study performed in this paper will be of significant relevance not only for the geophysical applications involving LAGEOS II orbit analysis, but also for a refined re-analysis of the general relativistic precession produced by the Earth angular momentum, i.e., the Lense-Thirring effect.  相似文献   

11.
Lunisolar perturbations of an artificial satellite for general terms of the disturbing function were derived by Kaula (1962). However, his formulas use equatorial elements for the Moon and do not give a definite algorithm for computational procedures. As Kozai (1966, 1973) noted, both inclination and node of the Moon's orbit with respect to the equator of the Earth are not simple functions of time, while the same elements with respect to the ecliptic are well approximated by a constant and a linear function of time, respectively. In the present work, we obtain the disturbing function for the Lunar perturbations using ecliptic elements for the Moon and equatorial elements for the satellite. Secular, long-period, and short-period perturbations are then computed, with the expressions kept in closed form in both inclination and eccentricity of the satellite. Alternative expressions for short-period perturbations of high satellites are also given, assuming small values of the eccentricity. The Moon's position is specified by the inclination, node, argument of perigee, true (or mean) longitude, and its radius vector from the center of the Earth. We can then apply the results to numerical integration by using coordinates of the Moon from ephemeris tapes or to analytical representation by using results from lunar theory, with the Moon's motion represented by a precessing and rotating elliptical orbit.  相似文献   

12.
The purpose of this paper is to investigate the generalization of Hill's problem by using a central field of force deriving from a potential, not restricted to Newton's inverse square law. We establish the equations of motion, determine the equilibrium positions along with their linear stability.  相似文献   

13.
This paper studies the long period variations of the eccentricity vector of the orbit of an artificial satellite, under the influence of the gravity field of a central body. We use modified orbital elements which are non-singular at zero eccentricity. We expand the long periodic part of the corresponding Lagrange equations as power series of the eccentricity. The coefficients characterizing the differential system depend on the zonal coefficients of the geopotential, and on initial semi-major axis, inclination, and eccentricity. The differential equations for the components of the eccentricity vector are then integrated analytically, with a definition of the period of the perigee based on the notion of “free eccentricity”, and which is also valid for circular orbits. The analytical solution is compared to a numerical integration. This study is a generalization of (Cook, Planet. Space Sci., 14, 1966): first, the coefficients involved in the differential equations depend on all zonal coefficients (and not only on the very first ones); second, our method applies to nearly circular orbits as well as to not too eccentric orbits. Except for the critical inclination, our solution is valid for all kinds of long period motions of the perigee, i.e., circulations or librations around an equilibrium point.  相似文献   

14.
The circular restricted problem of three bodies is investigated analytically with respect to the problem of deriving a second integral of motion besides the well known Jacobian Integral. The second integral is searched for as a correction the angular momentum integral valid in the two body case. A partial differential equation equivalent to the problem is derived and solved approximately by an asymptotic Fourier method assuming either sufficiently small values for the dimensionless mass parameter or sufficiently large distances from the barycentre. The solution of the partial equation then leads to a function of the coordinates, velocities and time being nearly constant, which means that its variation with time is about 40–300 times less than that of the pure angular momentum. By averaging over the remaining fluctuating part of the quasi-integral we are able to integrate the first order equations using a renormalization transformation. This leads to an explicit expression for the approximate solution of the circular problem which describes the motion of the third body orbiting both primaries with nonvanishing initial eccentricity (eccentric planetary type orbits). One of the main results is an explicit formula for the frequency of the perihelion motion of the third body which depends on the mass parameter, the initial distance of the third body from the barycentre and the initial eccentricity. Finally we study orbits of the P-Type, being defined as solutions of the restricted problem with circular initial conditions (vanishing initial eccentricity).  相似文献   

15.
A new non-singular analytical theory for the contraction of near-Earth satellite orbits under the influence of air drag is developed in terms of uniformly regular Kustaanheimo and Stiefel (KS) canonical elements using an oblate atmosphere with variation of density scale height with altitude. The series expansions include up to fourth power in terms of eccentricity and c (a small parameter dependent on the flattening of the atmosphere). Only two of the nine equations are solved analytically to compute the state vector and change in energy at the end of each revolution, due to symmetry in the equations of motion. It is observed that the analytically computed values of the semi-major axis and eccentricity are consistent with the numerically integrated values up to 500 revolutions over a wide range of the drag-perturbed orbital parameters. The theory can be effectively used for re-entry of near-Earth objects.  相似文献   

16.
The restricted three-body problem describes the motion of a massless particle under the influence of two primaries of masses 1− μ and μ that circle each other with period equal to 2π. For small μ, a resonant periodic motion of the massless particle in the rotating frame can be described by relatively prime integers p and q, if its period around the heavier primary is approximately 2π p/q, and by its approximate eccentricity e. We give a method for the formal development of the stable and unstable manifolds associated with these resonant motions. We prove the validity of this formal development and the existence of homoclinic points in the resonant region. In the study of the Kirkwood gaps in the asteroid belt, the separatrices of the averaged equations of the restricted three-body problem are commonly used to derive analytical approximations to the boundaries of the resonances. We use the unaveraged equations to find values of asteroid eccentricity below which these approximations will not hold for the Kirkwood gaps with q/p equal to 2/1, 7/3, 5/2, 3/1, and 4/1. Another application is to the existence of asymmetric librations in the exterior resonances. We give values of asteroid eccentricity below which asymmetric librations will not exist for the 1/7, 1/6, 1/5, 1/4, 1/3, and 1/2 resonances for any μ however small. But if the eccentricity exceeds these thresholds, asymmetric librations will exist for μ small enough in the unaveraged restricted three-body problem.  相似文献   

17.
We develop a technique for estimating the inner eccentricity in hierarchical triple systems, with the inner orbit being initially circular, while the outer one is eccentric. We consider coplanar systems with well-separated components and comparable masses. The derivation of short-period terms is based on an expansion of the rate of change of the Runge–Lenz vector. Then, the short-period terms are combined with secular terms, obtained by means of canonical perturbation theory. The validity of the theoretical equations is tested by numerical integrations of the full equations of motion.  相似文献   

18.
In this article the generalization of the motion of a particle in a central field to the case of a constant curvature space is investigated. We found out that orbits on a constant curvature surface are closed in two cases: when the potential satisfies Iaplace-Beltrami equation and can be regarded as an analogue of the potential of the gravitational interaction, and in the case when the potential is the generalization of the potential of an elastic spring. Also the full integrability of the generalized two-centre problem on a constant curvature surface is discovered and it is shown that integrability remains even if elastic forces are added.  相似文献   

19.
Fourier expansions of elliptic motion functions in multiples of the true, eccentric, elliptic and mean anomalies are computed numerically by means of the fast Fourier transform. Both Hansen-like coefficients and their derivatives with respect to eccentricity of the orbit are considered. General behavior of the coefficients and the efficiency (compactness) of the expansions are investigated for various values of eccentricity of the orbit. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Revised equations of motion are formulated on more general assumptions than hitherto making allowance for some reflection of sunlight by a dust-particle, and from these the secular rates of change of the orbital elements of the particle are obtained. The equation for the eccentricity yields numerical results for the time taken for given changes in this element to occur. Other elements turn out to be expressible in terms of the eccentricity and thence are effectively also known in terms of the time. More general forms of earlier results are found, and some new mathematical results in the theory of the process are derived. The time of infall to the Sun associated with almost circular initial motion of a particle is calculated, and also the time from an orbit of initially high eccentricity. In this latter case, infall takes place much more rapidly than from a circular orbit of radius comparable with the average distance in the eccentric orbit. The effect on a particle of a long-period comet during a single return is negligible compared with the change in its binding-energy to the Sun that will in general result from planetary action. The possible history of a dust-particle from original capture by the Sun to final infall to the solar surface is briefly considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号