首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural, petrological and geochronological data from marbles and mica schists combined with those from highly disputable gneisses and eclogites of the Orlica-Śnieżnik Dome (OSD), gave new insights into Variscan evolution of eastern borderland of the West Sudetes. It is shown that the Variscan tectonometamorphic evolution of the OSD began with E–W oriented subhorizontal shortening (D1 stage) related to the collision of the West Sudetes terranes and the Brunovistulian terrane. The shortening led to generally upright folding, which resulted in formation of the steep N–S trending metamorphic planar fabric S1, thickening of the lithosphere and burial of the Stronie Formation under greenschist facies conditions. As a consequence of subsequent, near-coaxial gravity-controlled vertical shortening (D2), the S1 foliation was deformed in tight recumbent folds F2. The flattening strain was associated with the progression to amphibolite-facies conditions (from ca. 510 upto ca. 620°C) and uplift from depths corresponding to 9–10 kbar to depths corresponding to 7–8 kbar. On microscale, the flattening strain is documented by rotation of the mineral fabric overgrown by syn-D2 prograde garnet porphyroblasts. The Sm–Nd Grt–WR isochron age, correlated with the D2 event yields 346.5 ± 4.4 Ma. Further deformation and progressive metamorphism led to development of the subhorizontally disposed S2 axial plane schistosity, which terminated at the metamorphic temperature peak. During retrogression but still under ductile conditions of deformation, the S2 planes were reactivated during successive top-to-the-N shear movement of the OSD (D3 stage). Due to the mutual interaction of the OSD with the adjacent terranes the shear deformations were localized within marginal parts of these units. Finally, as a result of the NE–SW and the NW–SE oriented shortenings (D4 stage and D5 stage, respectively), both the structural surfaces and metamorphic isograds were regionally folded with W(NW)-ward plunges. A synthesis of new and existing data shows an overall similarity in sequence of Variscan deformations (D1–D2–D3) in the West Sudetes borderland to that observed in the eastern flank of the Moldanubian domain.  相似文献   

2.
Abstract

The Orlica-?nie?nik dome comprises large orthogneiss bodies interbedded with amphiblite-grade metasediments and minor metavolcanics. New U-Pb and Pb-Pb SHRIMP zircon ages for two major gneiss units of the dome, the ?nie?nik and Giera?tów gneiss, yielded similar ages of ca. 500 Ma. This is interpreted to reflect the magmatic crystallization age from the same or similar igneous precursors, in agreement with the geochemical characteristics of these rocks. Some zircon cores in both gneisses, interpreted to be inherited xenocrysts, have ages of ca. 530–540 Ma, and, additionally, of ca. 565 Ma and 2.6 Ga in the ?nie?nik gneiss. Igneous grains in both gneiss types have high-U rims, which are dark under cathodoluminescence. They are much better developed in the Giera?tow gneiss and they yield a well-defined weighted mean U-Pb age of 342 ± 6 Ma. These high-U rims are interpreted to have grown close to the peak of HT metamorphism which is responsible for the migmatitic texture of the Giera?tow gneiss. The Visean HT-LP metamorphism in the Orlica-?nie?nik dome is interpreted as a result of rapid uplift and decompression due to overthrusting of high grade rocks over the Moravo-Silesian nappe pile. Our data support geodynamic models that ascribe a predominant influence in the tectonic evolution of the West Sudetes to the Variscan oro- genic events. This is suggested by the inheritance of zircon xenocrysts from the Cadomian basement and by the Late Cambrian- Early Ordovician magmatic event, both typical of the Armorican terrane assemblage, as well as by the Early Carboniferous age of the metamorphism. © 2000 Éditions scientifiques et médicales Elsevier SAS  相似文献   

3.
《Geodinamica Acta》2000,13(5):293-312
The Orlica-Śnieżnik dome comprises large orthogneiss bodies interbedded with amphiblite-grade metasediments and minor metavolcanics. New U-Pb and Pb-Pb SHRIMP zircon ages for two major gneiss units of the dome, the Śnieżnik and Gierałtów gneiss, yielded similar ages of ca. 500 Ma. This is interpreted to reflect the magmatic crystallization age from the same or similar igneous precursors, in agreement with the geochemical characteristics of these rocks. Some zircon cores in both gneisses, interpreted to be inherited xenocrysts, have ages of ca. 530–540 Ma, and, additionally, of ca. 565 Ma and 2.6 Ga in the Śnieżnik gneiss. Igneous grains in both gneiss types have high-U rims, which are dark under cathodoluminescence. They are much better developed in the Gierałtów gneiss and they yield a well-defined weighted mean U-Pb age of 342 ± 6 Ma. These high-U rims are interpreted to have grown close to the peak of HT metamorphism which is responsible for the migmatitic texture of the Gierałtów gneiss. The Visean HT–LP metamorphism in the Orlica-Śnieżnik dome is interpreted as a result of rapid uplift and decompression due to overthrusting of high grade rocks over the Moravo-Silesian nappe pile. Our data support geodynamic models that ascribe a predominant influence in the tectonic evolution of the West Sudetes to the Variscan orogenic events. This is suggested by the inheritance of zircon xenocrysts from the Cadomian basement and by the Late Cambrian–Early Ordovician magmatic event, both typical of the Armorican terrane assemblage, as well as by the Early Carboniferous age of the metamorphism.  相似文献   

4.
Small tectonic slices of undeformed eclogites and ultrahigh-pressure granulites occur in three tectonic units of the Śnieżnik Mts. (SW Poland). Ultrahigh-pressure granulite/eclogite transitions with peak metamorphic conditions between 21 and 28 kbar at 800 to 1000 °C occur only in the Złote unit. Conventional U-Pb multigrain analyses of zircons from a mafic granulite provided 207Pb/206Pb ages between 360 to 369 Ma which are interpreted to approximate timing of original crystallisation from a melt. Diffusion kinetics and the restricted availability of a fluid phase mainly controlled the conversion from granulite to eclogite, although some bulk-chemical differences were also recognised. The ultrahigh-pressure granulites from the Złote unit exclusively contain H2O-rich inclusions with variable salinities which distinguishes them from high-temperature (HT)-granulites world-wide. This is also in contrast to the fluid regime (H2O-N2-CO2) recognised in the lower-temperature eclogites (600–800 °C) from the closely associated Międzygórze and Śnieżnik units. The variation in fluid composition between the lower-temperature eclogites and ultrahigh-pressure granulites on the one hand and ultrahigh-pressure granulites and HT-granulites on the other hand probably indicates contrasting P-T-t paths as a result of different tectonic environments. Received: 15 June 1998 / Accepted: 2 March 1999  相似文献   

5.
Approximately 500-Ma-old orthogneisses are widespread in the eastern part of the Variscan belt and are commonly interpreted to have intruded mica-schist series of assumed Neoproterozoic age. New SHRIMP zircon ages of quartzofeldspathic metavolcanogenic rocks of the mica schist series in the eastern part of the Karkonosze-Izera Massif (SW Poland) indicate that they are late Cambrian/early Ordovician rather than Neoproterozoic in age, based on the zircon age spectra distributed mainly between ca. 500 and 660 Ma (with a few Proterozoic inherited minimum ages of ca. 970 and 1,825 Ma). Younger zircon dates, dispersed between ca. 412 and 464 Ma, are interpreted as a result of Pb-loss likely caused by subsequent metamorphism. Consequently, the felsic metavolcanogenic rocks appear to be roughly contemporaneous with the intrusion of ca. 500-Ma-old orthogneiss protoliths (with the pooled concordia age of 487 ± 8 Ma interpreted as the best approximation of the protolith intrusive age). Field relationships, petrological and geochemical features of the felsic and mafic rocks studied support a model in which the accompanying mica schist series are not the original country rocks to the ca. 500 Ma granite intrusions, and indicate that their recent close proximity is the result of tectonic juxtaposition. However, both the mica schists enclosing the bimodal metavolcanic rocks, and the orthogneisses, are interpreted to represent a Cambro-Ordovician passive continental margin sequence being part of the Saxothuringian domain. They are tectonically overlain to the east by HP/T metamorphic units, comprising MORB-type metaigneous rocks, and delineating a tectonic suture separating the Saxothuringian block in the west from an assumed continental block (Tepla-Barrandian) to the south-east.  相似文献   

6.
Metamorphosed during the Variscan orogeny, sediments of the ca. 560 Ma M?ynowiec Formation and ca. 530 Ma Stronie Formation in the Bystrzyckie and Orlickie Mountains (Central Sudetes, Poland) contain metabasites with a range of basaltic compositions. Immobile trace element and Nd isotope features allow distinction of dominant, either E-MORB-like (Group 1: Zr/Nb 9–20, εNd530 +2.6 to +6.7) or mildly enriched N-MORB-like tholeiites (Group 2: Zr/Nb 21–27, εNd530 +0.2 to +6.7), and scarce but genetically important OIB-like alkaline (Group 3: Zr/Nb 5, εNd530 +2.2) or depleted tholeiitic rocks (Group 4: Zr/Nb 67, εNd530 +7.9). Neither the radiogenic age nor age relationships between these four groups are known. However, field evidence suggests that the metabasites are younger than the M?ynowiec Formation and that their emplacement must have been coeval with the accumulation of the Stronie Formation sediments. The OIB affinity of Group 3 is interpreted to reflect an enriched mantle (EM)-type asthenopheric source whilst the groups of tholeiitic rocks indicate involvement of depleted (locally slightly residual) MORB-type mantle (DMM). Several geochemical signatures, the decoupling between Nd isotope and trace element characteristics, and melting models indicate variable enrichment of the DMM-like source, here ascribed to asthenosphere-derived OIB-like melts (Group 1 and 2) and a contribution from a supra-subduction zone (Group 2 and 4). Based on contrasting back-arc basin (BAB)- and within-plate-like affinities of the metabasites, and on petrogenetic constraints from the spatially related infill of the Stronie Formation rift basin, the studied magmatic episode is suggested be related to cessation of the supra-subduction zone activity, presumably induced by ridge-trench collision. This event might have led to slab break-off, the development of a transform plate boundary, opening of a slab window and upward migration of sub-slab enriched asthenosphere. Decompression melting of the upwelling asthenosphere could then have produced OIB-like melts which segregated and infiltrated into the mantle of the former subduction zone, with randomly distributed slab-derived components. In an extensional regime, magmas generated at shallow levels from heterogeneous mantle regions were emplaced within sedimentary rocks of the overlying rift basin. The vestiges of subduction-related processes and within-plate style of mantle enrichment suggest that the metabasites could be related to final stages of the Cadomian orogeny and incipient Early Palaeozoic rifting of Gondwana that heralded the opening of the Rheic Ocean.  相似文献   

7.
The Kenting Mélange on the Hengchun Peninsula, Taiwan, formed through tectonic shearing of subduction complex lithologies, probably within the plate boundary subduction channel between the Eurasian and Philippine Sea plates, with further deformation and exhumation in the Pliocene–Pleistocene during arc–continent collision. Field relations reveal a structural gradation from normal stratified turbidite sequence (Mutan Formation) through broken formation to highly sheared Kenting Mélange containing allochthonous polygenic blocks. This gradation is consistent with an increase of average vitrinite reflection values from ~ 0.72% in the Mutan Formation through ~ 0.93% in the broken formation to ~ 0.99% in the mélange, suggesting temperatures of at least 140 °C during formation of the Kenting Mélange. Zircons from gabbro in the Kenting Mélange are dated as 25.46 ± 0.18 Ma, which together with geochemical data constrains the source to South China Sea oceanic lithosphere. In combination with the field relationships, vitrinite reflectance values, microfossil stratigraphy, and offshore geophysical data from S and SE Taiwan, we propose that the Kenting Mélange initially formed at the subduction plate boundary from off-scraped trench deposits. Minor Plio–Pleistocene microfossils (< 5%) occur within the mélange in proximity to slope basin of equivalent age and were likely sheared into the mélange during out-of-sequence thrusting associated with active arc–continent collision, which in the Hengchun Peninsula commenced after 6.5 Ma.  相似文献   

8.
Different hypotheses have been proposed to account for the geologic evolution of the southwestern margin of Gondwana in the Early Paleozoic, involving accretion and displacement of different terranes in a protracted convergent margin. In order to constrain and understand the kinematic and paleogeographic evolution of the Pampia terrane a paleomagnetic study was carried out in different Cambrian to Devonian units of the Eastern Cordillera (Cordillera Oriental) and the Interandean Zone (Interandino) of NW Argentina. Paleomagnetic poles from the Campanario Formation (Middle to Upper Cambrian): 1.5°N 1.9°E A95 = 9.2° K = 37.46 N = 8; and Santa Rosita Formation (Lower Ordovician): 8.6°N 355.3°E A95 = 10.1° K = 26.78 n = 9, representative of the Pampia terrane, are interpreted to indicate a Late Cambrian significant displacement with respect to the Río de la Plata and other Gondwana cratons. A model, compatible with several geological evidences that explains this displacement in the framework of the final stages of Gondwana assembly is presented. We propose a simple dextral strike-slip kinematic model in which Pampia and Antofalla (? Arequipa?) blocks moved during Late Cambrian times from a position at the present southern border of the Kalahari craton into its final position next to the Rio de la Plata craton by the Early Ordovician.  相似文献   

9.
10.
Baltica was one of continents formed as a result of Rodinia break-up 850-550 Ma. It was separated from Amazonia(?) by the Tornquist Ocean, the opening of which was preceded by Neoproterozoic extension in a network of continental rifts. Some of these rifts were subsequently aborted whereas the Tornquist Rift gave rise to splitting of Rodinia and formation of the Tornquist Ocean. The results of 1-D subsidence analysis at the fossil passive margin of Baltica provided insight in the timing and kinematics of continental rifting that led to break-up of Rodinia. Rifting was associated with Neoproterozoic syn-rift subsidence accompanied by deposition of continental coarse-grained sediments and emplacement of continental basalts.Transition from a syn-rift to post-rift phase in the latest Ediacaran to earliest early Cambrian was concomitant with deposition of continental conglomerates and arkoses, laterally passing into mudstones. An extensional scenario of the break-up of Rodinia along the Tornquist Rift is based on the character of tectonic subsidence curves, evolution of syn-rift and post-rift depocenters in time, as well as geochemistry and geochronology of the syn-rift volcanics. It is additionally reinforced by the high-quality deep seismic reflection data from SE Poland, located above the SW edge of the East European Craton. The seismic data allowed for identification of a deeply buried(11-18 km), well-preserved extensional half-graben, developed in the Palaeoproterozoic crystalline basement and filled with a Neoproterozoic syn-rift volcano-sedimentary succession. The results of depth-to-basement study based on integration of seismic and gravity data show the distribution of local NE-SW elongated Neoproterozoic depocenters within the SW slope of the East European Craton. Furthermore,they document the rapid south-eastwards thickness increase of the Neoproterozoic succession towards the NW-SE oriented craton margin. This provides evidence for extensive crustal thinning occurring prior to the break-up of Rodinia and formation of the Tornquist Ocean.  相似文献   

11.
The Ordovician Macquarie Arc in the eastern subprovince of the Lachlan Orogen, southeastern Australia, is an unusual arc that evolved in four vertically stacked volcanic phases over ~ 37 million years, and which is flanked by coeval, craton-derived, passive margin sedimentary terranes dominated by detrital quartz grains. Although these two terranes are marked by a general absence of provenance mixing, LA-ICPMS analysis of U–Pb and Lu–Hf contents in zircon grains in volcaniclastic rocks from 3 phases of the arc demonstrates the same age populations of detrital grains inherited from the Gondwana margin as those that characterise the flanking quartz-rich Ordovician turbidites. Magmatic Phase 1 is older, ~ 480 Ma, and is characterised by detrital zircons grains with ages of ~ 490–540 with negative εHf from 0 to mainly –7.78, 550–625 Ma ages with negative εHf from 0 to ?26.6 and 970–1250 Ma (Grenvillian) with εHf from + 6.47 to ?6.44. We have not as yet identified any magmatic zircons related to Phase 1 volcanism. Small amounts of detrital zircons also occur in Phase 2 (~ 468–455 Ma), hiatus 1 and Phase 4 (~ 449–443 Ma), all of which are dominated by Ordovician magmatic zircons with positive εHf values, indicating derivation from unevolved mantle-derived magmas, consistent with formation in an intraoceanic island arc. Because of the previously obtained positive whole rock εNd values from Phase 1 lavas, we rule out contamination from substrate or subducted sediments. Instead, we suggest that during Phase 1, the Macquarie Arc lay close enough to the Gondwana margin so that volcaniclastic rocks were heavily contaminated by detrital zircon grains shed from granites and Grenvillian mafic rocks mainly from Antarctica (Ross Orogen and East Antarctica) and/or the Delamerian margin of Australia. The reduced nature of a Gondwana population in Phase 2, hiatus 1 and Phase 4 is attributed to opening of a marginal basin between the Gondwana margin and the Macquarie Arc that put it out of reach of all but rare turbiditic currents.  相似文献   

12.
13.
Geochemical and isotopic (Sm–Nd and Sr) studies of deposits of the Baikal and Oselok Groups in the southern Siberian Craton and LA-ICP-MS U–Pb dating of detrital zircons show that they accumulated in passive continental-margin settings in the Vendian. The time limits of sedimentation were assessed on the basis of Sr chemostratigraphy of carbonate deposits of the Baikal Group and LA-ICP-MS U–Pb dating of detrital zircons in first-cycle terrigenous deposits of the Oselok Group. The main provenances for rocks of these groups were constant. These were rocks of the cover and basement of the Siberian Craton. Tuffite horizons in upper portions of the groups are the only sign of Late Vendian activation of this block, which is reflected in changes of geochemical indices of terrigenous rocks and their younger Sm–Nd model ages.  相似文献   

14.
Yang  Hao  Ge  Wenchun  Dong  Yu  Bi  Junhui  Wang  Zhihui  Ji  Zheng  Yang  H.  Ge  W. C.  Dong  Y.  Bi  J. H.  Wang  Z. H.  Ji  Z. 《International Journal of Earth Sciences》2017,106(6):1919-1942
International Journal of Earth Sciences - In this paper, we report zircon U–Pb ages, Hf isotopes and whole-rock geochemical data for the Permian to Early Triassic granitoids from the western...  相似文献   

15.
16.
Coronitic metagabbronorites (so-called hyperites) and metabasites occur within gneisses, migmatites and minor granulites in the high-grade metamorphic Góry Sowie Block in the Sudetes (SW Poland). Incompatible trace-element and )Nd data, combined with field and petrographic evidence, suggest that three groups may be distinguished: (1) "enriched" amphibolites (Zr/Nb ca. 8, )Nd500 +1 - +2.5), (2) "depleted" amphibolites (Zr/Nb >30, )Nd500 +5 - +6), and (3) metagabbronorites (Zr/Nb 13-19, )Nd500 scattered between +5.3 and -1). These characteristics favour an extensional within-plate setting, consistent with their field occurrence as small bodies scattered within metasedimentary and felsic metaigneous gneisses. In that setting, enriched mantle sources were partially melted to produce a range of basic magmas, showing affinities with continental tholeiites (within plate-type basalts). Presumably, in a more advanced stage of rifting, more depleted varieties, transitional to N-MORB, were emplaced. These mafic magmas were variably contaminated during their ascent in the crust. The metagabbronorites, with their well-preserved igneous textures, were previously interpreted as having been intruded after the main deformation and after the peak of amphibolite facies metamorphism (some authors suggesting a relation to the "circum Góry Sowie ophiolites"). However, the geochemical characteristics and P-T estimates suggest that the metagabbronorites are unrelated to the ophiolitic gabbros found in the neighbourhood of the Góry Sowie Block and, in contrast to them, have experienced a complex, polybaric P-T path.  相似文献   

17.
18.
《International Geology Review》2012,54(11):1377-1394
The Guerrero terrane is composed of Middle Jurassic–Lower Cretaceous arc assemblages that were rifted from the North American continental mainland during Late Jurassic–Early Cretaceous back-arc spreading within the Arperos Basin, and subsequently accreted back to the continental margin in the late Aptian. The Sierra de los Cuarzos area is located just 50 km east of the Guerrero terrane suture belt and, therefore, its stratigraphic record should be highly sensitive to first-order tectonic changes. Two Upper Jurassic–Lower Cretaceous clastic units were recognized in the Sierra de los Cuarzos area. The Sierra de los Cuarzos Formation is the lowermost exposed stratigraphic unit. Petrographic data and U-Pb zircon ages suggest that the Sierra de los Cuarzos Formation was derived from quartz-rich sedimentary and igneous sources within the North American continental mainland. The Sierra de los Cuarzos Formation is overlain by the Pelones Formation, which is composed of volcanoclastic sandstones derived from a mix of sources that include the mafic arc assemblages of the Guerrero terrane and quartz-rich sedimentary and volcanic rocks exposed in the continental mainland. The provenance change documented in the Sierra de los Cuarzos area suggests that the Pelones Formation was deposited when the Arperos Basin was closed and the Guerrero terrane was colliding with the North American continental mainland. Based on these data, we interpret the Pelones Formation as the syn-tectonic stratigraphic record associated with the accretion of the Guerrero terrane.  相似文献   

19.
International Journal of Earth Sciences - In the Late Cretaceous, throughout the closure of the Neotethys Ocean, ophiolitic rocks from the İzmir–Ankara–Erzincan ocean branch were...  相似文献   

20.
内蒙古东七一山钨多金属矿位于北山造山带东段,是一个以钨为主,共伴生锡、钼、铷、铍、铌、钽、铁和萤石的综合型矿床。本次工作对含矿花岗质杂岩开展了岩石学、地球化学、锆石U-Pb及辉钼矿Re-Os年代学研究。富W-Sn-Mo花岗岩岩性为细粒似斑状二长花岗岩、中细粒似斑状二长花岗岩、花岗斑岩,结晶年龄分别为220.6±1.6Ma、220.4±1.3Ma和220.0±1.1Ma。富Rb-Be-Nb-Ta花岗岩岩性为中粗粒钠长石化似斑状二长花岗岩,结晶年龄为219.9±1.9Ma。辉钼矿Re-Os定年获得加权平均年龄为211±1Ma(MSWD=0.83),说明成岩成矿发生在晚三叠世。含矿花岗质杂岩均具有高硅、富碱、贫铁镁钙特征,为高钾钙碱性花岗岩。其中,富W-Sn-Mo花岗岩为准铝质-过铝质花岗岩;而富Rb-Be-Nb-Ta花岗岩为强过铝质花岗岩。杂岩体轻重稀土具一定分馏,呈现显著的负Eu异常,均富集Rb、K、U、Ta,强烈亏损Ba、Nb、Sr、P、Ti、Zr、Hf。与富W-Sn-Mo花岗岩相比,富Rb-Be-Nb-Ta花岗岩具更低的稀土总量,更显著的Eu负异常,并显示微弱的稀土四分组效应,更高的Li、Ta含量,更低的P、Ti、Zr、Hf、W、Mo、Bi含量。时空关系和地球化学特征表明,杂岩体为同一次岩浆活动不同演化阶段的产物,均经历了较高程度的结晶分异和较强的熔体-流体相互作用。相比而言,富Rb-Be-Nb-Ta花岗岩比富W-Sn-Mo花岗岩结晶分异程度更高,熔体-流体作用更强,花岗质岩浆的高程度分离结晶和熔体-流体相互作用是形成该杂岩体并促使成矿的重要控制因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号