首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Early Precambrian granulite-gneiss complex of the Irkut Block (Sharyzhalgai salient of the Siberian Craton basement) with the protoliths represented by a wide range of magmatic and sedimentary rocks, has a long-term history including several magmatic and metamorphic stages. To estimate the age of sedimentation and metamorphism of the terrigenous deposits, the composition of the garnet-biotite, hyper-sthene-biotite, and cordierite-bearing gneisses has been studied; their isotopic Sm-Nd values have been revealed; and the U-Pb zircon dating has been performed using the SHRIMP II ion microprobe. The protoliths of the terrigenous sediments metamorphosed under conditions of the granulite facies correspond to a rock series from siltstones and graywackes to pelites. The Nd model ages of paragneisses range from 2.4 to 3.1 Ga. Zircons of the cordierite-bearing and hypersthene—biotite gneisses show the presence of cores and rims. The clastic, smoothed, and irregular shape of the cores indicates their detrital character and relicts of oscillatory zoning suggest the magmatic origin of zircon. The rim’s metamorphic genesis is indicated by the lack of zoning and by the lower Th/U ratio compared to that of the cores. The age of the detrital cores (≥2.7, ~2.3, and 1.95—2.0 Ga) and metamorphic rims (1.85–1.86 Ga) defines the time of sedimentation at 1.85–1.95 Ga ago. Potential sources for the Archean detrital zircons were metamagmatic rocks of the granulite—gneiss complexes in the southwestern margin of the Siberian Craton. The age of the dominant detrital cores at 1.95–2.0 Ga ago, together with the minimal TNd(DM) values, indicates the contribution of the juvenile Paleoproterozoic crust to the formation of sediments. The juvenile Paleoproterozoic crust was likely represented by magmatic complexes similar to the volcanic and granitoid associations of the Aldan shield, which were formed 1.99–2.0 Ga ago and showthe model age of 2.0—2.4 Ga. The isotopic Sm-Nd data show that the Late Paleoproterozoic metasedimentary rocks occur not only in the Sharyzhalgai salient but in the Aldan and Anabar shields of the Siberian Craton as well.  相似文献   

2.
Abstract: Sensitive, high-resolution ion microprobe zircon U–Pb ages of Paleoproterozoic, high-grade, metasedimentary rocks from the south-western part of the Siberian Craton are reported. Early Precambrian, high-grade complexes, including garnet–biotite, hypersthene–biotite, and cordierite-bearing gneisses compose the Irkut terrane of the Sharyzhalgay Uplift. Protoliths of studied gneisses correspond to terrigenous sediments, ranging from greywacke to shale. The paragneiss model Nd ages of 2.4–3.1 Ga indicate Archean-to-Paleoproterozoic source provinces. Zircons from gneisses show core-rim textures in cathodoluminescence (CL) image. Round or irregular shaped cores indicate detrital origin. Structureless rims with low Th/U are metamorphic in origin. The three age groups of detrital cores are: ≥2.7, ~2.3, and 1.95–2 Ga. The ages of metamorphic rims range from 1.86 to 1.85 Ga; therefore, the sediments were deposited between 1.95 and 1.86 Ga and derived from Archean and Paleoproterozoic source rocks. It should be noted that Paleoproterozoic metasedimentary rocks of the Irkut Block are not unique. High-grade metaterrigenous sediments, with model Nd ages ranging from 2.3 to 2.5 Ga, are widely distributed within the Aldan and Anabar Shields of the Siberian Craton. The same situation is observed in the North China Craton, where metasedimentary rocks contain detrital igneous zircon grains with ages ranging from 3 to 2.1 Ga (Wan et al., 2006). All of these sedimentary units were subjected to Late Paleoproterozoic metamorphism. In the Siberian Craton, the Paleoproterozoic sedimentary deposits are possibly marked passive margins of the Early Precambrian crustal blocks, and their high-grade metamorphism was related to the consolidation of the Siberian Craton.  相似文献   

3.
This paper discusses geological and geochemical aspects of a Paleoproterozoic volcano-plutonic association that crops out in southwestern Amazonian Craton, Mato Grosso, Brazil. The study area was divided into undeformed and deformed domains, based on structural and geochronology studies. The undeformed domain is composed mainly of felsic explosive and effusive flows. Inter-layered mafic flows of basalts and sedimentary rocks are also present. The deformed domain is mainly composed of titanite and hornblende-bearing monzogranite to syenogranite and biotite monzogranite, while granodiorite is less common. U–Pb single zircon analyses yielded ages of 1.8–1.75 Ga in granites and felsic volcanic rocks for both domains. Basalts from the undeformed domain are phaneritic, fine-grained, and are often hydrothermally altered. They show tholeiitic affinity and are LREE enriched. Their trace element composition resembles those of within-plate associations. The εNd (t = 1.75 Ga) for all these rocks are positive, ranging from 0.12 to 1.49, which reflect a juvenile source. The felsic volcanism comprises subalkaline rocks with high K contents and is divided into two groups: crystal enriched ignimbrites and effusive rhyolites. REE patterns of effusive rocks show negative-Eu anomalies and are smooth in the ignimbrites. Trace element patterns similar to those of the effusive rocks and ignimbrites are found in magmatic rocks derived from sources affected by subduction-related metasomatism. Hornblende and biotite granites occur in the deformed felsic plutonic domain. These rocks show evidence of low-temperature metamorphism and deformation, and in some places, of hydrothermal alteration. The LREE/Nb (or Ta) ratios of these rocks are consistent with those observed in granites of post-collisional settings. The εNd (t = 1.75 Ga) values are slightly negative on average, with few positive values (?1.41 to +2.96). These data are interpreted as indicative of a magmatism produced during a post-collisional event from mixed sources: a metasomatised mantle and a Paleoproterozoic continental crust. An intracontinental shearing with age of 1.7–1.66 Ga created the Teles Pires–Juruena lineament which partially controlled this magmatism.  相似文献   

4.
5.
6.
7.
8.
The basement granite gneisses from the north-central Aravalli Craton in NW India were investigated for geochemistry and geochronology.In a peneplain terrain,the granite gneiss outcrops are scanty and samples were collected mainly from two small hills and several ground-level exposures in the Sakhun–Ladera region.Wellfoliated granite gneiss is the dominant lithology that also hosts dark,lenticular enclaves,and is in turn,intruded by mafic dykes.The granite gneiss has silica content ranging from 61.37 wt.% to 68.27 wt.% that marks a slight overlap with the enclaves(54.32 wt.% to 62.17 wt.%).Both groups have a high K_2O/Na_2O(~2 or higher) ratio.Geochemically,the granite gneiss classify as granite–granodiorite,and enclaves as granodiorite-diorite.The In-situ LA-ICP-MS zircon U–Pb geochronology of granite gneiss has yielded a statistically valid 1721 ± 9 Ma age that we interpret as the emplacement age for the granitic protolith.Geochemical characteristics of granite gneiss underline fractional crystallization of an I-type melt as the main process,and continuity of trends in enclaves underlines their mutual genetic link.The genetic association is further verified by a consistency in the trace element characteristics and REE patterns.The Nd-isotope signatures define a single grouping for both granite gneiss and enclaves,with εNd(t) values ranging from-6.38 to-6.61,further substantiating a common source.The geochemical tectonic discrimination schemes consistently point toward an extensional setting and A-type characteristics for granite gneiss and enclaves.These are analogous to the coeval(1.72–1.75 Ga),A-type granitoids from the Khetri and Alwar basin in the North Delhi Fold Belt,implying a much larger areal extent for the Paleoproterozoic anorogenic magmatism in the northern segment of the Aravalli Craton.The Paleoproterozoic age for the presumed ‘Archean' basement in this region offers tacit evidence that the BGC–II is a stratigraphically younger terrane as compared to the Archean age,BGC–I.  相似文献   

9.
在鄂尔多斯地块西南缘的六盘山断裂带内出露铁马河辉绿岩。铁马河辉绿岩相对贫CaO、MgO和K_2O;富集FeOT、TiO_2和Na_2O。轻稀土相对富集,重稀土平坦,不显示Eu异常,稀土配分曲线显示右倾型;高场强元素无异常,大离子亲石元素K、Rb、Ba相对富集,显示富集地幔源的地球化学特征。对辉绿岩样品进行LA-ICP-MS锆石U-Pb测年,获得上交点年龄2018±16Ma,说明岩体形成于古元古代。样品具有低的(~(87)Sr/~(86)Sr)i值(07003~07064)和正的εNd(t)值(+514~+433),Nd同位素一阶段模式年龄(约20Ga)与LA-ICP-MS锆石U-Pb年龄基本一致,暗示其来源于软流圈地幔的部分熔融。结合区域地质资料的研究表明,华北克拉通西部地块(鄂尔多斯地块)在20Ga期间的伸展背景与东部陆块一致,暗示整个华北克拉通在20Ga左右存在广泛的裂解事件。  相似文献   

10.
In this paper, we present data on major and trace elements in highly metamorphosed mafic rocks from the granulite-gneiss complex of the Angara-Kan block (southwestern Siberian craton), identify igneous protoliths of the metabasites, and assess the mobility of elements during metamorphism. Two types of rocks with different geologic relations and compositions were recognized. Garnet-bearing two-pyroxene granulites (Cpx + Pl + Grt + Opx) occur as sheet- and boudin-like bodies, which were folded and deformed with their host paragneisses. Dikes, which in most cases underwent only brittle deformation, are composed of metabasites characterized by the assemblage Cpx + Hbl + Pl + Grt. The major element compositions of igneous protoliths for the mafic granulites and metabasite dykes correspond to variously differentiated basaltic magmas. The protoliths of the metabasites are depleted in K2O, LILE, Zr, Nb, and LREE and were derived from a depleted mantle source. The major and trace element compositions of the dike metabasites are similar to those of low-K tholeiitic basalts of oceanic island arcs. Continental intraplate basalts derived from an enriched mantle source are possible igneous protoliths for the mafic granulites enriched in Ba, LREE, Nb, Ta, Zr, and Hf. It is assumed that lower Rb, Th, and U contents in the mafic granulites compared with continental flood basalts, high K/Rb and La/Th, and moderate Th/U ratios reflect the loss of Rb, Th and U during granulite-facies metamorphism.  相似文献   

11.
12.
Comprehensive geochemical and geochronological studies were carried out for two-mica granites of the Biryusa block of the Siberian craton basement. U-Pb zircon dating of the granites yielded an age of 1874 ± 14 Ma. The rocks of the Biryusa massif correspond in chemical composition to normally alkaline and moderately alkaline high-alumina leucogranites. By mineral and petrogeochemical compositions, they are assigned to S-type granites. The low CaO/Na2O ratios (< 0.3), K2O - 5 wt.%, CaO < 1 wt.%, and high Rb/Ba (0.7-1.9) and Rb/Sr (3.9-6.8) ratios indicate that the two-mica granites resulted from the melting of a metapelitic source (possibly, the Archean metasedimentary rocks of the Biryusa block, similar to the granites in £Nd(t) value) in the absence of an additional fluid phase. The granite formation proceeded at 740-800 °C (zircon saturation temperature). The age of the S-type two-mica granites agrees with the estimated ages of I- and A-type granitoids present in the Biryusa block. Altogether, these granitoids form a magmatic belt stretching along the zone of junction of the Biryusa block with the Paleoproterozoic Urik-Iya terrane and Tunguska superterrane. The granitoids are high-temperature rocks, which evidences that they formed within a high-temperature collision structure. It is admitted that the intrusion of granitoids took place within the thickened crust in collision setting at the stage of postcollisional extension in the Paleoproterozoic. This geodynamic setting was the result of the unification of the Neoarchean Biryusa continental block, Paleoproterozoic Urik-Iya terrane, and Archean Tunguska superterrane into the Siberian craton.  相似文献   

13.
Isotopic compositions of carbon and oxygen in carbonates and sulfur in sulfates of the Verkhnyaya Lena Formation (ε2–ε3), which terminates the Cambrian section of the Irkutsk Amphitheater of the Siberian Craton, are studied. Sulfates of the Verkhnyaya Lena Formation are marked by unusually low δ34S values (4.6–12.0‰) relative to sulfates of the underlying Angara Formation. This is likely caused by variations in the facies-paleogeographic sedimentation at the transition of the Angara and Verkhnyaya Lena formations, as well as associated variations in the water and salt alimentation budget in sedimentation basins, due to their isolation from open sea and intensification of the continental and underground discharge. The δ18O(PDB) value in carbonates decreases from ?4.4‰ at bottom to ?10.4‰ at top, reflecting variation in postsedimentary transformations and probable continuous freshening of sedimentation basin. Isotopic composition of carbon in most samples shows normal marine δ13C values (0 ± 1‰). Only in some samples, does the δ13C value increase up to ?3.8 and 2.2‰ due to specific features of postsedimentary processes. The Rb-Sr systems of the clayey component of marls from the 500-m-thick section of the Angara Formation and bottom of the Verkhnyaya Lena Formation record an age of 512 ± 10 Ma, which is close to the assumed stratigraphic age of the Verkhnyaya Lena Formation. The 87Sr/86Sr initial ratio is 0.7082 ± 0.0004.  相似文献   

14.
Doklady Earth Sciences - This paper reports on diagnostic and structural studies that were first carried out for carbonaceous material of quartz–muscovite dynamoschists from the schistosity...  相似文献   

15.
华北克拉通古元古代构造事件   总被引:45,自引:55,他引:45  
翟明国  彭澎 《岩石学报》2007,23(11):2665-2682
本文讨论了华北克拉通的古元古代表壳岩系、高压麻粒岩和孔兹岩系的若干问题,提出了(1)华北克拉通在约2500Ma太古宙结束时已基本形成.在2300Ma之前处于相对稳定的构造环境;(2)2300~1950Ma期间,华北克拉通经历了一次基底陆块的拉伸-破裂事件,在克拉通内部发育了晋豫、胶辽裂陷盆地和丰镇陆内凹陷盆地;(3)约1900Ma期间,有地幔上涌并伴随辉长岩浆的底侵作用,引起大青山-丰镇地区的超高温变质作用.底侵的辉长岩浆作为岩体和岩墙在下地壳就位,并发生高压麻粒岩相变质作用;(4)约1850Ma期间,华北克拉通经历了一次挤压构造事件,导致了裂陷盆地的闭合和焊接,形成晋豫和胶辽两个类似于现代陆.陆碰撞型的造山带;(5)在华北克拉通的北缘,华北克拉通可能与其北部的另一古老陆块或岛弧拼合,其拼合带应位于白云鄂博以北.现在已残缺不全.孔兹岩系可能代表了平行于北缘造山带的一条构造带.与北部造山带的俯冲碰撞相关的陆内深部逆掩造成了麻粒岩相岩石的形成和抬升;(6)白云鄂博群、化德群和渣尔泰(-狼山)群是与长城系相同时期发育的被动大陆边缘裂谷盆地;(7)1850~1700Ma期间,华北克拉通进入伸展构造体制,导致基底抬升,产生裂陷槽、基性岩墙群和非造山岩浆活动.  相似文献   

16.
The volcanic rocks of the Xiong'er Group are situated in the southern margin of the North China Craton(NCC).Research on the Xiong er Group is important to understand the tectonic evolution of the NCC and the Columbia supercontinent during the Paleoproterozoic.In this study,to constrain the age of the Xiong'er volcanic rocks and identify its tectonic environment,we report zircon LA-ICP-MS data with Hf isotope,whole-rock major and trace element compositions and Sr-Nd-Pb-Hf isotopes of the volcanic rocks of the Xiong'er Group.The Xiong'er volcanic rocks mainly consist of basaltic andesite,andesite.dacite and rhyolite,with minor basalt.Our new sets of data combined with those from previous studies indicate that Xiong'er volcanism should have lasted from 1827 Ma to 1746 Ma as the major phase of the volcanism.These volcanics have extremely low MgO.Cr and Ni contents,are enriched in LREEs and LILEs but depleted in HFSEs(Nb,Ta,and Ti),similar to arc-related volcanic rocks.They are characterized by negative zircon ε_(Hf)_(t) values of-17.4 to 8.8,whole-rock initial ~(87)Sr/~(86)Sr values of 0.7023 to 0.7177 andε_(Nd)(t) values of-10.9 to 6.4.and Pb isotopes(~(206)Pb/~(204)Pb =14.366-16.431,~(207)Pb/~(204)Pb =15.106-15.371,~(208)Pb/~(204)Pb= 32.455-37.422).The available elemental and Sr-Nd-Pb-Hf isotope data suggest that the Xiong'er volcanic rocks were sourced from a mantle contaminated by continental crust.The volcanic rocks of the Xiong'er Group might have been generated by high-degree partial melting of a lithospheric mantle that was originally modified by oceanic subduction in the Archean.Thus,we suggest that the subduction-modified lithospheric mantle occurred in an extensional setting during the breakup of the Columbia supercontinent in the Late Paleoproterozoic,rather than in an arc setting.  相似文献   

17.
Chemical and isotopic compositions of Proterozoic metaterrigenous rocks of the Kan Block (Central and Idar terranes) of the Eastern Sayan are studied. The results of the reconstruction of their provenances and sedimentation conditions are presented. The rocks under investigation correspond by their petrogeochemical composition to graywackes of island arcs. The combination of geochemical and isotope data shows that sediments of the Central terrane had a local provenance represented by Early Proterozoic subduction magmatic complexes, whereas sediments of the Idar terrane formed probably as the result of mixing of terrigenous material related to the destruction of rocks of Meso-Neoproterozoic oceanic and more ancient continental crust.  相似文献   

18.
The lithology, sedimentation conditions, tectonic evolution features, and mineralization of molassoid complexes in southwestern Ghana that fill the Tarkwa and Bui basins located within the Birrimian Paleoproterozoic orogenic belt are described on the basis of an analysis of published and our own data. The formation of these sediments in geodynamic conditions of pull-apart basins is described. The deposits of the Tarkwa group are compared with the Archean Timiskaming group of the Superior Province and similar younger complexes. The Tarkwa group is considered as the Paleoproterozoic equivalent of molasse-like complexes that formed at the last stage of accretion orogens of different ages in pull-apart structures.  相似文献   

19.
寻找扬子板块西南地区古老结晶基底一直是众多地质学者追寻的目标,其涉及扬子板块在Nuna超大陆重建中的位置和演化过程,也是前寒武纪研究的重要课题。继在扬子板块西南部中国云南石屏撮科村首次报道2.35Ga花岗片麻岩结晶基底后,又在撮科村—高家坡一带3个花岗岩样品中分别获得了2347.3±4.9Ma、2324.3±8.6Ma和2329.4±5.9Ma的SHRIMP锆石U-Pb年龄,进一步确认扬子板块西南部中国境内存在2.32~2.35Ga的岩浆事件,其应为Nuna超大陆汇聚期Arrowsmith造山事件在扬子板块的响应。另在1件糜棱岩化花岗闪长岩样品中获得了1909.8±5.7Ma和1843.1±7.6Ma两组年龄,在扬子板块西南部中国境内首次发现1.90Ga和1.84Ga的构造或变质事件。结合前人研究成果,确定扬子板块西南部存在2.91~2.84Ga,2.36~2.32Ga,2.28~2.19Ga的岩浆事件,以及1.97~1.95Ga,1.90Ga,1.84~1.83Ga的变质事件,为确定扬子板块在Nuna超大陆重建中的位置提供了更多证据。  相似文献   

20.
Paleoproterozoic granitoids are an important constituent of the Jiao–Liao–Ji Belt(JLJB). The spatial-temporal distribution and types of Paleoproterozoic granitoids are closely related to the evolution of the JLJB. In this paper, we review the field occurrence, petrography, geochronology, and geochemistry of Paleoproterozoic granitoids on Liaodong Peninsula, northeast China. The Paleoproterozoic granitoids can be divided into pre-tectonic(~2.15 Ga; peak age=2.18 Ga) and post-tectonic(~1.85 Ga) granitoids. The pre-tectonic granitoids are magnetite and hornblende–biotite monzogranites and granodiorites. Pre-tectonic monzogranites are widespread in the JLJB and have A_2-type affinities. In contrast, pretectonic granodiorites are only present in the Simenzi area and have adakitic affinities. The post-tectonic granitoids consist of porphyritic monzogranite, syenite, diorite, granodiorite, quartz monzonite, monzogranite, and granitic pegmatite, which are adakitic rocks and I-, S-, and A_2-type granitoids. The assemblage of pre-tectonic A_2-type granitoids and adakitic rocks indicates the initial tectonic setting of the JLJB was a continental back-arc basin. The assemblage of post-tectonic adakitic rocks and I-, S-, and A_2-type granitoids indicates a post-collisional setting. The 2.20–2.15 Ga A_2-type granitoids and adakitic rocks were associated with the initial stage of back-arc extension, and the peak of back-arc extension is inferred from the subsequent(2.15–2.10 Ga) mafic intrusive activity. The ~1.90 Ga adakitic rocks mark the beginning of the postcollisional stage, which was followed by the intrusion of low-temperature S-and I-type granitoids. High-to low-pressure granitoids(S-type) were generated during the peak of post-collisional lithospheric delamination and asthenospheric upwelling. The emplacement of later granitic pegmatites occurred during the waning of the orogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号