首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
黄河源区土地利用/覆被变化及其生态环境效应   总被引:12,自引:3,他引:9  
宋翔  颜长珍  朱艳玲  段翰晨 《中国沙漠》2009,29(6):1049-1055
应用1989年TM影像和2005年ETM+影像提取黄河源区两期土地利用/覆被数据,并利用GIS的空间叠加分析对两期土地利用图进行土地利用动态信息的提取。在建立黄河源区土地利用数据库的基础上,采用生态环境质量指数模型建立各土地利用类型与生态环境质量之间的数量关系,定量的分析土地利用变化对生态环境质量的影响。结果表明:①黄河源区1989-2005年间,土地利用变化缓慢而匀速,存在着生态环境的恶化和改善两种相反的趋势。在大尺度范围内,生态环境质量相对稳定,有轻微的恶化,但是在研究区局部范围内,生态环境质量变化显著;②植被是影响黄河源区生态环境质量的主要因素,其中草地对环境质量的影响处于主导地位;③利用生态环境质量指数模型不仅可以从整体上了解研究区生态环境质量,也可以发现影响区域环境质量的主要驱动力。  相似文献   

2.
黄河上游流域作为黄河的水源地是中国重要的生态功能区,分析黄河上游流域的生态环境质量变化对于黄河流域的生态保护和经济高质量发展具有重要意义。本文基于Google Earth Engine平台,通过遥感生态指数(Remote Sensing Ecological Index,RSEI)对2000—2021年黄河上游流域的生态环境质量进行动态分析。结果表明:(1)黄河上游流域RSEI呈提升态势,并且具有阶段性的特点,2000—2005年为生态环境质量恶化阶段,2006—2021年为生态环境质量改善阶段。生态环境质量总体处于较差和中等水平,占区域总面积的64.78%。(2)不同河段生态环境质量存在显著的空间异质性,其中河源段的生态环境质量最好,冲积平原段的生态环境质量最差。(3)黄河上游流域生态环境质量空间集聚特征显著,高-高集聚区稳定分布于河源段附近,低-低集聚区分布在人类活动强度较大的峡谷段和冲积平原段。(4)绿度、湿度、热度和干度均对黄河上游地区生态环境质量产生显著影响,其中绿度为主导驱动因子,干度为次要驱动因子。植被覆盖度的增加、气候调节和人类活动对黄河上游流域生态环境改善有明显的促进...  相似文献   

3.
长江黄河源区生态环境范围的探讨   总被引:28,自引:0,他引:28  
在江河源区地理学与水文学界定的基础上,在明确界定源区范围四大原则与依据的前提下,文章综合分析了长江黄河源区的地貌特征、气候条件、植被分布以及水文水系特征,并在此基础上综合确定了长江黄河源区生态环境研究的范围。以达日水文站为界,以上区域为黄河流域生态环境研究的源区范围,流域控制面积约4.49×104 km2, 源区为高原湖泊沼泽地貌,地形平缓, 高寒半干旱气候, 受水热条件控制植被主要为草原化草甸;长江流域生态环境研究的源区以聂恰曲汇口为界,流域控制面积约12.24×104 km2。长江源区为高平原丘陵地貌,地形变化和缓,气候为高寒干旱半干旱气候,因范围广阔,分布高寒草原和高寒草甸植被。  相似文献   

4.
刘璐璐  曹巍  邵全琴 《地理科学》2017,37(2):311-320
基于20 世纪70 年代中后期、90 年代初期、2004 年和2012年共4 期土地覆被数据,利用转移矩阵、土地覆被状况指数和土地覆被转类指数,对比分析了长江源区和黄河源区近30 a来土地覆被与生态状况的变化特征。结果表明:2012年草地是两源区最主要的土地覆被类型,但黄河源区的草地面积占比比长江源区高17%,同时,长江源区存在永久冰川雪地及荒漠,黄河源区没有;从土地覆被状况来看,过去30 a黄河源区优于长江源区,长江源区土地覆被状况指数平均为16.82%,黄河源区为38.84%;从土地覆被转类来看,过去30 a长江源区土地覆被总体变好,黄河源区则总体变差,在20世纪70年代中后期至90年代初、20世纪90年代初至2004年和2004~2012年3时段内,长江源区土地覆被经历了变差-好转-持续好转的变化过程,而黄河源区则是变差-显著变差-略有好转,且黄河源区土地覆被状况的变化程度较长江源区更为剧烈;长江源区因分布有大量的冰川、冻土,自20世纪90年代气温升高开始,冰川冻土融化,导致水体与沼泽面积扩张,后期叠加生态工程的积极影响,使得其土地覆被状况持续好转,黄河源区则因2004 年以来暖湿的气候状况及生态保护工程的实施,使得土地覆被退化趋势得到遏制并逐渐呈现转好态势。  相似文献   

5.
长江、黄河源区高寒湿地动态变化研究   总被引:4,自引:0,他引:4  
潘竟虎  王建  王建华 《湿地科学》2007,5(4):298-304
长江、黄河源区是中国湿地分布面积最大的地区之一,近年来湿地面积减少、功能退化引起了严重的区域生态环境问题。为了定量分析湿地退化过程,利用1986年的TM和2000年的ETM 卫星遥感数据,在GIS软件支持下,用景观格局指数对长江、黄河源区15a来湿地的分布和变化进行了研究。结果表明,15a间,长江、黄河源区湿地面积减少了2744.77km2,平均减少率为1.2%/a。长江源湿地的退化比黄河源明显。湿地主要是由高寒沼泽草甸湿地向高寒草甸湿地、裸岩裸土地和高寒草原演变,以及由水域向滩地转变。各湿地景观类型斑块数增加,破碎度和分维数提高,优势度降低,湿地景观空间结构趋于复杂,景观异质性增加。15a间研究区湿地生态服务价值降低了37.86×108元。气候干暖化是造成源区湿地变化的主要因素,人类活动加剧了这一进程。  相似文献   

6.
黄河源区地表水资源变化及其影响因子   总被引:19,自引:3,他引:16  
利用1955~2005 年黄河源区玛多气象站和黄河沿水文站气象、水文资料, 分析了该区域地表水资源、气候及冻土演变规律, 揭示了地表水资源变化的成因。研究表明: 近51 年黄河源流量丰枯转化频繁, 但在总体上特别是进入20 世纪90 年代以来黄河源流量呈减少趋势, 流量年内分配表现为单峰型; 降水量对流量有着较为显著的影响, 且具有一定的持续性; 黄河源区气温的显著升高对于加大流域蒸发量导致流量补给的减少作用要大于其升高致使冰雪融水的补给作用, 其中春季气温回升的这一效应更为显著; 黄河源区冻土呈现出显著的退化趋势, 冻土厚度与流量总体上呈显著的正相关关系, 其不断减小削弱了自身天然隔水层的作用; 黄河源区蒸发量呈现出显著的增大趋势, 并导致流量的减少; 气候变化导致流量的减少量占总减少量的70%, 其余30%可能是由人类活动加剧造成的, 气候及冻土因子对流量的作用大小依次为冻土、降水、蒸发和气温, 显然多年冻土对于黄河源区地表水资源的形成和发育有着至关重要的作用。  相似文献   

7.
近13 a来黄河源区高寒草地物候的时空变异性   总被引:1,自引:0,他引:1       下载免费PDF全文
以8 d合成的500 m空间分辨率的MODIS [NDVI]时序数据为基础,利用非对称高斯函数拟合法和比值阈值法对2000-2012年黄河源区高寒草地生长季始期(SOG)、生长季末期(EOG)、生长季长度(LOG)的时空变化进行了研究。结果表明:黄河源区高寒草地多在第126~140 d开始生长,到第277~290 d逐渐停止生长,LOG多集中在140~160 d。由东南向西北,随水热条件变化,SOG 逐渐推迟,EOG逐渐提前,LOG逐渐缩短。物候的海拔分异明显,随海拔升高,SOG逐渐延迟,EOG逐渐提前,LOG逐渐缩短。2000-2012年,黄河源区高寒草地SOG显著提前,EOG基本不变,LOG显著延长。SOG提前、EOG推迟、LOG延长的区域主要分布在黄河源区西北部和西南部,而SOG推迟、EOG提前、LOG缩短的区域主要分布在黄河源区中部,其中LOG延长和缩短区域分别占植被区面积的82.77% 和17.23%。黄河源区高寒草地物候的年际变化在不同海拔上分异显著。高海拔地区SOG与LOG变化幅度均超过了低海拔地区,而EOG变化幅度相当。春季、秋季气温升高可能是引起黄河源区高寒草地SOG提前和EOG推迟的主要原因。  相似文献   

8.
为掌握黄河源区植被变化趋势及其与气候因子的关系,本研究利用2000—2013年Terra/MODIS NDVI数据和同期气温、降水资料,通过一元线性回归分析、相关分析等方法,对黄河源区生长季植被时空变化及其与气候因子进行关联分析。结果表明:黄河源区多年平均生长季NDVI整体表现为由东南向西北递减。2000—2013年,黄河源区生长季NDVI呈波动上升趋势(P0.01);生长季各期NDVI均在增加,其中生长季初期NDVI增加较显著。近十几年NDVI无显著变化区域占黄河源植被覆盖区面积的69.58%,分布广泛;极显著和显著增加区域占28.88%,集中在黄河源东北部、扎陵湖和鄂陵湖周围;极显著和显著减少区域仅占1.54%,主要以小斑块状分布在扎陵湖、鄂陵湖以上源头区。生长季NDVI与气候因子显著正相关区域和NDVI增加区域高度一致,意味着黄河源区暖湿化促进了植被生长,而降水是影响黄河源区植被生长的主导因子。气温和降水对黄河源区植被生长影响的最大时间滞后效应约为16天或32天,且气温对黄河源区植被生长的影响还具有显著的同期效应。  相似文献   

9.
标准化降水蒸散发指数(SPEI)是评估气候变暖背景下区域干旱的重要指标。基于生态功能分区,利用MODIS-NDVI数据和SPEI指数,探讨2000—2014年黄河源区植被指数和干旱指数的年际变化、空间分布规律以及两者之间的相关关系。结果表明:(1)2000—2014年黄河源区NDVI和SPEI总体上均呈波动上升趋势,植被覆盖状况略有好转,干旱程度有所降低;(2)NDVI与SPEI变化趋势的空间分布特征大致相同,东南部区域总体呈减少趋势,西北部区域总体呈增加趋势;(3)黄河源区降水量是影响植被生长的主要因子,也是影响SPEI变化的主要条件。当0.3NDVI0.6时,SPEI对NDVI的影响较强,当NDVI0.6时影响较小;(4)黄河源区大部分地区NDVI与SPEI呈正相关,其中呈显著正相关的区域分布在青根河生态区以及黄河源头生态区植被覆盖度较低区域;小部分地区由于受到人类活动的干扰,使NDVI与SPEI呈负相关或相关性较弱,其中呈显著负相关的区域在黄南草原生态区及周围草地退化、生物多样性敏感的区域。黄河源区干旱程度的下降对植被覆盖的增加有促进作用,为该区域的生态恢复提供了有利条件。  相似文献   

10.
基于黄河源区有关水文、气象台站的观测数据,对该区及黄河沿水文站以上、黄河沿水文站-吉迈水文站区间、吉迈水文站-玛曲水文站区间、玛曲水文站-唐乃亥水文站区间各区域1960—2014年期间径流变化的季节特征、趋势及其对气候变化响应的区域差异进行了分析。结果表明:近55 a来黄河源区径流及其各分区径流总体上呈减少的态势,但减少幅度各区有所不同;但在2000年代中期后径流量回升比较明显。在上述分析的基础上,基于周期外延叠加方法对黄河河源区径流未来30 a的可能变化进行了预测。预测显示,未来30 a内,黄河源区径流的变化为先增后减,但总体变化平稳,其均值与目前55 a实测系列均值没有显著差异。  相似文献   

11.
Radar remote sensing can acquire information of sub-surface covered by sand in arid area,detect surface roughness and vegetation coronet′s layer and linear feature such as linear structure and channel sensitively. With sediment facies analysis, this paper studies the features of environmental evolution in mid-late Epipleistocene (60 ka BP-20 ka BP) in northeastern Ejin Banner. The conclusions are listed as follows: (1) The evolution of the three lakes, i.e. Gaxunnur, Sugunur and Tian′e lakes, are dominated by faults and regional climate. (2) By analyzing sedimentary section of old Juyanze Lake,the three lakes used to be a large outflow lake before 50 ka BP in northeastern Ejin Banner, and at 50ka BP, temperature declined rapidly in northwestern China. The event caused the lake′s shrinkage. (3)By fault activity uplift in the northern part of old Juyan Lake and depression in the southern part, the lake′s water followed from north to south at around 35 ka BP, old Juyanze fluvial fan was formed. At the same time, Juyan Lake separated from Sugunur Lake and Wentugunr old channel was abandoned.(4) In recent 2000 years, Ruoshui River is a wandering river, sometimes it flows into Juyan Lake and sometimes Sugunur and Gaxunnur lakes. Due to human activities and over exploitation, the oasis ecosystem is rapidly degenerated in 15 years (1986-2000).  相似文献   

12.
Reader Lake and Elbow Lake, two high-altitude lakes in the Uinta Mountains of Utah, are located approximately 2 km apart, at similar elevations, and within identical vegetation communities. Loss on ignition, carbon to nitrogen ratios, biogenic silica, and sediment grain size were analyzed throughout percussion cores retrieved from both lakes to construct continuous time series spanning 14 to ca. 2 ka BP. Given the proximity of the lakes, it is assumed that both were subjected to the same climatic forcing over this time. Accordingly, the first goal of this study was to consider these two multiproxy datasets in concert to yield an integrated paleoclimate record for this region. Close inspection of the records identified discrepancies indicating that the lakes responded to climate changes in different ways despite their proximity and similar setting. Clarifying these differences and understanding why the two lakes behaved differently at certain times was the second goal of this study. Overall, the paleoclimatic records document lake formation in the latest Pleistocene following glacier retreat. Buried glacier ice at the location of Reader Lake may have persisted through the Younger Dryas. Both lakes became biologically productive ca. 11.5 ka BP, and the first appearance of conifer needles indicates that trees had replaced alpine tundra in these watersheds by 10.5 ka BP. The interval from 10 to 6 ka BP was marked by a dramatic increase in precipitation, perhaps related to enhanced monsoonal circulation driven by the insolation maximum. The two lakes recorded this event in notably contrasting ways given their differing hydrogeomorphic settings. Precipitation decreased from 6 to 4 ka BP, and low water levels and drought conditions marked the interval from 4.0 to 2.7 ka BP. The integrated paleoclimate record developed from these cores provides a useful point of comparison with other records from the region. The differences between the records from these closely spaced lakes underscore the need to consider hydrogeomorphic setting when evaluating the suitability of a lake for a paleolimnological study.  相似文献   

13.
黄河源区鄂陵湖现代湖盆形态研究   总被引:1,自引:0,他引:1  
沈德福  李世杰  陈炜  姜永见  聂欣 《地理科学》2011,31(10):1261-1265
鄂陵湖是黄河源区最大的淡水湖。通过基于GPS-RTK的技术定位以及测深仪的水下地形测量,结合相关历史资料和遥感数据分析,应用湖沼学理论,对鄂陵湖的湖盆形态进行定量化研究。结果发现鄂陵湖最大水深33.2 m,平均水深15.55 m,湖长37.49 km,湖面最大宽度32.3 km;平均宽度16.76 km,岸线长226.3 km,湖面面积628.47 km2,湖泊容积97.76×108m3,湖盆形态为接近抛物线体形式的构造断陷湖,而不具备第四纪冰川侵蚀湖盆的地貌特征。研究结果可以对黄河源区的生态环境变化和黄河源区的水量管理提供基础信息。  相似文献   

14.
Radar remote sensing can acquire information of sub-surface covered by sand in arid area,detect surface roughness and vegetation coronet‘s layer and linear feature such as linear structure and channel sensitively. With sediment facies analysis, this paper studies the features of environmental evolution in mid-late Epipleistocene (60 ka BP-20 ka BP) in northeastem Ejin Banner. The conclusions are listed as follows: (1) The evolution of the three lakes, i.e. Gaxunnur, Sugunur and Tian‘e lakes, are dominated by faults and regional climate. (2) By analyzing sedimentary section of old Juyanze Lake,the three lakes used to be a large outflow lake before 50 ka BP in northeastem Ejin Banner, and at 50 ka BP, temperature declined rapidly in northwestem China. The event caused the lake‘s shrinkage. (3)By fault activity uplift in the northem part of old Juyan Lake and depression in the southem part, the lake‘s water followed fi‘om north to south at around 35 ka BP, old Juyanze fluvial fan was formed. At the same time, Juyan lake separated fi‘om Sugunur Lake and Wentugunr old channel was abandoned.(4) In recent 2000 years, Ruoshui River is a wandering river, sometimes it flows into Juyan lake and sometimes Sugunur and Gaxunnur lakes. Due to human activities and over exploitation, the oasis ecosystem is rapidly degenerated in 15 years (1986-2000).  相似文献   

15.
The Xiaohe Cemetery archaeological site (Cal. 4–3.5 ka BP) is one of the most important Bronze Age sites in Xinjiang, China. Although the surrounding environment is an extremely arid desert now, abundant archaeological remains indicate that human occupation was common during certain periods in the Holocene. Field investigations and laboratory analyses of a sediment profile near the Xiaohe Cemetery indicate that while the regional environment was arid desert throughout the Holocene there were three episodes of lake formation near the site in the periods 4.8–3.5 ka BP, 2.6–2.1 ka BP and 1.2–0.9 ka BP. Geomorphic and hydrological investigations reveal that a lake or lakes formed in a low-lying area when water was derived initially from the Kongque River and then shunted into the Xiaohe River basin. Low amounts of active chemical elements in lacustrine sediment between 4.8–3.5 ka BP indicate abundant and continuous water volume in the lake; the content of active chemical elements increased between 2.6–2.1 ka BP but was still at a relatively low level, suggesting a declining amount of water and diminished inflow. Between 1.2–0.9 ka BP there was a very high content of active elements, suggesting decreased water volume and indicating that the lake was stagnate. In contrast, the general climate condition shows that there had a warm-humid stage at 8–6 ka BP, a cool-humid stage at 6–2.9 ka BP and a warm-dry stage at 2.9–0.9 ka BP in this region. The hydrological evolutions around Xiaohe Cemetery did not have one-to-one correspondence with climate changes. Regional comparison indicates that broad-scale climatic conditions played an important role through its influences on the water volume of the Tarim River and Kongque River. But, the formation of the lakes and their level were controlled by geomorphic conditions that influenced how much water volume could be shunted to Xiaohe River from Kongque River. Human occupation of the Xiaohe Cemetery and nearby regions during the Bronze Age and Han-Jin period (202 BC–420 AD) corresponded to the two earlier lake periods, while no human activities existed in the third lake period because of the decreased water volume.  相似文献   

16.
Lakes regulate the water and heat exchange between the ground and the atmosphere on different temporal and spatial scales. However, studies of the lake effect in the high-altitude Tibetan Plateau(TP) rarely have been performed until recently, and little attention has been paid to modelling of frozen lakes. In this study, the Weather Research and Forecasting Model(WRF v. 3.6.1) is employed to conduct three numerical experiments in the Ngoring Lake Basin(the original experiment, an experiment with a tuned model, and a no-lake experiment) to investigate the influences of parameter optimization on the lake simulation and of the high-altitude lake on the regional climate. After the lake depth, the roughness lengths, and initial surface temperature are corrected in the model, the simulation of the air temperature is distinctly improved. In the experiment using a tuned model, the simulated sensible-heat flux(H) is clearly improved, especially during periods of ice melting(from late spring to early summer) and freezing(late fall). The improvement of latent-heat flux(LE) is mainly manifested by the sharp increase in the correlation coefficient between simulation and observation, whereas the improvement in the average value is small. The optimization of initial surface temperature shows the most prominent effect in the first year and distinctly weakens after a freezing period. After the lakes become grassland in the model, the daytime temperature clearly increases during the freezing and melting periods; but the nocturnal cooling appears in other stages, especially from September to October. The annual mean H increases by 6.4 times in the regions of the Ngoring Lake and the Gyaring Lake, and the LE declines by 56.2%. The sum of H and LE increases from 71.2 W/m2(with lake) to 84.6 W/m2(no lake). For the entire simulation region, the sum of H and LE also increases slightly. After the lakes are removed, the air temperature increases significantly from June to September over the area corresponding to the two lakes, and an abnormal convergence field appears; at the same time, the precipitation clearly increases over the two lakes and surrounding areas.  相似文献   

17.
长江黄河源区高寒植被变化的NDVI记录   总被引:55,自引:0,他引:55  
使用8 km分辨率Pathdfinder NOAA-AVHRR/NDVI时间序列数据, 对青藏高原长江、黄河源区1982~2001年地表植被覆盖的空间分布和时间序列变化进行了分析, 并在典型区NDVI与气温、降水量和浅层地温单相关关系分析的基础上, 在不考虑地温作用和考虑地温作用两种条件下, 构建了NDVI与气温、降水量和浅层地温的统计模型。结果表明:近20年来江河源区的植被覆盖总体上保持原状, 局部继续退化。黄河源区的扎陵湖、鄂陵湖周边及其北东部地区、巴颜喀拉山北麓的多曲源头地区、长江源区的曲麻莱和治多一带、托托河沿至伍道梁之间的青藏公路两侧一定范围、格拉丹冬局部地区年NDVI减少显著, 幅度在0%~20%之间, 植被退化严重。江河源区年NDVI的变化, 即植被覆盖状况的好坏主要受温度, 尤其是40 cm附近地温的影响, NDVI对40 cm的地温变化极为敏感。在江河源多年冻土区, 冻土冻融过程不仅与地温变化息息相关, 而且影响土壤含水量的多少, 冻土的退化将会直接影响该区植被的生长。  相似文献   

18.
Yangshao culture is the most important mid-Holocene Neolithic culture in the Yellow River catchment,and thus,a study on the impact of human activities on the environment is important.In the current study,the distribution pattern of the cultivated land in late Yangshao culture is reconstructed using GIS tool and site domain analysis(SDA).The results show that the cultivated land during 5.5-5.0 ka BP was mainly distributed in the Weihe River valley,Luohe River valley,northwestern Henan Plain,Fenhe River valley and eastern Gansu region,especially concentrated in the Xi’an-Baoji line of the Weihe River valley.At that time,at least 37,000 km 2 of lands were reclaimed in the middle and lower reaches of the Yellow River,and 132,000 km 2 of lands were affected by agricultural activities.Human activities had become the driving force of land use/land coverage.Charcoal records indicate that the ancestors of Yangshao culture burnt forests for reclamation,leading to the decrease of arbor pollen at 5 ka BP in core areas of the Yangshao culture.The areas that were significantly affected by human activities accounted for 3.2% of the Yangshao culture influenced area,while the moderately affected areas accounted for 20.1% of Yangshao culture influenced area.Meanwhile,92% of the land areas on the edge and outside of the Yangshao culture influenced area were not affected by human activities.The arbor pollen in these areas did not decrease until 4.0 ka BP.  相似文献   

19.
高邮湖的形成和发展   总被引:3,自引:1,他引:3  
廖高明 《地理学报》1992,47(2):139-145
高邮湖地区古为古潟湖浅洼平原,局部浅洼地段有小湖泊。金明昌五年(1194年)黄河夺淮以后,由于治河者多采用在黄河北岸筑堤南岸分流以保漕为主的政策,把大量黄水引泻到淮河流域的广大地区,使高邮湖诸小湖的湖面不断扩大,曾一度发展到五荡十二湖,到了明代后期,才基本上汇为一湖。  相似文献   

20.
Study of Lake Pepin and Lake St. Croix began more than a century ago, but new information has permitted a closer look at the geologic history of these two riverine lakes located on the upper Mississippi River system. Drainages from large proglacial lakes Agassiz and Duluth at the end of the last glaciation helped shape the current valleys. As high-discharge outlet waters receded, tributary streams deposited fans of sediment in the incised river valleys. These tributary fans dammed the main river, forming riverine lakes. Lake Pepin was previously thought to be a single long continuous lake, extending for 80 km from its dam at the Chippewa River fan all the way up to St. Paul, with an arm extending up the St. Croix valley. Recent borings taken at bridge and dam locations show more than a single section of lake sediments, indicating a more complex history. The Minnesota and Mississippi Rivers did not always follow their current paths. Valleys cut into bedrock but now buried by glacial sediment indicate former river courses, with the most recent of these from the last interglacial period marked at the surface by chains of lakes. The morphology of the Mississippi valley bottom, and thus the morphology of Lake Pepin as it filled the valley, is reflect in part by the existence of these old valleys but also by the presence of glacial outwash terraces and the alluvial fans of tributary streams. A sediment core taken in Lake Pepin near Lake City had a piece of wood in gravels just below lake sediments that dated to 10.3 ka cal. BP, indicating that the lake formed as the Chippewa River fan grew shortly after the floodwaters of Lakes Agassiz and Duluth receded. Data from new borings indicate small lakes were dammed behind several tributary fans in the Mississippi River valley between the modern Lake Pepin and St. Paul. One tributary lake, here called Early Lake Vermillion, may have hydraulically dammed the St. Croix River, creating an incipient Lake St. Croix. The tributary fans from the Vermillion River, the Cannon River, and the Chippewa River all served to segment the main river valley into a series of riverine lakes. Later the growth of the Chippewa fan surpassed that of the Vermillion and Cannon fans to create a single large lake, here called late Lake Pepin, which extended upstream to St. Paul. Sediment cores taken from Lake Pepin did not have significant organic matter to develop a chronology from radiocarbon dating. Rather, magnetic features were matched with those from a Lake St. Croix core, which did have a known radiocarbon chronology. The Pepin delta migration rate was then estimated by projecting the elevations of the top of the buried lake sediments to the dated Lake Pepin core, using an estimated slope of 10 cm/km, the current slope of Lake Pepin sediment surface. By these approximations, the Lake Pepin delta prograded past Hastings 6.0 ka cal BP and Red Wing 1.4 ka cal BP. This is one of eight papers dedicated to the “Recent Environmental History of the Upper Mississippi River” published in this special issue of the Journal of Paleolimnology. D. R. Engstrom served as guest editor of the special issue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号