首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raritan Bay, located between the states of New York and New Jersey, has a long history of cultural eutrophication and associated harmful algal blooms (HABs). Despite striking chemical and biological alterations occurring in Raritan Bay, publications in the early 1960s were the last to report consecutive measurements of both water quality parameters and plankton species composition in this system. The objectives of this study were to characterize water quality trends and plankton composition in a eutrophic estuary, compare current environmental conditions to those documented in Raritan Bay 50 years ago (i.e., at the same six sampling sites), and to further clarify the relationship among nutrients, secondary consumers, and algal bloom generation in this system using ordination techniques. This study (monthly data collected from April 2010–October 2012) indicates that Raritan Bay continues to exhibit numerous symptoms of eutrophication, including high algal biomass, high turbidity, violations of the dissolved oxygen standard to protect fish health, and blooms of potentially harmful phytoplankton species. Altered spatial and temporal patterns for nitrate and soluble reactive phosphorus (SRP) over the past 50 years may suggest new, changing, or expanding sources of nutrients. A total of 14 HAB species have been identified, including Heterosigma akashiwo, which formed a bloom in the upper Raritan Bay during summer 2012 in association with hypoxic conditions. Multivariate analyses indicate that abundance of this species is positively associated with high temperature, salinity, nitrate, and SRP and negatively associated with spring river discharge rates and total zooplankton abundance in Raritan Bay.  相似文献   

2.
Diatom densities in the surface water and dinoflagellate cysts in bottom sediments of Gwangyang Bay were studied to determine changes in the phytoplankton community structure in response to anthropogenic eutrophication and to assess the use of dinoflagellate cysts as indicators of coastal eutrophication. Our results show that, in nutrient-enriched environments, diatoms are particularly benefited from the nutrients supplied and, as a consequence, heterotrophic dinoflagellates that feed on the diatoms can be more abundant than autotrophic dinoflagellates. In short-core sediment records, a marked shift in autotrophic–heterotrophic dinoflagellate cyst compositions occurred at a depth of approximately 9–10 cm corresponding to the timing of the 1970s industrialization around Gwangyang Bay. This tentatively indicates that diatom and dinoflagellate communities here have undergone a considerable change mainly due to increased nutrient loadings from both domestic sewage effluent and industrial pollution. Our study suggests a possible potential use of dinoflagellate cysts in providing retrospective information on the long-term effects of coastal eutrophication.  相似文献   

3.
Phytoplankton seasonal and interannual variability in the Guadiana upper estuary was analyzed during 1996–2005, a period that encompassed a climatic controlled reduction in river flow that was superimposed on the construction of a dam. Phytoplankton seasonal patterns revealed an alternation between a persistent light limitation and episodic nutrient limitation. Phytoplankton succession, with early spring diatom blooms and summer–early fall cyanobacterial blooms, was apparently driven by changes in nutrients, water temperature, and turbulence, clearly demonstrating the role of river flow and climate variability. Light intensity in the mixed layer was a prevalent driver of phytoplankton interannual variability, and the increased turbidity caused by the Alqueva dam construction was linked to pronounced decreases in chlorophyll a concentration, particularly at the start and end of the phytoplankton growing period. Decreases in annual maximum and average abundances of diatoms, green algae, and cyanobacteria were also detected. Furthermore, chlorophyll a decreases after dam filling and a decrease in turbidity may point to a shift from light limitation towards a more nutrient-limited mode in the near future.  相似文献   

4.
Although algal blooms, including those considered toxic or harmful, can be natural phenomena, the nature of the global problem of harmful algal blooms (HABs) has expanded both in extent and its public perception over the last several decades. Of concern, especially for resource managers, is the potential relationship between HABs and the accelerated eutrophication of coastal waters from human activities. We address current insights into the relationships between HABs and eutrophication, focusing on sources of nutrients, known effects of nutrient loading and reduction, new understanding of pathways of nutrient acquisition among HAB species, and relationships between nutrients and toxic algae. Through specific, regional, and global examples of these various relationships, we offer both an assessment of the state of understanding, and the uncertainties that require future research efforts. The sources of nutrients potentially stimulating algal blooms include sewage, atmospheric deposition, groundwater flow, as well as agricultural and aquaculture runoff and discharge. On a global basis, strong correlations have been demonstrated between total phosphorus inputs and phytoplankton production in freshwaters, and between total nitrogen input and phytoplankton production in estuarine and marine waters. There are also numerous examples in geographic regions ranging from the largest and second largest U.S. mainland estuaries (Chesapeake Bay and the Albemarle-Pamlico Estuarine System), to the Inland Sea of Japan, the Black Sea, and Chinese coastal waters, where increases in nutrient loading have been linked with the development of large biomass blooms, leading to anoxia and even toxic or harmful impacts on fisheries resources, ecosystems, and human health or recreation. Many of these regions have witnessed reductions in phytoplankton biomass (as chlorophylla) or HAB incidence when nutrient controls were put in place. Shifts in species composition have often been attributed to changes in nutrient supply ratios, primarily N∶P or N∶Si. Recently this concept has been extended to include organic forms of nutrients, and an elevation in the ratio of dissolved organic carbon to dissolved organic nitrogen (DOC∶DON) has been observed during several recent blooms. The physiological strategies by which different groups of species acquire their nutrients have become better understood, and alternate modes of nutrition such as heterotrophy and mixotrophy are now recognized as common among HAB species. Despite our increased understanding of the pathways by which nutrients are delivered to ecosystems and the pathways by which they are assimilated differentially by different groups of species, the relationships between nutrient delivery and the development of blooms and their potential toxicity or harmfulness remain poorly understood. Many factors such as algal species presence/abundance, degree of flushing or water exchange, weather conditions, and presence and abundance of grazers contribute to the success of a given species at a given point in time. Similar nutrient loads do not have the same impact in different environments or in the same environment at different points in time. Eutrophication is one of several mechanisms by which harmful algae appear to be increasing in extent and duration in many locations. Although important, it is not the only explanation for blooms or toxic outbreaks. Nutrient enrichment has been strongly linked to stimulation of some harmful species, but for others it has not been an apparent contributing factor. The overall effect of nutrient over-enrichment on harmful algal species is clearly species specific.  相似文献   

5.
San Francisco Bay has been considered an HNLC or HNLG (high nutrient low chlorophyll or low growth) region with nonlimiting concentrations of inorganic nutrients yet low standing stocks of phytoplankton. Most of the studies leading to this conclusion come from the South Bay and little is known about nutrient processes and phytoplankton productivity in the northern and central parts of the estuary. Data collected over 3 yr (1999–2003) in Suisun, San Pablo, and Central Bays describe the availability of dissolved inorganic nitrogen (DIN), silicate, and phosphate and the seasonal variability in phytoplankton abundance. Rate measurements of fractionated nitrogen productivity provide the relative contributions of different forms of DIN (ammonium and nitrate) and different sized phytoplankton to the development of seasonal phytoplankton blooms. Regional differences in bloom dynamics are observed with Suisun Bay, the least saline, highest nutrient, most turbid region having less phytoplankton biomass and productivity than San Pablo and Central Bays, except in the abnormally wet spring of 2000. Spring blooms in San Francisco Bay are driven primarily by high rates of nitrate uptake by larger phytoplankton cells following a period of increased ammonium uptake that depletes the ambient ammonium. The smaller occasional fall blooms are apparently flueled mostly by ammonium uptake by small sized phytoplankton. The data suggest that the HNLC condition in the northern and central parts of San Francisco Bay is due primarily to light availability modulated by the interaction between ammonium and nitrate, and the relative amounts of the two forms of the DIN pool available to the phytoplankton.  相似文献   

6.
Climate effects on hydrology impart high variability to water-quality properties, including nutrient loadings, concentrations, and phytoplankton biomass as chlorophyll-a (chl-a), in estuarine and coastal ecosystems. Resolving long-term trends of these properties requires that we distinguish climate effects from secular changes reflecting anthropogenic eutrophication. Here, we test the hypothesis that strong climatic contrasts leading to irregular dry and wet periods contribute significantly to interannual variability of mean annual values of water-quality properties using in situ data for Chesapeake Bay. Climate effects are quantified using annual freshwater discharge from the Susquehanna River together with a synoptic climatology for the Chesapeake Bay region based on predominant sea-level pressure patterns. Time series of water-quality properties are analyzed using historical (1945–1983) and recent (1984–2012) data for the bay adjusted for climate effects on hydrology. Contemporary monitoring by the Chesapeake Bay Program (CBP) provides data for a period since mid-1984 that is significantly impacted by anthropogenic eutrophication, while historical data back to 1945 serve as historical context for a period prior to severe impairments. The generalized additive model (GAM) and the generalized additive mixed model (GAMM) are developed for nutrient loadings and concentrations (total nitrogen—TN, nitrate?+?nitrate—NO2?+?NO3) at the Susquehanna River and water-quality properties in the bay proper, including dissolved nutrients (NO2?+?NO3, orthophosphate—PO4), chl-a, diffuse light attenuation coefficient (K D (PAR)), and chl-a/TN. Each statistical model consists of a sum of nonlinear functions to generate flow-adjusted time series and compute long-term trends accounting for climate effects on hydrology. We present results identifying successive periods of (1) eutrophication ca. 1945–1980 characterized by approximately doubled TN and NO2?+?NO3 loadings, leading to increased chl-a and associated ecosystem impairments, and (2) modest decreases of TN and NO2?+?NO3 loadings from 1981 to 2012, signaling a partial reversal of nutrient over-enrichment. Comparison of our findings with long-term trends of water-quality properties for a variety of estuarine and coastal ecosystems around the world reveals that trends for Chesapeake Bay are weaker than for other systems subject to strenuous management efforts, suggesting that more aggressive actions than those undertaken to date will be required to counter anthropogenic eutrophication of this valuable resource.  相似文献   

7.
Abiotic factors and species introductions can alter food web timing, disrupt life cycles, and change life history expressions and the temporal scale of population dynamics in zooplankton communities. We examined physical, trophic, and zooplankton community dynamics in the San Francisco Estuary, California, a highly altered Mediterranean climate waterway, across a 43-year dataset (1972–2014). Before invasion by the suspension-feeding overbite clam (Potamocorbula amurensis) in the mid-1980s, the estuary demonstrated monomictic thermal mixing in which winter turbidity and cool temperatures contributed to seasonally low productivity, followed by a late-spring-summer clearing phase with warm water and peak phytoplankton blooms that continued into early winter. Following the clam invasion, we observed a shift in peak phytoplankton bloom timing, with peak productivity now occurring in May compared to June prior to the invasion. Peak abundance of several zooplankton taxa (Eurytemora affinis, Pseudodiaptomus, other calanoids, and non-copepods) also shifted to earlier in the season. We present the first evidence of a shift in the timing of peak abundance for zooplankton species that are key prey items of delta smelt (Hypomesus transpacificus), a federally threatened pelagic fish species. These timing shifts may have exacerbated well-documented food limitations of delta smelt due to declines in primary productivity since the invasion of the overbite clam. Future conservation efforts in the estuary should consider measures designed to restore the timing and magnitude of pre-invasion phytoplankton blooms.  相似文献   

8.
胶州湾底层水营养盐的分布特征及有机污染状况分析   总被引:9,自引:2,他引:7  
根据胶州湾底层水营养盐的调查资料,分析了胶州湾底层水中营养盐的分布规律、营养盐的限制因素、水体富营养化水平和有机污染状况。结果表明胶州湾底层水营养盐含量、底层水富营养化判断值与底层水有机污染指数的平面分布非常相似,均从东北向西南递减,研究区域富营养化程度达45.45%,且胶州湾中浮游植物的生长主要受控于溶解无机磷的限制。  相似文献   

9.
Understanding phytoplankton species-specific responses to multiple biotic and abiotic stressors is fundamental to assess phenological and structural shifts at the community level. Here, we present the case of Thalassiosira curviseriata, a winter-blooming diatom in the Bahía Blanca Estuary, Argentina, which displayed a noticeable decrease in the past decade along with conspicuous changes in phenology. We compiled interannual field data to assess compound effects of environmental variations and grazing by the invasive copepod Eurytemora americana. The two species displayed opposite trends over the period examined. The diatom decreased toward the last years, mainly during the winters, and remained relatively constant over the other seasons, while the copepod increased toward the last years, with an occurrence restricted to winter and early spring. A quantitative assessment by structural equation modeling unveiled that the observed long-term trend of T. curviseriata resulted from the synergistic effects of environmental changes driven by water temperature, salinity, and grazing. These results suggest that the shift in the abundance distribution of T. curviseriata toward higher annual ranges of temperature and salinity—as displayed by habitat association curves—constitutes a functional response to avoid seasonal overlapping with its predator in late winters. The observed changes in the timing and abundance of the blooming species resulted in conspicuous shifts in primary production pulses. Our results provide insights on mechanistic processes shaping the phenology and structure of phytoplankton blooms.  相似文献   

10.
The interactions between climatic and volcanic forcing on diatom communities contained in a 50,000-year sedimentary sequence from Lake Massoko, Tanzania, were examined. At the century scale, 19 discrete tephra inputs to the lake isolated the sedimentary nutrient supply and shifted the diatom communities to those tolerant of low phosphorus levels, whereas at the millennial scale, diatom-inferred shifts in precipitation–evaporation based on conductivity optima and diatom life-form ratios were broadly similar to lake-level reconstructions from Lake Rukwa, Lake Malawi, and others in the region. Some fluctuations of Lake Massoko are consistent with the precession-driven changes in insolation, but the major climate shifts do not relate directly to orbital forcing of summer insolation south of the equator and show more consistency with records from the equatorial and northern tropics that receive rainfall from the passing of the intertropical convergence zone. Sea surface temperatures are strongly correlated to multimillennial-scale climate patterns over this region of Africa.  相似文献   

11.
通过对狮子潭柱状沉积物的放射性定年、地球化学与硅藻分析,反演桂林会仙岩溶湿地全新世的古湖沼演替,与其响应的气候变迁与人类活动记录。放射性210Pb、14C定年结果显示该湖在6 400 cal BP开始有湖积物保存,在2 700 cal BP—公元1943年间有沉积间断事件,且于公元1943年再度沉积。在6400—5 200 cal BP,高比例的浮游型硅藻反映高水位状态,可对应到气候暖湿的中国全新世大暖期鼎盛期。在5 200—2 700 cal BP,沉积物内稀酸可溶相Ca、Mg、Sr浓度降低,Mg/Ca、Sr/Ca值明显增加,且浮游型硅藻几乎消失,显示当时湖泊水位显著降低,气候逐渐变干。在公元1943年沉积物再度沉积,可能与战争造成人口迁徙与废耕有关。自公元1973年以来,硅藻壳片大量堆积,反映人类过度活动造成藻华的现象。湖泊沉积物内硅藻组成及沉积物的地球化学特征能够很好地反演古气候、环境变迁。  相似文献   

12.
Phytoplankton variability is a primary driver of chemical and biological dynamics in the coastal zone because it directly affects water quality, biogeochemical cycling of reactive elements, and food supply to consumer organisms. Much has been learned about patterns of phytoplankton variability within individual ecosystems, but patterns have not been compared across the diversity of ecosystem types where marine waters are influenced by connectivity to land. We extracted patterns from chlorophyll-a series measured at 84 estuarine–coastal sites, using a model that decomposes time series into an annual effect, mean seasonal pattern, and residual “events.” Comparisons across sites revealed a large range of variability patterns, with some dominated by a recurrent seasonal pattern, others dominated by annual (i.e., year-to-year) variability as trends or regime shifts and others dominated by the residual component, which includes exceptional bloom events such as red tides. Why is the partitioning of phytoplankton variability at these three scales so diverse? We propose a hypothesis to guide next steps of comparative analysis: large year-to-year variability is a response to disturbance from human activities or shifts in the climate system; strong seasonal patterns develop where the governing processes are linked to the annual climate cycle; and large event-scale variability occurs at sites highly enriched with nutrients. Patterns of phytoplankton variability are therefore shaped by the site-specific relative importance of disturbance, annual climatology, and nutrient enrichment.  相似文献   

13.
Coastal watersheds support more than one half of the world’s human population and are experiencing unprecedented urban, agricultural, and industrial expansion. The freshwater–marine continua draining these watersheds are impacted increasingly by nutrient inputs and resultant eutrophication, including symptomatic harmful algal blooms, hypoxia, finfish and shellfish kills, and loss of higher plant and animal habitat. In addressing nutrient input reductions to stem and reverse eutrophication, phosphorus (P) has received priority traditionally in upstream freshwater regions, while controlling nitrogen (N) inputs has been the focus of management strategies in estuarine and coastal waters. However, freshwater, brackish, and full-salinity components of this continuum are connected structurally and functionally. Intensification of human activities has caused imbalances in N and P loading, altering nutrient limitation characteristics and complicating successful eutrophication control along the continuum. Several recent examples indicate the need for dual N and P input constraints as the only nutrient management option effective for long-term eutrophication control. Climatic changes increase variability in freshwater discharge with more severe storms and intense droughts and interact closely with nutrient inputs to modulate the magnitude and relative proportions of N and P loading. The effects of these interactions on phytoplankton production and composition were examined in two neighboring North Carolina lagoonal estuaries, the New River and Neuse River Estuaries, which are experiencing concurrent eutrophication and climatically driven hydrologic variability. Efforts aimed at stemming estuarine and coastal eutrophication in these and other similarly impacted estuarine systems should focus on establishing N and P input thresholds that take into account effects of hydrologic variability, so that eutrophication and harmful algal blooms can be controlled over a range of current and predicted climate change scenarios.  相似文献   

14.
珠江口近百年来富营养化加剧的沉积记录   总被引:50,自引:2,他引:50       下载免费PDF全文
由于土地利用和人类活动加剧所导致的营养元素由河流输入的增加是引起河口港湾地区富营养化趋势增强的重要原因,由此引发的赤潮在中国沿海地区呈现越来越频繁的趋势。本文通过珠江口两个沉积柱状样(ZJ6和ZJ10)揭示了该水域近百年来的富营养化加剧趋势。由柱状样中的TOC/TN比值判断,TOC是陆源和水生两种来源的混合物。在假设陆源和水生有机质C/N比值分别为5和20后,计算了在沉积物中两种来源有机碳的含量得到:两钻孔柱状样中水生有机碳、总氮、生物硅、陆源有机碳沉积通量自20世纪20年代到90年代呈明显升高趋势,分别增加了2.0、3.6、2.9、12.0倍(ZJ6)和5.4、6.8、5.5、10.6倍(ZJ10)。这一趋势与中国珠江三角洲地区在此期间,特别是50年来生产力的迅速提高趋势相对应。两钻孔柱状样中生物硅沉积通量的增加幅度逐渐超出水生有机碳沉积通量的增加幅度,表明硅藻是富营养化的敏感藻类。目前,Si相对于N、P还不是珠江口水域的限制性营养元素,但若不对水域的营养物进行有效管理以平衡营养元素间的比例关系和减弱富营养化趋势,珠江口的浮游生物种群结构和底层水的溶解氧含量将受到严重影响。  相似文献   

15.
浮游植物水华作为近海重要的生物过程,其动态变化对生态系统内的能童传递、生产力水平和各生源要素的循环等均有重要影响.随着气候变化对生态系统影响研究的深入,浮游植物水华生物气候学研究已成为当前生物海洋学研究的热点.综述了浮游植物水华的研究历史、研究方法及其发生发展的动力学机制,重点评述了气候变化对浮游植物水华动态的影响及国...  相似文献   

16.
Strong benthic–pelagic coupling is an important characteristic of shallow coastal marine ecosystems. Building upon a rich history of benthic metabolism data, we measured oxygen uptake and nutrient fluxes across the sediment–water interface along a gradient of water column primary production in Narragansett Bay, RI (USA). Despite the strong gradients seen in water column production, sediment oxygen demand (SOD) and benthic nutrient fluxes did not exhibit a clear spatial pattern. Some of our sites had been studied in the 1970s and 1980s and thus allowed historical comparison. At these sites, we found that SOD and benthic fluxes have not changed uniformly throughout Narragansett Bay. In the uppermost portion of the bay, the Providence River Estuary, we observed a significant decrease in dissolved inorganic phosphorus fluxes which we attribute to management interventions. At another upper bay site, we observed significant declines in SOD and dissolved inorganic nitrogen fluxes which may be linked to climate-induced decreases in water column primary production and shifts in bloom phenology. In the 1970s, benthic nutrient regeneration supplied 50% to over 200% of the N and P needed to support primary production by phytoplankton. Summer nutrient regeneration in the Providence River Estuary and Upper bay now may only supply some 5–30% of the N and 3–20% of the P phytoplankton demand.  相似文献   

17.
Geochemical (total nitrogen, total organic carbon, total phosphorus, total sulfur, and carbon and nitrogen stable isotopes) and selected biotic (diatom, foraminifera, polychaete) indicators preserved in two estuarine sediment cores from the mesohaline Chesapeake Bay provide a history of alterations in the food web associated with land-use change. One core from the mouth of the Chester River (CR) (collected in 2000) represents a 1,000-year record. The second core (collected in 1999), from the Chesapeake Bay’s main stem opposite the Choptank River (MD), represents a 500-year record. As European settlers converted a primarily forested landscape to agriculture, sedimentation rates increased, water clarity decreased, salinity decreased in some areas, and the estuarine food web changed into a predominantly planktonic system. Representatives of the benthic macrofaunal community (foraminifera and the polychaetes Nereis spp.) were affected by local changes before there were widespread landscape alterations. Nitrogen stable isotope records indicated that land-use changes affected nitrogen cycling beginning in the early 1700s. Extreme changes were evident in the mid-nineteenth century following widespread deforestation and since the mid-twentieth century reflecting heightened eutrophication as development increased in the Chesapeake Bay watershed. Results also demonstrate how paleoecological records vary due to the degree of terrestrial inputs of freshwater runoff and nutrients at core locations within the Chesapeake Bay.  相似文献   

18.
Phytoplankton plays a dominant role in shelf biogeochemistry by producing the major part of organic matter. Part of the organic matter will reach the sediment where diagenetic processes like denitrification, apatite formation or burial will remove nutrients from the biogeochemical cycle. In this article current knowledge on the decadal plankton variability in the North Sea is summarized and possible implications of these changes for the biogeochemistry of the North Sea are discussed. Most of the observed interdecadal dynamics seem to be linked to large-scale oceanographic and atmospheric processes. Prominent changes in the North Sea ecosystem have taken place around 1979 and 1988. In general, the phytoplankton color (CPRS indicator of phytoplankton biomass) reached minimum values during the end of the 1970s and has increased especially since the mid 1980s. Changes with a similar timing have been identified in many time series from the North Sea through the entire ecosystem and are sometimes referred to as regime shifts. It is suggested that the impact of global change on the local biogeochemistry is largely driven by the phyto- and zooplankton dynamics during spring and early summer. At that time the extent of zooplankton–phytoplankton interaction either allows that a large part of the new production is settling to the sediment, or that a significant part of the new production including the fixed nutrients is kept within the pelagic system. The origin of the extent of the phytoplankton–zooplankton interaction in spring is probably set in the previous autumn and winter. In coastal areas, both large-scale atmospheric and oceanographic changes as well as anthropogenic factors influence the long-term dynamics. Due to eutrophication, local primary production nowadays still is up to five times higher than during pre-industrial conditions, despite a decreasing trend. Recently, introduced species have strengthened the filter feeder component of coastal ecosystems. Especially in shallow coastal seas like the Wadden Sea, this will enhance particle retention, shift organic matter degradation to the benthic compartment and enhance nutrient removal from the biogeochemical cycle by denitrification or apatite formation.  相似文献   

19.
罗海  李杰  邹亚菲  徐会明 《地学前缘》2020,27(6):289-299
湖泊是全球生态系统的重要组成部分。尽管湖泊初级生产力的生物多样性在湖泊生态系统中发挥着非常重要的作用,但对其如何在千年时间尺度上对气候变化做出响应却知之甚少,而千年时间尺度与预测未来变化最为相关。本文以云南云龙天池湖泊为研究对象,以湖泊重要的初级生产力硅藻为研究手段,分析了末次冰消期期间硅藻生物多样性对千年尺度上气候变化的响应。云龙天池硅藻生物多样性表现为暖期高、冷期低。随着全球温度的快速变化,硅藻生物多样性亦对应的快速响应:在转暖时(Bolling/Allerod暖期)快速增加,在转冷时(Herinrich 1和Younger Dryas)快速降低。这些变化主要与温度变化驱动的湖泊环境条件的变化(比如冰封期长短、边岸带水生植被的变化等)有关。研究结果还表明,在末次冰消期期间,云龙天池湖泊硅藻生物多样性与千年尺度的气候变化同步,而且在长时间尺度上,气候变暖对高山湖泊生物多样性可能是有利的。  相似文献   

20.
Two laboratory microcosm experiments were conducted to mimic an annual spring diatom bloom in South San Francisco Bay by isolating the phytoplankton community from the benthic grazing pressure to induce a phytoplankton bloom. The purpose of these experiments was to isolate the impact of a spring diatom bloom on the nutrient and trace metal geochemical cycling. Microcosms were created in 2.5 L incubation bottles and subjected to one of 4 treatments (control, copper [Cu] addition, manganese [Mn] addition, and both Cu and Mn addition) to investigate the toxicity of Cu on the resident plankton and the potential antagonistic effects of Mn on reducing Cu toxicity. Dissolved macronutrient (nitrate + nitrite, phosphate, and silicate), and dissolved and particulate trace metal (Cu, Ni, Mn) concentrations were monitored in the grow-out incubations on a daily basis. Chlorophylla concentrations were also monitored over the course of the experiment and used to calculate diatom-specific growth rates. In the experiments containing ambient South San Francisco Bay surface waters, average specific growth rates were on the order of 1.1 d?1. The induced diatom blooms resulted in significant removal of macronutrients from the microcosms over the course of the experiments. Our research supports previous suggestions that dissolved Ni and Cu concentrations in South San Francisco Bay have a very low biological availability as a result of organic chelation. Ni(EDTA)2? has been found to be the dominant dissolved Ni species by other researchers and Cu speciation analyses from this study and others indicate that > 99% of the dissolved Cu in South San Francisco Bay is strongly chelated as CuL1. The free cupric ion concentration was on the order of 10?12 M. Marked removal of dissolved Mn was observed in the control treatments, well exceeding expected dissolved Mn removal by diatom uptake. Additions of 375 nM Cu resulted in the complete titration of the chelating ligand (L1) concentrations. The elevated [Cu2+] (≈10?8MM) appeared to have a toxic effect on the diatom community observed in the significant decreases in their specific growth rates (μ=0.4 d?1). The suppression of dissolved Mn removal from solution was also observed in treatments spiked with high levels of dissolved Cu, providing support that Mn precipitation was due to biologically mediated oxidation not phytoplankton assimilation. The observed geochemical behavior in the concurrent Cu and Mn addition treatments provide evidence in support of Mn alleviation of Cu toxicity. The biological role in the ambient short-term biogeochemical cycling of Cu and Ni in South San Francisco Bay appears to be minimal due to the inert character of the organic ligand-metal complexes. A significant portion of the annual macronutrient and Mn cycling occurs as a result of spring diatom blooms in South San Francisco Bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号