首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty-one dilution method experiments were used to measure phytoplankton growth rate, grazing rate by microzooplankton, and phytoplankton concentrations that saturate grazing in Tuggerah Lake??a large lagoon in New South Wales, Australia. Individual experiments conformed to the saturating grazing model with no evidence of a threshold phytoplankton concentration to initiate grazing. Phytoplankton concentrations that saturated grazing were highly variable between experiments and were positively correlated with chlorophyll a concentration in the lagoon. Plankton models often use a saturating grazing function that includes several constants, but constants are found to be variable from one dilution experiment to the next. Another formulation is proposed in which grazing is a quadratic function of phytoplankton growth. This enables the 21 measurements of zooplankton grazing to be fitted using only two invariant parameters. No evidence is found for saturation of microzooplankton grazing when it is calculated as a function of phytoplankton growth. When phytoplankton growth is high, about 80% of it is grazed. When phytoplankton growth is low, about 45% is grazed. Calculations illustrate that this type of grazing stabilizes the planktonic producers and grazers, as expected.  相似文献   

2.
The biomass of phytoplankton, microzooplankton, copepods, and gelatinous zooplankton were measured in two tributaries of the Chesapeake Bay during the springs of consecutive dry (below average freshwater flow), wet (above average freshwater flow), and average freshwater flow years. The potential for copepod control of microzooplankton biomass in the dry and wet years was evaluated by comparing the estimated grazing rates of microzooplankton by the dominant copepod species (Acartia spp. andEurytemora affinis) to microzooplankton growth rates and by calculating the percent of daily microzooplanton standing stock removed through copepod grazing. There were significant increases in phytoplankton and copepod biomass, but not for microzooplankton biomass in the wet year as compared to the dry year. The ctenophoreMnemiopsis leidyi was present during the dry year but was absent during the sampling period of the wet and average freshwater flow years. Grazing pressure on microzooplankton was greatest in the wet year, withAcartia spp. andE. affinis ingesting 0.21–2.64 μg of microzooplankton C copepod−1 d−1 and removing up to 60% of the microzooplankton standing stock per day. In the dry year, these copepod species ingested 0.10–0.73 μg of microzooplankton C copepod−1 d−1 with a maximum daily removal of approximately 3% of the microzooplankton standing stock. Potential copepod grazing pressure was significantly less than microzooplankton growth in the dry year, but was equivalent to microzooplankton growth in the wet year, implying strong top-down control of the microzooplankton community in the wet year. These results suggest that increased grazing control of microzooplankton populations by more copepods in the wet year released top-down control of phytoplankton. Reduced microzooplankton grazing, in conjunction with increased nutrient availability, resulted in large increases in phytoplankton biomass in the wet year. Increased freshwater flow has the potential to influence trophic cascades and the partitioning of plankton production in estuarine systems.  相似文献   

3.
Microzooplankton dilution grazing experiments were conducted with water collected from Pensacola Bay, Florida (USA) on 12 dates at 2 sites. Statistically significant grazing rates were observed in 22 of 24 experiments. Grazing rates in Upper Bay and Lower Bay were similar averaging 0.54 and 0.51 d−1, respectively. Phytoplankton growth rates were also similar at the two sites, averaging 1.02 and 1.00 d−1 at Upper Bay and Lower Bay, respectively. Phytoplankton growth rates usually exceeded grazing rates by about a factor of two, though microzooplankton grazing represented a significant mortality for phytoplankton. The literature suggests a linkage between phytoplankton growth and microzooplankton grazing that spans a wide variety of aquatic environments. While individual growth and grazing rates were variable, growth frequently exceeded grazing by about two-fold. This implies that the role of microzooplankton is similar across a wide variety of aquatic systems.  相似文献   

4.
We investigated trophic relationships involving microzooplankton in the low salinity zone of the San Francisco Estuary (SFE) as part of a larger effort aimed at understanding the dynamics of the food web supporting the endangered delta smelt, Hypomesus transpacificus. We performed 14 cascade experiments in which we manipulated the biomass of a copepod (Limnoithona tetraspina, Pseudodiaptomus forbesi, or Acartiella sinensis) and quantified responses of lower trophic levels including bacterioplankton, phytoplankton, and microzooplankton. Microzooplankton comprised a major food source for copepods; 9 out of 14 experiments showed removal of at least one group of microzooplankton by copepods. In contrast, the impact of copepods on phytoplankton was indirect; increased copepod biomass led to greater growth of phytoplankton in 3 of 14 experiments. Estimated clearance rates on microzooplankton were 4 mL day?1 for L. tetraspina and 2–6 mL day?1 for P. forbesi, whereas A. sinensis consumed mainly copepod nauplii. Complex trophic interactions, including omnivory, among copepods, microzooplankton, and different components of the phytoplankton likely obscured clear trends. The food web of the SFE is probably less efficient than previously thought, providing poor support to higher trophic levels; this inefficient food web is almost certainly implicated in the continuing low abundance of fishes, including the delta smelt that use the low salinity zone of the San Francisco Estuary.  相似文献   

5.
The role of the microzooplankton community in regulating phytoplankton biomass was examined across a gradient from a river-dominated estuary to an oceanic-influenced coastal zone. Three stations located along a salinity gradient from the central region of Mobile Bay to 10 km off the coast were sampled from May 1994 to August 1995. Microzooplankton herbivory rates on phytoplankton and microzooplankton excretion of nitrogen derived from phytoplankton were estimated using the dilution technique. Microzooplankton grazing rates (range of station means=0.57–1.10 d−1) and phytoplankton growth rates (0.70–1.62 d−1) both increased across the salinity gradient from the bay station to the offshore station. However, the percent of primary production grazed per day was highest at the bay station (mean=83%) and decreased to a low at the offshore station (mean=64%). Excretion of phytoplankton-derived nitrogen by the microzooplankton was greatest at the bay and bay mouth stations. Excreted nitrogen could potentially supply 39%, 29%, and 20% of phytoplankton nitrogen demand at the bay, bay mouth, and offshore stations, respectively. These results support the idea that herbivorous microzooplankton are important in mediating nitrogen flow to both lower and higher trophic levels. *** DIRECT SUPPORT *** A01BY085 00012  相似文献   

6.
The impact of mesozooplankton (>210 μm, mostly adult copepods and late-stage copepodites) and micrometazoa (64–210 μm, mostly copepod nauplii) on phytoplankton size structure and biomass in the lower Hudson River estuary was investigated using various14C-labeled algal species as tracers of grazing on natural phytoplankton. During spring and summer, zooplankton grazing pressure, defined as %=mg C ingested m?2 h?1/mg C produced m?2 h?1 (depth-integrated rates)×100, on total phytoplankton ranged between 0.04% and 1.9% for mesozooplankton and 0.1% and 6.6% for micrometazoa. The greatest grazing impact was measured in fall when 20.2% and 44.6%, respectively, of the total depth-integrated primary production from surface water phytoplankton was grazed. Mesozooplankton exhibited some size-selective grazing on phytoplankton, preferentially grazing the diatomThalassiosira pseudonana over the larger diatomDitylum brightwelli, but this was not found for micrometazoa. Neither zooplankton group grazed on the dinoflagellateAmphidinium sp. We conclude that metazoan zooplankton have a minimal role in controlling total phytoplankton biomass in the lower Hudson River estuary. Differences in the growth coefficients of various phytoplankton size-fractions—not grazing selectivity—may be the predominant factor explaining community size-structure.  相似文献   

7.
Decline of native pelagic species in estuarine systems is an increasing problem, especially for native fishes in the San Francisco Estuary and Delta (SFE-D). Addressing these losses depends on understanding trophodynamics in the food web that supports threatened species. We quantified the role of microzooplankton (heterotrophic–mixotrophic protists <200 μm) in the food web of the upper SFE-D. We sampled protist plankton abundance and composition at two sites (Suisun Bay and Grizzly Bay) approximately monthly from February 2004 to August 2005 and conducted dilution experiments during spring and summer of both years in Suisun Bay. Heterotrophs dominated the protist community in Suisun Bay and Grizzly Bay, particularly in the <20 μm size range, and peaks in protistan microzooplankton biomass were associated with high phytoplankton biomass. In both years, microzooplankton grazing rates were high (0.5–0.7 day−1) during the spring and lower (~0.2 day−1) during summer. Phytoplankton growth rates peaked in April 2004 (~0.7 day−1) but were much lower (<0.1 day−1) in spring 2005, despite relatively high abundance. Thus, microzooplankton grazing consumed as much as 73% of phytoplankton standing stock during spring and ~15% of standing stock during summer of both years. Combined with earlier results, we conclude that microzooplankton can be important mediators of carbon and energy flow in the upper SFE-D and may be a “source” to the metazoan food web.  相似文献   

8.
The microphytobenthos consists of unicellular eukaryotic algae and cyanobacteria that grow within the upper several millimeters of illuminated sediments, typically appearing only as a subtle brownish or greenish shading. The surficial layer of the sediment is a zone of intense microbial and geochemical activity and of considerable physical reworking. In many shallow ecosystems, the biomass of benthic microalgae often exceeds that of the phytoplankton in the overlying waters. Direct comparison of the abundance of benthic and suspended microalgae is complicated by the means used to measure biomass and by the vertical and horizontal distribution of the microphytobenthos in the sediment. Where biomass has been estimated as chlorophyll a, there may be negligible to large (40%) error due to interference by degradation products, except where chlorophyll is measured by high-performance liquid chromatography. The vertical distribution of microphytobenthos, aside from mat-forming species, is determined by the opposing effects of their vertical migration, which tends to concentrate them near the surface, and physical mixing by overlying currents, which tends to cause an even vertical distribution through the mixed layer of sediment. Uncertainties in vertical distribution are compounded by frequently patchy horizontal distribution. Under-sampling on small (<1 m) scales can lead to errors in the estimate that are comparable to the ranges of seasonal and geographic variation. These uncertainties are compounded by biases in the techniques used to estimate production by the microphytobenthos. In most environments studied, biomass (as chlorophyll a) and light availability appear to be the principal determinants of benthic primary production. The effect of variable light intensities on integral production can be described by a functional response curve. When normalized to the chlorophyll content of the surficial sediment, the residual variation in the data described by the functional response curve is due to changes in the chlorophyll-specific response to irradiance. Production by the benthos is often a significant fraction of production in the water column and microphytobenthos may contribute directly to water column production when they are resuspended. Thus on both the basis of biomass and biogeochemical reactivity, benthic microalgae play significant roles in system productivity and trophic dynamics, as well as such habitat characteristics as sediment stability. *** DIRECT SUPPORT *** A01BY074 00003  相似文献   

9.
We conducted monthly bioassay experiments to characterize light and nutrient use efficiency of phytoplankton communities from the chlorophyll-a maximum located in the tidal freshwater region of the James River Estuary. Bioassay results were interpreted in the context of seasonal and inter-annual variation in nutrient delivery and biomass yield using recent and long-term data. Bioassay experiments suggest that nutrient limitation of phytoplankton production has increased over the past 20 years coinciding with reductions in point source inputs and estuarine dissolved nutrient concentrations. Despite increasing nutrient stress, chlorophyll concentrations have not declined due to more efficient nutrient usage. Greater CHLa yield (per unit of N and P) may be due to feedback mechanisms by which the presence of toxin-producing cyanobacteria inhibits grazing by benthic and pelagic filter-feeders. Seasonal patterns in nutrient limitation indicate that phytoplankton in the James respond to variations in inflow concentrations of dissolved nutrients. This association gives rise to an atypical pattern whereby the severity of nutrient limitation diminishes with low discharge in late summer due to minimal dilution of local point sources inputs by riverine discharge. We suggest that this may be a common feature of estuaries located in proximity to urbanized areas.  相似文献   

10.
Patterns in phytoplankton biomass are essential to understanding estuarine ecosystem structure and function and are the net result of various gain and loss processes. In this study, patterns in phytoplankton biomass were explored in relation to a suite of potentially regulating factors in a well-flushed, subtropical lagoon, the Matanzas River Estuary (MRE) in northeast Florida. We examined temporal variability in water temperature, light availability, nutrient concentrations, phytoplankton productivity, and phytoplankton standing stock over 8 years (2003–2010) and explored relationships among variables through correlation analysis. Laboratory experiments in the spring and summer of 2009 quantified phytoplankton growth rates, nutrient limitation potential, and zooplankton grazing rates. The potential influence of oyster grazing was also examined by scaling up population metrics and filtration rate estimates. Results indicated that phytoplankton biomass in the study area was relatively low mainly due to a combination of low temperature and light availability in the winter and consistent tidal water exchange and bivalve grazing throughout the year. Relatively low levels of phytoplankton standing stock and small inter-annual variability within the MRE reflect a balance between gain and loss processes which provide a degree of resilience of the system to natural and anthropogenic influences.  相似文献   

11.
Processes influencing estuarine phytoplankton growth occur over a range of time scales, but many conceptual and numerical models of estuarine phytoplankton production dynamics neglect mechanisms occurring on the shorter (e.g., intratidal) time scales. We used a numerical model to explore the influence of short time-scale variability in phytoplankton sources and sinks on long-term growth in an idealized water column that shallows and deepens with the semidiurnal tide. Model results show that tidal fluctuations in water surface elevation can determine whether long-term phytoplankton growth is positive or negative. Hourly-scale interactions influencing weekly-scale to monthly-scale phytoplankton dynamics include intensification of the depth-averaged benthic grazing effect by water column shallowing and enhancement of water column photosynthesis when solar noon coincides with low tide. Photosynthesis and benthic consumption may modulate over biweekly time scales due to spring-neap fluctuations in tidal range and the 15-d cycle of solar noon-low tide phasing. If tidal range is a large fraction of mean water depth, then tidal shallowing and deepening may significantly influence net phytoplankton growth. In such a case, models or estimates of long-term phytoplankton production dynamics that neglect water surface fluctuations may overestimate or underestimate net growth and could even predict the wrong sign associated with net growth rate.  相似文献   

12.
海洋浮游生态系统中小型浮游动物的生态功能   总被引:8,自引:0,他引:8  
小型浮游动物在海洋生态系统中的作用,主要指有多少能量通过小型浮游动物传递到桡足类,从而比较沿"浮游植物→中型浮游动物"和"浮游植物+细菌→小型浮游动物→中型浮游动物"两条食物链到达中型浮游动物的能流大小.为达到这个目的,需要研究各个能流路径的传递效率,即能量在各个营养级(初级生产--小型浮游动物,细菌生产--小型浮游动物,小型浮游动物的生长率,小型浮游动物--中型浮游动物)的传递效率.综述了国内外对上述营养级传递效率的研究现状,以期为我国的同类研究提供参考.浮游植物初级生产力被小型浮游动物摄食的比例平均为每天60%~75%,大大高于桡足类对浮游植物初级生产力的摄食压力每天10%.海洋浮游细茵的二次生产力相当于初级生产力的30%.其中80%~180%被小型浮游动物摄食.小型浮游动物的毛生长率为30%~40%,生产力是初级生产力的21%~34%.在西班牙西北部沿海,桡足类每天摄食2%~51%小型浮游动物生产力.因此,桡足类通过微食物网摄食的能量是初级生产力的0.4%~17%,与桡足类摄食初级生产的10%处于同一量级.不考虑碎屑提供的能流,小型浮游动物对桡足类饵料的贡献为20%以上,甚至可高达50%.  相似文献   

13.
The composition, productivity, and standing crop of net (>20 μm) and nano-(<20 μm) phytoplankton of Peconic Bay, Long Island, New York was examined from June 1978 through May 1979. Nanoplankton, primarily small solitary flagellates, chlorophytes, and diatoms, dominated from May through September accounting for 88.5% of the productivity and 88.1% of the standing crop (measured as chlorophyll a). An apparent net plankton bloom began in December and continued through March. The dominant organism through most of the winter bloom was the chain-forming diatom Skeletonema costatum (Grev.) Cl. Net plankton at this time represented 66.4% of the standing crop. For both size fractions, productivity/chlorophyll a (g C per g chl a per d, integrated through the euphotic zone) was a function of light energy over the year with the exception of a few sampling dates during the post-winter bloom period. Assimilation numbers (g C per g chl a per h at saturating light intensities) were a function of temperature between 0 and 20°C. Nitrogen deficiency did not appear to be a factor in regulating phytoplankton growth rate through the euphotic zone, as ratios of 14C assimilation for dark bottles enriched with NH3 and with no enrichment exhibited no relationship to environmental dissolved inorganic nitrogen concentrations. Zooplankton grazing pressure appeared to have been an important factor in regulating the upper limit of phytoplankton biomass and in influencing size fraction dominance. Dominance of one phytoplankton size fraction over the other on any given date was not based on physiological differences between the two groups since both fractions were composed of the same species. Apparent net phytoplankton blooms (in terms of productivity and chlorophyll a) were artifacts of increased chain lengths of nanoplankton diatoms such as Skeletonema costatum, and to a lesser extent, Thalassiosira nordenskioldii Cl. and Detonula confervacea (Cl.) Gran, rather than to the dominance of large, solitary cells.  相似文献   

14.
Increased frequency and severity of droughts, as well as growing human freshwater demands, in the Apalachicola-Chattahoochee-Flint River Basin are expected to lead to a long-term decrease in freshwater discharge to Apalachicola Bay (Florida). To date, no long-term studies have assessed how river discharge variability affects the Bay’s phytoplankton community. Here a 14-year time series was used to assess the influence of hydrologic variability on the biogeochemistry and phytoplankton biomass in Apalachicola Bay. Data were collected at 10 sites in the bay along the salinity gradient and include drought and storm periods. Riverine dissolved inorganic nitrogen and phosphate inputs were correlated to river discharge, but chlorophyll a (Chl a) was similar between periods of drought and average/above-average river discharge in most of the Bay. Results suggest that the potentially negative impact of decreased riverine nutrient input on Bay phytoplankton biomass is mitigated by the nutrient buffering capacity of the estuary. Additionally, increased light availability, longer residence time, and decreased grazing pressures may allow more Chl a biomass to accumulate during drought. In contrast to droughts, tropical cyclones and subsequent increases in river discharge increased flushing and reduced light penetration, leading to reduced Chl a in the Bay. Analysis of the time series revealed that Chl a concentrations in the Bay do not directly mirror the effect of riverine nutrient input, which is masked by multiple interacting mechanisms (i.e., nutrient loading and retention, grazing, flushing, light penetration) that need to be considered when projecting the response of Bay Chl a to changes in freshwater input.  相似文献   

15.
Macroalgal biomass and competitive interactions among primary producers in coastal ecosystems may be controlled by bottom-up processes such as nutrient supply and top-down processes such as grazing, as well as other environmental factors. To determine the relative importance of bottom-up and top-down processes under different nutrient loading conditions, we estimated potential amphipod and isopod grazer impact on a dominant macroalgal species in three estuaries in Waquoit Bay, Cape Cod, Massachusetts, that are subject to different nitrogen loading rates. We calculated growth increases and grazing losses in each estuary based on monthly benthic survey data of macrophyte biomass and herbivore abundance, field grazing rates of amphipods (Microdeutopus gryllotalpa andCymadusa compta) and an isopod (Idotea baltica) on the preferred and most abundant macroalga (Cladophora vagabunda) and laboratory grazing rates for the remaining species, and in situ macroalgal growth rates. As nitrogen loading rates increased, macroalgal biomass increased (3×), eelgrass (Zostera marina) was lost, and herbivore abundance decreased (1/4×). Grazing rates increased with relative size of grazer (I. baltica > C. compta > M. gryllotalpa) and, for two of the three species investigated, were faster on algae from the high-nitrogen estuary in comparison to the low-nitrogen estuary, paralleting the increased macroalgal tissue percent nitrogen with nitrogen load. Macroalgal growth rates increased (2×) with increasing nitrogen loading rate. The comparison between estimated growth increases versus losses ofC. vagabunda biomass to grazing suggested first, that grazers could lower macroalgal biomass in midsummer, but only in estuaries subject to lower nitrogen loads. Second, the impact of grazing decreased as nitrogen loading rate increased as a result of the increased macroalgal growth rates and biomass, plus the diminished abundance of grazers. This study suggests the relative impact of top-down and bottom-up controls on primary producers varies depending on rate of nitrogen loading, and specifically, that the impact of herbivory on macroalgal biomass decreases with increasing nitrogen load to estuaries.  相似文献   

16.
Phytoplankton chlorophyll a concentration, biovolume, cell diameter, and species composition differed across the narrow, low salinity zone between 0.6‰ to 4‰ and may influence copepod food availability in the northern San Francisco Bay Estuary. The highest chlorophyll a concentrations (range 3.2–12.3 μg 1?1), widest cell diameters (>5 μm diam), highest diatom densities and highest production rates of >10 μm diam cells occurred at the landward edge of the salinity zone in April during a strong spring tide and May during a strong neap tide. Near optimum predator/prey ratios, large prey estimated spherical diameters, and high chlorophyll a concentrations suggest these phytoplankton communities provided good food quantity and quality for the most abundant copepods, Eurytemora affinis, Sinocalanus doerrii, and Pseudodiaptomus forbesi. At the center of the zone, chlorophyll a concentrations, diatom densities, and production rates of >10 μm diam cells were lower and cell diameters were smaller than upstream. Downstream transport was accompanied by accumulation of phytoplankton with depth and tide; maximum biomass occurred on spring tide. The lowest chlorophyll a concentrations (1.4–3.6 μg 1?) and consistently high densities (3,000–4,000 cells ml?1) of <5 μm diam cells occurred at the seaward edge of the zone, where the green alga Nannochloris spp. and the bluegreen alga Synechococcus spp. were the most abundant phytoplankton. Low chlorophyll a concentrations and production rates of >10 μm diam cells, small prey estimated spherical diameters, and high predator/prey ratios suggested the seaward edge of the zone had poor phytoplankton food for copepodids and adult copepods. The seaward decrease in phytoplankton chlorophyll a concentration and cell diameter and shift in species composition in the low salinity zone were probably a function of an estuary-wide decrease in chlorophyll a concentration, cell diameter, and diatom density since the early 1980s that was enhanced in the low salinity zone by clam herbivory after 1987. *** DIRECT SUPPORT *** A01BY090 00008  相似文献   

17.
Florida Bay is Florida’s (USA) largest estuary and has experienced harmful picocyanobacteria blooms for nearly two decades. While nutrient loading is the most commonly cited cause of algal blooms in Florida Bay, the role of zooplankton grazing pressure in bloom occurrence has not been considered. For this study, the spatial and temporal dynamics of cyanobacteria blooms, the microbial food web, microzooplankton and mesozooplankton grazing rates of picoplankton, and the effects of nutrients on plankton groups in Florida Bay were quantified. During the study, cyanobacteria blooms (>3 × 105 cells mL−1) persisted in the eastern and central regions of Florida Bay for more than a year. Locations with elevated abundance of cyanobacteria hosted microzooplankton grazing rates on cyanobacteria that were significantly lower (p < 0.001) and less frequently detectable compared to sites without blooms. Consistent with this observation, cyanobacteria abundances were significantly correlated with ciliates and heterotrophic nanoflagellates at low cyanobacteria densities (p < 0.001) but were not correlated during bloom events. The experimental enrichment of mesozooplankton abundance during blooms yielded a significant decrease in the net growth rate of picoplankton but had the opposite effect when blooms were absent, suggesting that the cascading effect of mesozooplankton grazing on the microbial food web was also altered during blooms. While inorganic nutrient enrichment significantly increased the net growth rates of eukaryotic phytoplankton and heterotrophic bacteria, such nutrient loading had no effect on the net growth rates of cyanobacteria. Hence, this study demonstrates that low rates of zooplankton grazing and low rates of inorganic nutrient loading contribute to the persistence of cyanobacteria blooms in Florida Bay.  相似文献   

18.
The Laguna Madre has experienced a persistent bloom ofAureoumbra lagunensis for over eight years. The persistence of this bloom may be due in part to the often hypersaline conditions in Laguna Madre (40–60 psu) that favor the growth ofA. lagunensis. Above-normal rainfall in the fall of 1997 reduced the salinities in Baffin Bay from >40 to<20 psu.A. lagunensis cell densities dropped from>106 cells ml−1 in July 1997 to c. 200 cells ml−1 in January 1998. During this time of low brown tide density, phytoplankton biomass generally remained high and the Laguna Madre experienced successive blooms of diatoms (Rhizosolenia spp.) and cyanobacteria. Hypersaline conditions returned in 1998 and brown tide densities increased to>0.5 × 106 cells ml−1 by summer. The extraordinary persistence of the brown tide and the unusual sequence of intense blooms may be related in part to the reduction of zooplankton populations. Microzooplankton populations declined following the above-normal rain in the fall of 1997; populations did not recover until fall 1998. Copepod populations also declined sharply and remained low in Laguna Madre, but recovered by summer 1998 in Baffin Bay. Dilution experiments indicated that microzooplankton grazing and phytoplankton growth were usually balanced when measured during our cruises. The rapid recovery of theA. lagunensis bloom suggests that this alga may be a more resilient component of the Laguna Madre flora than previously suspected.  相似文献   

19.
An 18-yr chlorophyll time series for Narragansett Bay based on weekly samples collected without regard to tidal phase revealed a long-term decrease in mean annual levels. The potential influence of neglecting tidal phase in the sampling strategy on measured chlorophyll and its apparent long-term decrease is evaluated. A two year data set (1995–1996) is used as a proxy for the 1973–1990 time series together with an observed relationship between continuous measurements of in situ chlorophyll fluorescence and accompanying tidal phase. The deviations in chlorophyll from long-term means relative to deviations from mean low water at the time of sample collection are also analyzed, as is the potential influence of tidally-induced advective increases or dilution on measured chlorophyll levels. The analyses, which compare the magnitude and trends in tidally adjusted and directly measured chlorophyll, indicate that semi-diurnal intratidal variations in chlorophyll had little apparent effect on the long-term and seasonal patterns and trends deduced from the chlorophyll measurements. Neither tidal advection of the chlorophyll gradient, nor bloom magnitude appear to compromise application of the model. The 18-yr decline in annual mean chlorophyll observed between 1973–1990 in narragansett Bay is considered to be a bonafide portrayal of actual events, and not an artifact of failure to consider tidal phase in the weekly sampling strategy. The results also suggest that intratidal variability in chlorophyll does not seriously confound its meaningful measurement and usefulness as a representative index of phytoplankton abundance at the permanent monitoring station established for Narragansett Bay. Nonetheless, there is need to refine and to incorporate temporal sampling strategies more closely attuned to the tempo of growth, grazing, and nutrient recycling which accompany estuarine phytoplankton dynamics.  相似文献   

20.
The diet and egg production rate ofAcartia tonsa were measured during the thermally stable period between June and October 1995 at four locations in inner and outer Florida Bay. We sought to characterize the role ofA. tonsa in the bay’s pelagic food web, which has been changing since 1987, when the dominant submerged vegetation began shifting from benthic seagrasses to planktonic algae. At Rankin Lake, a shallow basin on the north side of the inner bay, where extensive seagrass mortality and persistent cyanobacteria blooms have occurred, microplankton biomass was relatively high and dominated by heterotrophic protists and dinoflagellates. Nanoplankton at Rankin, Lake, while numerically abundant, usually contributed only a small portion of the biomass. The ingestion rate ofA. tonsa in Florida Bay varied independently of food concentration (i.e., total microplankton biomass), but rates were higher (mean±SD =3.88 ± 0.73 μg C copepod?1 d?1) on the north side of the bay than on the south side (0.78 ±0.11 μg C copepod?1 d?1). Microzooplankton and dinoflagellates were important dietary constituents, especially in the vicinity of Rankin Lake. Egg production in this region (mean ± SD = 14.2 ± 7.7 eggs female?1 d?1) was considerably high than the baywide mean (5.8±0.81 eggs female?1d?1), and principal components analysis revealed associations between egg production and both dietary microzooplankton and dinoflagellate biomass. However, although grazing rates were relatively high in the inner bay,A. tonsa removed only 1–6% of the primary production from the water column during the summer and its egg production rates were low relative to typical rates for the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号