首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An array of MAPCO2 buoys, CRIMP-2, Ala Wai, and Kilo Nalu, deployed in the coastal waters of Hawaii, have produced multi-year high temporal resolution CO2 records in three different coral reef environments off the island of Oahu, Hawaii. This study, which includes data from June 2008 to December 2011, is part of an integrated effort to understand the factors that influence the dynamics of CO2–carbonic acid system parameters in waters surrounding Pacific high-island coral reef ecosystems and subject to differing natural and anthropogenic stresses. The MAPCO2 buoys are located on the Kaneohe Bay backreef, and fringing reef sites on the south shore of Oahu, Hawaii. The buoys measure CO2 and O2 in seawater and in the atmosphere at 3-h intervals, as well as other physical and biogeochemical parameters (conductivity, temperature, depth, chlorophyll-a, and turbidity). The buoy records, combined with data from synoptic spatial sampling, have allowed us to examine the interplay between biological cycles of productivity/respiration and calcification/dissolution and biogeochemical and physical forcings on hourly to inter-annual time scales. Air–sea CO2 gas exchange was also calculated to determine whether the locations were sources or sinks of CO2 over seasonal, annual, and interannual time periods. Net annualized fluxes for CRIMP-2, Ala Wai, and Kilo Nalu over the entire study period were 1.15, 0.045, and ?0.0056 mol C m?2 year?1, respectively, where positive values indicate a source or a CO2 flux from the water to the atmosphere, and negative values indicate a sink or flux of CO2 from the atmosphere into the water. These values are of similar magnitude to previous estimates in Kaneohe Bay as well as those reported from other tropical reef environments. Total alkalinity (AT) was measured in conjunction with pCO2, and the carbonic acid system was calculated to compare with other reef systems and open ocean values around Hawaii. These findings emphasize the need for high-resolution data of multiple parameters when attempting to characterize the carbonic acid system in locations of highly variable physical, chemical, and biological parameters (e.g., coastal systems and reefs).  相似文献   

2.
Air–water gas exchange is an important process in aquatic systems, including tidal rivers and estuaries. While there are now reliable and routine methods for determining gas exchange over a range of temporal and spatial scales in the ocean and these measurements have resulted in widely used wind speed parameterizations to calculate air–sea gas exchange, the same has not been true for coastal inland waterways. Some studies have suggested that this difference is methodological, while others point to the existence of additional drivers for gas exchange besides wind in rivers and estuaries. Here, we present gas transfer velocities measured in the tidal Hudson River with a method widely used in oceanic studies, the 3He/SF6 dual tracer technique. Airside and waterside forcings were determined with an anemometer and an acoustic Doppler current profiler, respectively. The results confirm that wind is the dominant driver of gas exchange in the tidal Hudson River, with negligible contribution from bottom-generated turbulence. Furthermore, a parameterization between wind speed and gas exchange developed for the ocean is able to predict gas exchange in this environment with high accuracy. It is hoped that by transferring methodology used in oceanic studies to rivers and estuaries, robust data can be obtained that will eventually allow development of widely applicable relationships between easily measured environmental variables and gas exchange in tidal inland waters.  相似文献   

3.
The long-term response of circulation processes to external forcing has been quantified for the Columbia River estuary using in situ data from an existing coastal observatory. Circulation patterns were determined from four Acoustic Doppler Profilers (ADP) and several conductivity–temperature sensors placed in the two main channels. Because of the very strong river discharge, baroclinic processes play a crucial role in the circulation dynamics, and the interaction of the tidal and subtidal baroclinic pressure gradients plays a major role in structuring the velocity field. The input of river flow and the resulting low-frequency flow dynamics in the two channels are quite distinct. Current and salinity data were analyzed on two time scales—subtidal (or residual) and tidal (both diurnal and semidiurnal components). The residual currents in both channels usually showed a classical two-layer baroclinic circulation system with inflow at the bottom and outflow near the surface. However, this two-layer system is transient and breaks down under strong discharge and tidal conditions because of enhanced vertical mixing. Influence of shelf winds on estuarine processes was also observed via the interactions with upwelling and downwelling processes and coastal plume transport. The transient nature of residual inflow affects the long-term transport characteristics of the estuary. Effects of vertical mixing could also be seen at the tidal time scale. Tidal velocities were separated into their diurnal and semidiurnal components using continuous wavelet transforms to account for the nonstationary nature of velocity amplitudes. The vertical structure of velocity amplitudes were considerably altered by baroclinic gradients. This was particularly true for the diurnal components, where tidal asymmetry led to stronger tidal velocities near the bottom.  相似文献   

4.
The Service d’Observation de la Rade de Villefranche-sur-Mer is designed to study the temporal variability of hydrological conditions as well as the abundance and composition of holo- and meroplankton at a fixed station in this bay of the northwest Mediterranean. The weekly data collected at this site, designated as “Point B” since 1957, represent a long-term time series of hydrological conditions in a coastal environment. Since 2007, the historical measurements of hydrological and biological conditions have been complemented by measurements of the CO2–carbonic acid system parameters. In this contribution, CO2–carbonic acid system parameters and ancillary data are presented for the period 2007–2011. The data are evaluated in the context of the physical and biogeochemical processes that contribute to variations in CO2 in the water column and exchange of this gas between the ocean and atmosphere. Seasonal cycles of the partial pressure of CO2 in seawater (pCO2) are controlled principally by variations in temperature, showing maxima in the summer and minima during the winter. Normalization of pCO2 to the mean seawater temperature (18.5 °C), however, reveals an apparent reversal of the seasonal cycle with maxima observed in the winter and minima in the summer, consistent with a biogeochemical control of pCO2 by primary production. Calculations of fluxes of CO2 show this area to be a weak source of CO2 to the atmosphere during the summer and a weak sink during the winter but near neutral overall (range ?0.3 to +0.3 mmol CO2 m?2 h?1, average 0.02 mmol CO2 m?2 h?1). We also provide an assessment of errors incurred from the estimation of annual fluxes of CO2 as a function of sampling frequency (3-hourly, daily, weekly), using data obtained at the Hawaii Kilo Nalu coastal time-series station, which shows similar behavior to the Point B location despite significant differences in climate and hydrological conditions and the proximity of a coral reef ecosystem.  相似文献   

5.
Benthic invertebrates support numerous ecosystem functions and services including shellfish production, energy flow to fishes, and biogeochemical cycles. The decline of marine biodiversity worldwide has raised concerns about effects on ecosystems. To examine biodiversity trends of Narragansett Bay over time, a list was compiled of all benthic invertebrate species collected from the bay since 1834. The list covers 104 studies spanning 182 years and currently holds 1214 unique taxa from 21 phyla, the majority of all animal phyla on Earth. A permuted estimator of number of species suggested there are about 300 more yet to be discovered. Widely varying sampling gear and sieve mesh sizes precluded the use of abundance data. Instead, multidimensional scaling and taxonomic distinctness were used with presence-absence data to examine biodiversity trends. The changes in community composition and decline of benthic biodiversity (p?<?0.01) since 1855 are what would be expected of a community that gradually deteriorated in the face of increasing anthropogenic stressors. Taxonomic distinctness had negative correlations (p?<?0.05) with human population in the watershed, total nitrogen inputs, and inputs of metals. This loss of benthic biodiversity has implications for ecosystem functions and services. As some of the stressors waned in the last two or three decades, following passage of environmental legislation in the 1970s, biodiversity appeared to show a partial recovery. An inventory of species, how it has changed over time, and understanding what caused those changes are important for assessing whether remediation programs are achieving improved water quality and ecosystem health.  相似文献   

6.
Release of CO2 from surface ocean water owing to precipitation of CaCO3 and the imbalance between biological production of organic matter and its respiration, and their net removal from surface water to sedimentary storage was studied by means of a quotient θ = (CO2 flux to the atmosphere)/(CaCO3 precipitated). θ depends not only on water temperature and atmospheric CO2 concentration but also on the CaCO3 and organic carbon masses formed. In CO2 generation by CaCO3 precipitation, θ varies from a fraction of 0.44 to 0.79, increasing with decreasing temperature (25 to 5°C), increasing atmospheric CO2 concentration (195–375 ppmv), and increasing CaCO3 precipitated mass (up to 45% of the initial DIC concentration in surface water). Primary production and net storage of organic carbon counteracts the CO2 production by carbonate precipitation and it results in lower CO2 emissions from the surface layer. When atmospheric CO2 increases due to the ocean-to-atmosphere flux rather than remaining constant, the amount of CO2 transferred is a non-linear function of the surface layer thickness because of the back-pressure of the rising atmospheric CO2. For a surface ocean layer approximated by a 50-m-thick euphotic zone that receives input of inorganic and organic carbon from land, the calculated CO2 flux to the atmosphere is a function of the CaCO3 and Corg net storage rates. In general, the carbonate storage rate has been greater than that of organic carbon. The CO2 flux near the Last Glacial Maximum is 17 to 7×1012 mol/yr (0.2–0.08 Gt C/yr), reflecting the range of organic carbon storage rates in sediments, and for pre-industrial time it is 38–42×1012 mol/yr (0.46–0.50 Gt C/yr). Within the imbalanced global carbon cycle, our estimates indicate that prior to anthropogenic emissions of CO2 to the atmosphere the land organic reservoir was gaining carbon and the surface ocean was losing carbon, calcium, and total alkalinity owing to the CaCO3 storage and consequent emission of CO2. These results are in agreement with the conclusions of a number of other investigators. As the CO2 uptake in mineral weathering is a major flux in the global carbon cycle, the CO2 weathering pathway that originates in the CO2 produced by remineralization of soil humus rather than by direct uptake from the atmosphere may reduce the relatively large imbalances of the atmosphere and land organic reservoir at 102–104-year time scales.  相似文献   

7.
Carbon dioxide enhanced oil recovery (CO2-EOR) has been widely applied to the process of carbon capture, utilization, and storage (CCUS). Here, we investigate CO2–oil–water–rock interactions under reservoir conditions (100 °C and 24 MPa) in order to understand the fluid–rock interactions following termination of a CO2-EOR project. Our experimental results show that CO2-rich fluid remained the active fluid controlling the dissolution–precipitation processes in an oil-undersaturated sandstone reservoir; e.g., the dissolution of feldspar and calcite, and the precipitation of kaolinite as well as solid phases comprising O, Si, Al, Na, C, and Ti. Mineral dissolution rates were reduced in the case that mineral surfaces were coated by oil. Mineral wettability and composition, and oil saturation were the main controls on the exposed surface area of grains, and mineral wettability in particular led to selective dissolution. In addition, the permeability of the reservoir decreased substantially due to the precipitation of kaolinite and solid-phase particles, and due to the clogging of less soluble mineral particles released by the dissolution of K-feldspar and carbonate cement, whereas porosity increased. The results provide insight into potential formation damage resulting from CO2-EOR projects.  相似文献   

8.
Saturation index with respect to calcite (SIc) and equilibrium CO2 partial pressure are important parameters to study groundwater in limestone aquifers. Aside from their use in time series, CO2 and SIc are used to estimate the baseline of CO2 in the vadose zone. The objective of this paper is to present conceptual examples on the use of the CO2–SIc relationship to have new information from usual parameters. Case study was considered as an example of use from Cussac site, a limestone aquifer in southwest of France. The result showed that CO2 baseline in unsaturated zone is found close to 25,000 ± 1,000 ppm.  相似文献   

9.
Cross-community scaling relationships (CCSRs), which result from individual density scaling with average individual body size at guild and community levels, enable investigation of energy constraints at high levels of the ecological hierarchy. Here, we studied cross-community scaling relationships in benthic macroinvertebrate guilds in 15 Mediterranean and Black Sea lagoon ecosystems characterized by strong habitat heterogeneity and high energy density, using data already available in the LifeWatch-Italy data portal. The study sought to describe CCSR patterns in lagoon ecosystems, analyzing their variability across habitat and ecosystem types and evaluating the relative influence on individual body size, macroinvertebrate guild density, or both, of proxies of ecosystem properties, including physiographic characteristics and external disturbance, acting as potential drivers. Significant CCSRs were observed in benthic macroinvertebrate guilds in Mediterranean and Black Sea lagoons. They were characterized by high internal variability and slopes less negative than the metabolic scaling theory expectation (b = ?0.75), ranging between b = ?0.27 and b = ?0.50. Lagoon ecosystem typology, inter-lagoon variation, and ecosystem properties explained part of the variation in internal CCSRs, while habitat variation and intra-ecosystem habitat heterogeneity did not show any influence. CCSR intercepts expressing macroinvertebrate-specific densities showed patterns of variation that were consistent with those of proxies of ecosystem energetics and parsimony, such as eutrophication, chemical and physical disturbances, and openness. These relationships highlight the relevance of CCSRs, which enable inferences on the properties, functioning, and ecological status of ecosystems from simple analyses of community structure.  相似文献   

10.
Climate change is one of the biggest environmental problems that the UK faces. Increased understanding of the impacts is vital to enable adaption to, and mitigation of, the consequences. This analysis and modelling of the relationship between climate and shrink–swell behaviour has been carried out to increase understanding of the potential consequences of changes in precipitation and temperature on ground movement in the south-east of England during the coming century.Analysis of historical climate data and comparison with subsidence claims data demonstrated the relatively close relationship of subsidence with two years’ previous precipitation. Boundaries are identified, with precipitation above 394 mm for the previous two years, leading to a lower level subsidence claims, and below 350 mm leading to a higher incidence. Combined with this inverse relationship, a direct relationship with temperature is identified, with a rise above 22.6 °C in the mean maximum temperature for an accounting quarter leading to a peak in claims.To model a projection for susceptibility of south-east England to future climate change, UKCIP02 forecast climate data were used, and combined with the British Geological Survey national shrink–swell GeoSure geohazard dataset. Preliminary results demonstrate the most noticeable increases in subsidence susceptibility are within the areas underlain by the London Clay Formations, with other clay-rich formations also being identified, including glacial till.Despite this being a preliminary model, with large amounts of future work identified, these results are significant, providing an insight into areas of higher susceptibility and the potential for changes in ground movement for the coming century.  相似文献   

11.
From July to October 2004, five sites in the Hampton–Seabrook Estuary in New Hampshire were sampled with beam and otter trawls. The goals were to describe winter flounder (1) abundance in the estuary, (2) size class distributions, (3) spatial distribution by different size classes, and (4) distribution patterns. Of the 19 species caught, winter flounder was the most abundant and was dominated by young-of-the-year (YOY) fish. The five sites were fairly homogenous in depth, bottom type, salinity, and temperature. However, YOY abundance ranged from 2.1 to 32.1 fish 1,000 m?2 depending on the site. Benthic community was the best indicator of juvenile winter flounder abundance. Catch data of other organisms fluctuated, but no one species was a strong predictor of winter flounder abundance and distribution. During late summer and early fall, the estuary is used primarily by YOY winter flounder, indicating that this estuary functions as a nursery ground.  相似文献   

12.
Wave–current interaction (WCI) is important in modulating hydrodynamics and water mixing in estuaries, and thereby the transport of water-borne materials. However, the effects of WCI on salt transport and salt intrusion in estuaries during storm events have been rarely examined. In the present study, we use a coupled atmosphere–ocean–wave–sediment transport (COAWST) modeling system to investigate the effects of WCI on salt intrusion in the highly stratified Modaomen Estuary during Typhoon Hagupit (2008). The model is validated by the measured wave, water elevation, and surface salinity data, and several diagnostic model experiments are conducted. WCI increases the storm surge by 0.8 m at the peak surge (25% of the total surge height). The wave-breaking-induced momentum flux and the Stokes drift increase the magnitude of the landward flow by 0.3 m s?1 (30% of the total landward flow). In addition, the waves increase water mixing by 2–4 times compared with that without waves. Hence, WCI significantly increases the landward advective salt transport and decreases the steady shear transport. The net effect of the WCI is a significant increase of salt import and salt intrusion during the typhoon event. However, in the aftermath of the storm, the imported salt water is rapidly flushed out by the increased river discharge, and the estuary regains its stratification within one day.  相似文献   

13.
14.
The type and kinetics of metamorphic CO2-producing processes in metacarbonate rocks is of importance to understand the nature and magnitude of orogenic CO2 cycle. This paper focuses on CO2 production by garnet-forming reactions occurring in calc-silicate rocks. Phase equilibria in the CaO–FeO–Al2O3–SiO2–CO2–H2O (CFAS–CO2–H2O) system are investigated using PT phase diagrams at fixed fluid composition, isobaric TX(CO2) phase diagram sections and phase diagram projections in which fluid composition is unconstrained. The relevance of the CFAS–CO2–H2O garnet-bearing equilibria during metamorphic evolution of calc-silicate rocks is discussed in the light of the observed microstructures and measured mineral compositions in two representative samples of calc-silicate rocks from eastern Nepal Himalaya. The results of this study demonstrate that calc-silicate rocks may act as a significant CO2 source during prograde heating and/or early decompression. However, if the system remains closed, fluid–rock interactions may induce hydration of the calc-silicate assemblages and the in situ precipitation of graphite. The interplay between these two contrasting processes (production of CO2-rich fluids vs. carbon sequestration through graphite precipitation) must be considered when dealing with a global estimate of the role exerted by decarbonation processes on the orogenic CO2 cycle.  相似文献   

15.
16.
Chemical compositions and geochronological data utilising the laser ablation ICP-MS technique are presented for zircon megacrysts found in alluvial gem corundum deposits associated with Upper Cretaceous–Cenozoic alkali basalts in the Inverell district-New England field, New South Wales, eastern Australia. Three localities, Kings Plains, Swan Brook and Mary Anne Gully, produce gem-quality transparent dark brown and yellow zircon megacrysts, mostly under 10 mm in size. Although brown zircon shows relative enrichment in Hf and REE, there are no differences in relative transition metal concentrations between the colours. Chemical homogeneity within a single crystal indicates stable crystallisation conditions. The 206Pb/238U age of zircon megacrysts from these three localities define older and younger groups of 216–174 Ma and 45–37.7 Ma, respectively. The ?Hf values of zircon megacrysts from Kings Plains show +7.51±0.34 in the older group and +10.72±0.31 in the younger group. Swan Brook zircons give +11.54±0.47 and +8.32±0.58, and Mary Anne Gully zircons are +13.67±0.63 and +8.50±0.48, respectively. These zircons from New England alluvial gem deposits have two main formational events around Upper TriassicLower Jurassic and Eocene episodes. Most originated from lithospheric mantle and all were brought-up by later host basaltic magmas.  相似文献   

17.
The spatiotemporal evolution of sea ice of Bohai Sea in the 2009–2010 winter was studied by time-series remote sensing data, and real-time meteorological data in combination with cumulative freezing degree days (CFDD). Sea ice acreage was determined using a ratio-threshold segmentation together with visual interpretation of daily MODIS 250 m imagery. We found the sea ice acreage soared to 31,849 km2 on January 23, covering 40.8% of the Bohai Sea. But on February 12, it reached 26,700 km2 in Liaodong Bay only, covering almost 90.0% of Liaodong Bay. The rapid formation and expansion of sea ice was caused by continuous cold snaps superimposed on a background of anomalously cold weather. CFDD calculated from surrounding cities highly correlated with sea ice acreage in Liaodong Bay (R 2 = 0.72) suggesting CFDD is one of the significant controlling factors. Sea ice expansion showed 7 days lag with respect to the lowest temperature from surrounding coastal cities, and it mainly occurred close to land, along the coastline, and gradually expanded from the shore outwards.  相似文献   

18.
A number of different impurities are located in the open channels of natural beryl crystals. The rare Maxixe beryl contains an unusual amount of NO2. The isoelectronic CO2 radical is found in the irradiated Maxixe-type beryl. The NO2 radicals are distributed in the Be–Al plane of the crystal, with the nitrogen atom close to the oxygens of the beryl cavity wall. These oxygens repel the negative CO2 radical, which is located at the center of the beryl cavity and rotates around its O–O axis, which is parallel to the crystal c-axis. When there is a nearby alkali ion at the center of the beryl channel, it reorients the CO2 radical so that its bisector is parallel to the c-axis and points toward the positive ion. Different signals are analyzed for Li+, Na+, and another counter-ion, which probably is Cs+. The related NO3 and CO3 radicals are the color centers in the investigated deep blue beryls. The slow decay of the color, which makes these beryls useless as gem stones, is related to the decay of the hydrogen atoms which are present in these crystals. Evidence is given that NO3 is created in Maxixe beryl by a natural process, while CO3 in Maxixe-type beryl has been created by irradiation. The temperature dependence of the EPR signals of these two radicals was investigated, but a definitive proof that they rotate at the center of the beryl cavity could not be given. EPR signals from some other radicals in beryl have been observed and described.  相似文献   

19.
Fluid exchange across the sediment–water interface in a sandy open continental shelf setting was studied using heat as a tracer. Summertime tidal oscillation of cross-shelf thermal fronts on the South Atlantic Bight provided a sufficient signal at the sediment–water interface to trace the advective and conductive transport of heat into and out of the seabed, indicating rapid flushing of ocean water through the upper 10–40 cm of the sandy seafloor. A newly developed transport model was applied to the in situ temperature data set to estimate the extent to which heat was transported by advection rather than conduction. Heat transported by shallow 3-D porewater flow processes was accounted for in the model by using a dispersion term, the depth and intensity of which reflected the depth and intensity of shallow flushing. Similar to the results of past studies in shallower and more energetic nearshore settings, transport of heat was greater when higher near-bed velocities and shear stresses occurred over a rippled bed. However, boundary layer processes by themselves were insufficient to promote non-conductive heat transport. Advective heat transport only occurred when both larger boundary layer stresses and thermal instabilities within the porespace were present. The latter process is dependent on shelf-scale heating and cooling of bottom water associated with upwelling events that are not coupled to local-scale boundary layer processes.  相似文献   

20.
正1 Introduction In the present paper,MgCl2·6H2O,FeCl3·6H2O,and CeCl3·6H2O were used as raw materials in the precipitationhydrothermal method to synthesize MgF eC e hydrotalcite.The effects of the Fe:Ce molar ratio on the composition,crystal structure,and thermal stability of hydrotalcite are examined.Energy-dispersive X-ray spectroscopy(EDS),X-  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号