首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
秦皇岛地区侵蚀性海滩的演化及保护   总被引:1,自引:0,他引:1  
秦皇岛地区的旅游海滩大部分处于侵蚀状态,沿海河流入海沙量的减少是引起海滩侵蚀的主要原因。对比不同时期的海岸剖面资料,论述了侵蚀性海滩滩面变窄、滩砂粗化和滩面变陡等问题。在讨论海岸侵蚀与海滩侵蚀两个概念的区别和内在联系基础上,依据海滩的岸坡物质对秦皇岛地区侵蚀性滩海进行了分类,侵蚀性海滩的保护及恢复的关键问题是海滩发育空间及物源,最后,针对不同类型的侵蚀海滩,提出了具体防护措施。  相似文献   

2.
我国硬式护岸、渔港工程和人工岛等3类典型海岸工程对相邻海滩有显著影响.本研究以泉州青山湾护岸、泉州崇武中心渔港、海口南海明珠人工岛等建设前后海滩变化为例,开展对海滩岸线形态及部分典型剖面形态的对比分析.结果表明,临海硬式护岸岸前海滩发生明显下蚀,护岸下游海滩岸线侵蚀后退,发育侵蚀热点,剖面伴有下蚀;渔港工程拦沙堤附近岸线局部淤涨,下游海滩岸线大范围侵蚀后退,出现侵蚀热点,侵蚀热点处剖面明显下蚀;人工岛后波影区内海滩淤积,形成沙岬或连岛沙坝突出体,突出体两侧岸线均发生不同程度侵蚀后退.通过分析典型工程案例,探讨了3类海岸工程对相邻海滩的影响方式、影响尺度和原因,对比分析不同类型海岸工程对相邻海滩的负面影响,可为海岸工程建设管理和海滩保护提供参考.  相似文献   

3.
人工海滩研究进展   总被引:11,自引:0,他引:11  
海滩是激浪作用下泥沙在激浪带的堆积,是海岸带最活跃的地貌单元。近年来,由于世纪性的海平面上升,侵蚀型海滩范围扩大,侵蚀加重,海滩宽度变窄、坡度变陡和滩面物质粗化等问题日益严重,引起了广泛关注,亦成为海岸工程研究的热点课题之一。几十年的工程实践表明,海滩喂养与人工海滩是当前防护海滩侵蚀最有效的措施,并已为欧、美、日等国广泛应用。利用海岸地貌学原理方法,借鉴模拟环境条件类似的周边自然海滩的形成和演变规律,合理的设计海滩物质的颗粒大小和组成,海滩的坡度、高度、宽度以及填砂范围等关键参数,能够有效地使人工海滩更快的达到平衡状态并维持其稳定。在海滩的娱乐休闲功能在国际范围内日益受到重视的今天,这一方法在海岸工程应用上具有重要的现实意义。  相似文献   

4.
湄洲岛西南部海滩因1996年建造对台客运码头,引起了海滩剖面的变化,码头前沿淤积而报废。经过5年后,海滩剖面仍未能完全趋于平衡。为了了解码头建设对重塑后海滩的季节变化影响,在2001年3月、7月、10月和12月对码头所在海滩剖面地形进行季节重复测量,并对剖面变化进行比较分析。结果表明,重塑后海滩剖面的季节变化存在区段差异性,码头工程区海滩剖面仍表现为不断淤积,表明5年来工程建设造成海滩重塑后的变化过程还在继续;过渡区海滩剖面较工程区淤积程度减弱,部分剖面表现为侵蚀趋势,但总体逐渐向正常海滩剖面的季节变化方向发展;正常区海滩剖面的季节变化具有一定的规律性,表现为夏季上部侵蚀(后滨和高潮带)下部淤积(低潮带和浅水区),冬季上部淤积下部侵蚀,春、秋两季为中间过渡剖面形态。  相似文献   

5.
海滩侵蚀是影响临海建筑物稳定性的不利因素,临海工程可行性论证中有必要对海滩侵蚀情况做出评估,通常可通过海滩剖面某一段时期内的变化来反映海滩侵蚀程度的强弱。受海浪及潮流的影响,海滩地貌变化频繁,且具周期性,其剖面进行监测具有一定的困难。根据海滩地区的特点,结合传统水准测量的手段,介绍了一种海滩剖面监测的可行方案,并给出了数据处理方法,最后结合工程实例做出数据分析结果。  相似文献   

6.
以北戴河西海滩为例,通过对海滩养护后近岸地形以及表层沉积物的变化进行研究,分析海滩人工喂养后的演化特征:明显遭受侵蚀,平均单宽侵蚀量为44.8 m3/m,滩肩平均蚀退距离15m,东部侵蚀速率大于西部;新海滩沉积物整体细化,分选变好,喂养4个月后沉积物净输移趋势以沿岸搬运为主,运移方向NE—SW向;离岸潜堤形成的波影区以外海滩明显受到侵蚀,形成侵蚀热点.喂养1年后,填沙保存76%,海滩形态与预期形态较为相近,养滩效果良好.  相似文献   

7.
秦皇岛金梦湾海滩侵蚀和海滩养护   总被引:1,自引:0,他引:1  
金梦湾海滩是秦皇岛海港区西部较大的浴场,地理位置优越,但在养滩工程前曾遭受着严重的侵蚀,侵蚀速率在1.26~1.98m/a之间,最大可达3.86m/a,海滩宽度为40~90m,沉积物粗化严重,海滩质量较差,严重影响了海滩的旅游功能。海滩修复工程主要采用近岸补沙和建设生态离岸潜堤的方式,其中近岸补沙方量为172.5×104 m3,离岸潜堤3条。工程后经过1年多的观测,海滩仅在工程后初期侵蚀量较大,之后海滩侵蚀趋势明显减弱,海滩逐渐向平衡状态发展。养滩15个月后,海滩上仍保留了83.4%的沙体,养滩效果良好。  相似文献   

8.
砾石海滩的沉积和形态动力特征   总被引:2,自引:0,他引:2  
天然砾石海滩的物质主要来源于河流输入,海岸侵蚀,海底侵蚀,沿岸输送,人类活动及冰川搬运等,砾石海滩在地貌上表现出明显的分带性,海滩坡度的大小随物源和动力条件发生变化,砾石的磨蚀速率与岩性及周围沉积物粒度组成有关,人工砾石海滩建设可借鉴天然砾石海滩的形成和演化过程,合理地设计物质组成,砾石形状和大小,以便能更快地使人工海滩达到平衡状态并维持海滩的稳定性。  相似文献   

9.
海滩对风暴的响应及风暴后海滩的恢复过程一直以来都是国内外海滩研究的热点。本文通过对浙江舟山市朱家尖岛东沙海滩地形地貌的现场调查,对比分析了热带风暴"娜基莉"影响下东沙海滩剖面的蚀积变化,探讨了海滩在热带风暴发生后的恢复情况。结果表明,在"娜基莉"影响期间,因风暴浪为向岸浪,东沙海滩几乎遭受全线侵蚀,12个剖面单宽侵蚀总量为73.46 m3/m,其中海滩直线段较两个遮蔽段侵蚀显著。由于海滩在风暴前进方向的左侧,且"娜基莉"距东沙较远,使得东沙海滩普遍侵蚀但强度较小。东沙海滩在热带风暴后的恢复过程中,不同部位的地貌调整和冲淤变化不同,下岬角遮蔽段基本趋于稳定,直线段和上岬角遮蔽段在恢复过程中因受海滩季节性调整的影响呈现持续侵蚀。  相似文献   

10.
蓬菜西庄海滩示踪砂试验研究   总被引:2,自引:0,他引:2  
为了研究蓬菜西庄海岸侵蚀原因,揭示泥沙运移规律,利用萤光示踪砂和染色砾石进行侵蚀岸段的泥沙示踪研究。其主要结果如下:1.海滩泥沙运动完全由波浪控制,泥沙运移的速度和方向取决于破波的大小和方向。2.海滩泥以群体形式沿岸输移。3.在平直海岸上,泥沙可超越粘土质海蚀平台进入另一砂质海滩。  相似文献   

11.
高伟  李萍  高珊  田梓文  李兵  刘杰  徐元芹 《海洋学报》2020,42(11):88-99
通过无人机和滩面高程监测等技术手段,获取了1909号台风“利奇马”过境山东省海阳市前后的海滩监测数据,分析海滩在台风前后的整体形态和剖面冲淤变化,探讨了海滩演化对台风的响应规律。结果表明,台风过境后海滩整体形态以风成沙丘面积略有扩大、高?中潮带滩面发生下蚀和微地貌消失等现象为主。台风对海滩的影响以侵蚀为主,造成了约2.43×104 m3的侵蚀量,且主要发生在高潮带滩面;风成沙丘以弱淤积为主,但部分岸段发生严重冲蚀;后滨则受大风和冲越流携沙堆积后以弱淤积为主;中低潮带冲淤主要受其滩面坡度控制,表现为高坡度滩面冲蚀,低坡度滩面弱淤积,且台风过后形成多个小型水下沙坝。整体而言,台风“利奇马”对山东海阳海滩演化造成一定的影响,沉积物收支愈发亏损,进一步加重了海阳海滩的侵蚀程度。  相似文献   

12.
Hurricane- or storm-generated swell waves may cause erosion and deposition along coasts which are situated thousands of kilometers outside the generating wind field. Marked beach erosion, caused by such swell waves, was observed along the micro-tidal west coast of Aruba. During the process of erosion a swash bar was formed, which moved up-beach during the waxing part of the swell event. The swash bar welded to the beach during the waning part of the event. Rapid sedimentation occurred on the upper beach. Finally, recovery of the beach was observed. The formation of a swash bar was attributed to an erosive, dissipative interval of a normally accretionary reflective beach. The sedimentary structures, although generally in line with observations on other beaches, show several peculiar characteristics: (1) the great thickness of the laminae in these calcareous sands; (2) the succession of low-angle sigmoidal and tangential sets in the swash bar; (3) the relatively steep erosional lower set boundaries and the wedge-shaped lamination in the successive stages of beach recovery; and (4) the several types of deformation structures.  相似文献   

13.
风暴是造成海滩剧烈变化的重要因子。由于观测环境的恶劣,目前极少有风暴过程中海滩响应的现场高频观测工作。本研究在2018年台风“贝碧嘉”期间对徐闻青安湾海滩开展了历时6天半的高频观测,获得了全时水动力要素和164组逐时海滩滩面高程变化数据。通过分析表明:(1)青安湾海域风暴增水及波浪受控于海南岛?雷州半岛特有的地形地貌和台风“贝碧嘉”的多变路径,增水稳定在0.38~0.5 m之间,而波高先由0.78 m衰减至0.43 m,再增加至0.56 m;(2)海滩剖面地形变化总体表现为滩肩侵蚀,形成水下沙坝,滩肩响应过程分为快速向下侵蚀、缓慢侵蚀至最大值、振荡回淤恢复3个阶段,台风期间滩肩振荡恢复幅度可达最大侵蚀深度的1/4;(3)海滩的风暴响应过程主要由4个模态耦合而成:第一模态体现大潮滩肩侵蚀生成水下沙坝过程;第二模态体现风暴滩肩侵蚀,补偿大潮滩肩侵蚀位置和进一步促进沙坝形成过程;第三模态揭示了波浪二次破碎位置的上冲流和离岸底流使泥沙发生双向输移过程;第四模态表明台风大浪使得碎波带内泥沙大量悬浮,在沿岸流和离岸流作用下部分悬沙进入深水区,可能造成海滩泥沙的永久亏损。  相似文献   

14.
海阳市砂质海岸资源丰富,延绵近120 km,尤以万米沙滩浴场著称,但近年岸滩侵蚀严重影响其社会经济发展.本研究基于海阳市羊角畔两侧长约20 km典型砂质海岸连续3 a的海岸线蚀和典型剖面蚀淤调查,定量化研究海滩侵蚀及其变化,辅以一维数值模型,研究人类活动影响下的泥沙运动特征和海滩侵蚀机制.研究结果表明,调查区42.5%和5.90%的砂质海岸分别处于侵蚀和强侵蚀状态,羊角畔东侧海岸侵蚀强度高于西侧,海阳港至海阳核电厂之间海滩侵蚀强度最高,海滩侵蚀强度与人类活动扰动程度密切相关.海岸工程、临海养殖和人为采砂导致海阳市部分砂质海岸侵蚀严重的主要原因,导致羊角畔两侧海岸侵蚀机制也不同.基于各岸段侵蚀机制特征有针对性地提出退养还滩、凸堤拆除和沙滩喂养等对策,以减缓海阳砂质海岸侵蚀威胁.  相似文献   

15.
The paper focuses on the numerical simulation of erosion of plane sloping beaches by irregular wave attack in three wave flumes of different scales. One of the prime objectives of the tests was to provide a consistent data set for the improvement of numerical beach profile models. A practical application of this research with wave attack on plane sloping beaches is the erosion of the plane beaches after nourishment. Three models (CROSMOR, UNIBEST-TC and DELFT3D) have been used to simulate the flume experimental results focusing on the wave height distribution and the morphological development (erosion and deposition) along the beach profiles. Overall, the model predictions for wave heights show consistent results. Generally, the computed wave heights (Hrms and H1/3) are within 10% to 15% of the measured values for all tests (under-prediction of the largest wave heights close to the shore). The three models can simulate the beach erosion of the wave flume tests (erosive tests) reasonably well using default values of the sand transport parameters. The model performance for the accretive tests is less good than that for the erosive tests. A practical field application of this research is the erosion of nourished beaches, as these beaches generally have rather plane beach slopes immediately after nourishment. Various graphs are given to estimate the beach erosion of nourished beaches.  相似文献   

16.
Estimation of erosion volumes for adequate dry beach buffer zones is commonly estimated on the basis of a single extreme event, such as the 1 in 100 year storm. However, the cumulative impact of several smaller, closely spaced storms can lead to equal, if not more, dry beach loss, but this is often not quantified. Here we use a calibrated model for dune erosion, XBeach, to hindcast the cumulative erosion impact of a series of historical storms that impacted the Gold Coast, Queensland region in 1967. Over a 6-month period, four named cyclones (Dinah, Barbara, Elaine, and Glenda) and three East Coast Lows caused a cumulative erosion volume greater than the predicted 1 in 100 year event. Results presented here show that XBeach was capable of reproducing the measured dry beach erosion volume to within 21% and shoreline retreat to within 10%. The storms were then run in 17 different sequences to determine if sequencing influenced final modeled erosion volumes. It is shown that storm sequencing did not significantly affect the total eroded volumes. However, individual storm volumes were influenced by the antecedent state of the beach (i.e. prior cumulative erosion). Power-law relationships between cumulative energy density (∑ E) and eroded volume (∆V) as well as cumulative wave power ((∑ P)) and eroded volume (∆V) both explained more than 94% of the modeled dry beach erosion for the 1967 storm sequences. When the relationship was compared with observed and modeled erosion volumes for similar beaches but different storm forcing, the inclusion of pre-storm beach swash slope (βswash) in the parameterization was found to increase the applicability of the power-law relationship over a broader range of conditions.  相似文献   

17.
Recent developments in extreme values modelling have been used to develop a framework for determining the coastal erosion hazard on sandy coastlines. This framework quantitatively reproduced the extreme beach erosion volumes obtained from field measurements at Narrabeen Beach, Australia. This encouraging finding was achieved using Kriebel and Dean's [Kriebel, D.L. and Dean, R.G., 1993. Convolution method for time-dependent beach profile response. Journal of Waterway, Port, Coastal and Ocean Engineering, 119(2): 204–226.] simple beach erosion and accretion model. The method includes allowances for joint probability between all basic erosion variates including; wave height, period and direction, event duration, tidal anomalies and event spacing. A new formulation for the dependency between wave height and period has been developed. It includes the physical wave steepness limitation. Event grouping, where significantly more erosion can occur from two closely spaced storms is handled by temporally simulating the synthetic wave climate and the resulting beach erosion and accretion.  相似文献   

18.
Indian River Inlet is located at roughly the mid-point of the Atlantic coast of Delaware and connects the ocean to two Delaware inland bays. Jetties constructed in 1940 have maintained the inlet for navigation purposes but have also acted as a barrier to net northerly alongshore sediment transport causing downdrift erosion. A mobile, land-based bypassing system was initiated in 1990 in an effort to counteract this erosion. Beach profile data from 1985 (pre-bypassing) until 2008 are used to investigate the effect of the sand bypassing system on beaches adjacent to the inlet. The downdrift beach experienced horizontal shoreline erosion between 10 and 60 m during the pre-bypassing period but accreted 10–20 m during the bypassing period. The mean shoreline location on the updrift beach during bypassing is 10–20 m landward (erosion) of its position during the pre-bypassing period. Empirical orthogonal function (EOF) amplitudes from analyses performed on mean-removed elevation surfaces during the periods of highest bypassed volume (average of 83% of design rate) showed that the influence of the bypassing system on the downdrift beach extends to about 1500 m of the inlet. An EOF analysis showed that different morphologic responses were evident following the initiation of bypass operations. Temporal variations of shoreline and beach morphology were correlated to the temporal variations in bypassing rates on the downdrift beach only. The downdrift beach response was greatest near the inlet for larger bypassing volumes. Correlation in these instances occurred with a roughly 1-year time lag suggesting that the beach quickly redistributes the bypassed sand. EOF amplitude and shoreline response are weakly correlated to bypassed volumes when the system bypassed smaller volumes (average of 56% of design rate) of sand suggesting that there is a minimum bypassing rate, regardless of yearly variability, below which the effect on the downdrift beach is obscured.  相似文献   

19.
A prograding chenier plain on the west side of Broad Sound is up to 5 km wide and individual beach ridges (cheniers) are up to 5 km long. The cheniers are believed to have formed during periods of low sediment supply, leading to the erosion of mangrove deposits and the attendant development of a beach ridge. Radiocarbon dating of two sequences, revealed that cheniers formed at about 5000, 4500, 3550, 2500, 1600 and 700 years B.P. There is no significant change in the elevation of the cheniers during this 5000 year interval and it would seem from the Broad Sound evidence that sea level stabilized at about the present level approximately 5000 years B.P. Since that time mean sea level has varied by no more than ± 1 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号