首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
In this study, we test the potential of two different classification algorithms, namely the spectral angle mapper (SAM) and object-based classifier for mapping the land use/cover characteristics using a Hyperion imagery. We chose a study region that represents a typical Mediterranean setting in terms of landscape structure, composition and heterogeneous land cover classes. Accuracy assessment of the land cover classes was performed based on the error matrix statistics. Validation points were derived from visual interpretation of multispectral high resolution QuickBird-2 satellite imagery. Results from both the classifiers yielded more than 70% classification accuracy. However, the object-based classification clearly outperformed the SAM by 7.91% overall accuracy (OA) and a relatively high kappa coefficient. Similar results were observed in the classification of the individual classes. Our results highlight the potential of hyperspectral remote sensing data as well as object-based classification approach for mapping heterogeneous land use/cover in a typical Mediterranean setting.  相似文献   

2.
Abstract

The goal of this research was to explore the utility of very high spatial resolution, digital remotely sensed imagery for monitoring land‐cover changes in habitat preserves within southern California coastal shrublands. Changes were assessed for Los Penasquitos Canyon Preserve, a large open space in San Diego County, over the 1996 to 1999 period for which imagery was available.

Multispectral, digital camera imagery from two summer dates, three years apart, was acquired using the Airborne Data Acquisition and Registration (ADAR) digital‐camera system. These very high resolution (VHR) image data (1m), composed of three visible and one near‐infrared wavebands (V/NIR), were the primary image input for assessing land cover change. Image‐derived datasets generated from georeferenced and registered ADAR imagery included multitemporal overlays and multitemporal band differencing with threshold selection. Two different multitemporal image classifications were generated from these datasets and compared. Single‐date imagery was analyzed interactively with image‐derived datasets and with information from field observations in an effort to discern change types. A ground sampling survey conducted soon after the 1999 image acquisition provided concurrent ground reference data.

Most changes occurring within the three‐year interval were associated with transitional phenological states and differential precipitation effects on herbaceous cover. Variations in air temperatures and timing of rainfall contributed to differences that the seven‐week image acquisition offset may have caused. Disturbance factors of mechanical clearing, erosion, potentially invasive plants, and fire were evident and their influence on the presence, absence, and type of vegetation cover were likely sources of change signals.

The multitemporal VHR, V/NIR image data enabled relatively fine‐scale land cover changes to be detected and identified. Band differencing followed by multitemporal classification provided an effective means for detecting vegetation increase or decrease. Detailed information on short‐term disturbance effects and long‐term vegetation type conversions can be extracted if image acquisitions are carefully planned and geometric and radiometric processing steps are implemented.  相似文献   

3.
The citrus industry has the second largest impact on Florida's economy, following tourism. Estimation of citrus area coverage and annual forecasts of Florida's citrus production are currently dependent on labor-intensive interpretation of aerial photographs. Remotely sensed data from satellites has been widely applied in agricultural yield estimation and cropland management. Satellite data can potentially be obtained throughout the year, making it especially suitable for the detection of land cover change in agriculture and horticulture, plant health status, soil and moisture conditions, and effects of crop management practices. In this study, we analyzed land cover of citrus crops in Florida using Landsat Enhanced Thematic Mapper Plus (ETM+) imagery from the University of Maryland Global Land Cover Facility (GLCF). We hypothesized that an interdisciplinary approach combining citrus production (economic) data with citrus land cover area per county would yield a correlation between observable spectral reflectance throughout the year, and the fiscal impact of citrus on local economies. While the data from official sources based on aerial photography were positively correlated, there were serious discrepancies between agriculture census data and satellite-derived cropland area using medium-resolution satellite imagery. If these discrepancies can be resolved by using imagery of higher spatial resolution, a stronger correlation would be observed for citrus production based on satellite data. This would allow us to predict the economic impact of citrus from satellite-derived spectral data analysis to determine final crop harvests.  相似文献   

4.
This paper describes an operational application of AVHRR satellite imagery in combination with the satellite-based land cover database CORINE Land Cover (CLC) for the comprehensive observation and follow-up of 10000 fire outbreaks and of their consequences in Greece during summer 2000. In the first stage, we acquired and processed satellite images on a daily basis with the aim of smoke-plume tracking and fire-core detection at the national level. Imagery was acquired eight times per day and derived from all AVHRR spectral channels. In the second stage, we assessed the consequences of fire on vegetation by producing a burnt-area map on the basis of multi-annual normalised vegetation indices using AVHRR data in combination with CLC. In the third stage we used again CLC to assess the land cover of burnt areas in the entire country. The results compared successfully to available inventories for that year. Burnt area was estimated with an accuracy ranging from 88% to 95%, depending on the predominant land cover type. These results, along with the low cost and high temporal resolution of AVHRR satellite imagery, suggest that the combination of low-resolution satellite data with harmonised CLC data can be applied operationally for forest fire and post-fire assessments at the national and at a pan-European level.  相似文献   

5.
Abstract

The objective of this study was to explore the utility of multi‐temporal, multi‐spectral image data acquired by the IKONOS satellite system for monitoring detailed land cover changes within shrubland habitat reserves. Sub‐pixel accuracy in date‐to‐date registration was achieved, in spite of the irregular relief of the study area and the high spatial resolution of the imagery. Change vector classification enabled features ranging in size from tens of square meters to several hectares to be detected and six general land cover change classes to be identified. Interpretation of the change vector classification product in conjunction with visual inspection of the multi‐temporal imagery enabled identification of specific change types such as: vegetation disturbance and associated increase in soil exposure, shrub removal, urban edge vegetation clearing and fire maintenance, increase in vegetation cover, spread of invasive plant species, fire scars and subsequent recovery, erosional scouring, trail and road development, and expansion of bicycle disturbances.  相似文献   

6.
This paper discusses the development and implementation of a method that can be used with multi-decadal Landsat data for computing general coastal US land use and land cover (LULC) maps consisting of seven classes. With Mobile Bay, Alabama as the study region, the method that was applied to derive LULC products for nine dates across a 34-year time span. Classifications were computed and refined using decision rules in conjunction with unsupervised classification of Landsat data and Coastal Change and Analysis Program value-added products. Each classification’s overall accuracy was assessed by comparing stratified random locations to available high spatial resolution satellite and aerial imagery, field survey data and raw Landsat RGBs. Overall classification accuracies ranged from 83 to 91% with overall κ statistics ranging from 0.78 to 0.89. Accurate classifications were computed for all nine dates, yielding effective results regardless of season and Landsat sensor. This classification method provided useful map inputs for computing LULC change products.  相似文献   

7.
Mismatching sets of boundaries present a persistent problem in spatial analysis for many different applications. Dasymetric mapping techniques can be employed to estimate population characteristics of small areas that do not correspond to census enumeration boundaries. Several types of ancillary data have been used in dasymetric mapping but performance is often limited by their relatively coarse resolution and moderate correspondence to actual population counts. The current research examines the performance of using high resolution ancillary data in the form of individual address point datasets which represent the locations of all addressable units within a jurisdiction. The performance of address points was compared with several other techniques, including areal weighting, land cover, imperviousness, road density and nighttime lights. Datasets from 16 counties in Ohio were used in the analysis, reflecting a range of different population densities. For each technique the ancillary data sources were employed to estimate census block group population counts using census tracts as source zones, and the results were compared with the known block group population counts. Results indicate that address points perform significantly better compared with other types of ancillary data. The overall error for all block groups (n = 683) using address points is 4.9% compared with 10.8% for imperviousness, 11.6% for land cover, 13.3% for road density, 18.6% for nighttime lights and 21.2% for areal weighting. Using only residential address points rather than all types of locations further reduces this error to 4.2%. Analysis of the spatial patterns in the relative performance of the various techniques revealed that address points perform particularly well in low density rural areas, which typically present challenges for traditional dasymetric mapping techniques using land cover datasets. These results provide very strong support for the use of address points for small area population estimates. Current developments in the growing availability of address point datasets and the implications for spatial demographic analyses are discussed.  相似文献   

8.
The development of robust object-based classification methods suitable for medium to high resolution satellite imagery provides a valid alternative to ‘traditional’ pixel-based methods. This paper compares the results of an object-based classification to a supervised per-pixel classification for mapping land cover in the tropical north of the Northern Territory of Australia. The object-based approach involved segmentation of image data into objects at multiple scale levels. Objects were assigned classes using training objects and the Nearest Neighbour supervised and fuzzy classification algorithm. The supervised pixel-based classification involved the selection of training areas and a classification using the maximum likelihood classifier algorithm. Site-specific accuracy assessment using confusion matrices of both classifications were undertaken based on 256 reference sites. A comparison of the results shows a statistically significant higher overall accuracy of the object-based classification over the pixel-based classification. The incorporation of a digital elevation model (DEM) layer and associated class rules into the object-based classification produced slightly higher accuracies overall and for certain classes; however this was not statistically significant over the object-based using spectral information solely. The results indicate object-based analysis has good potential for extracting land cover information from satellite imagery captured over spatially heterogeneous land covers of tropical Australia.  相似文献   

9.
Regional and national level land cover datasets, such as the National Land Cover Database (NLCD) in the United States, have become an important resource in physical and social science research. Updates to the NLCD have been conducted every 5 years since 2001; however, the procedure for producing a new release is labor-intensive and time-consuming, taking 3 or 4 years to complete. Furthermore, in most countries very few, if any, such releases exist, and thus there is high demand for efficient production of land cover data at different points in time. In this paper, an active machine learning framework for temporal updating (or backcasting) of land cover data is proposed and tested for three study sites covered by the NLCD. The approach employs a maximum entropy classifier to extract information from one Landsat image using the NLCD, and then replicate the classification on a Landsat image for the same geographic extent from a different point in time to create land cover data of similar quality. Results show that this framework can effectively replicate the land cover database in the temporal domain with similar levels of overall and within class agreement when compared against high resolution reference land cover datasets. These results demonstrate that the land cover information encapsulated in the NLCD can effectively be extracted using solely Landsat imagery for replication purposes. The algorithm is fully automated and scalable for applications at landscape and regional scales for multiple points in time.  相似文献   

10.
With the availability of very high resolution multispectral imagery, it is possible to identify small features in urban environment. Because of the multiscale feature and diverse composition of land cover types found within the urban environment, the production of accurate urban land cover maps from high resolution satellite imagery is a difficult task. This paper demonstrates the potential of 8 bands capability of World View 2 satellite for better automated feature extraction and discrimination studies. Multiresolution segmentation and object based classification techniques were then applied for discrimination of urban and vegetation features in a part of Dehradun, Uttarakhand, India. The study demonstrates that scale, colour, shape, compactness and smoothness have a significant influence on the quality of image objects achieved, which in turn governs the classified result. The object oriented analysis is a valid approach for analyzing high spatial and spectral resolution images. World View 2 imagery with its rich spatial and spectral information content has very high potential for discrimination of the less varied varieties of vegetation.  相似文献   

11.
Abstract

Visualization techniques have been developed to recreate natural landscapes, but little has been done to investigate their potential for illustrating land cover change using spatio‐temporal data. In this work, remote sensing, geographic information systems (GIS) and visualization techniques were applied to generate realistic computer visualizations depicting the dynamic nature of forested environments. High resolution digital imagery and aerial photography were classified using object‐oriented methods. The resulting classifications, along with preexisting land cover datasets, were used to drive the correct placement of vegetation in the visualized landscape, providing an accurate representation of reality at various points in time. 3D Nature's Visual Nature Studio was used to construct a variety of realistic images and animations depicting forest cover change in two distinct ecological settings. Visualizations from Yellowstone National Park focused on the dramatic impact of the 1988 fire upon the lodgepole pine forest. For a study area in Kansas, visualization techniques were used to explore the continuous human‐land interactions impacting the eastern deciduous forest and tallgrass prairie ecotone between 1941 and 2002. The resulting products demonstrate the flexibility and effectiveness of visualizations for representing spatio‐temporal patterns such as changing forest cover. These geographic visualizations allow users to communicate findings and explore new hypotheses in a clear, concise and effective manner.  相似文献   

12.
Information on Earth's land surface cover is commonly obtained through digital image analysis of data acquired from remote sensing sensors. In this study, we evaluated the use of diverse classification techniques in discriminating land use/cover types in a typical Mediterranean setting using Hyperion imagery. For this purpose, the spectral angle mapper (SAM), the object-based and the non-linear spectral unmixing based on artificial neural networks (ANNs) techniques were applied. A further objective had been to investigate the effect of two approaches for training sites selection in the SAM classification, namely of the pixel purity index (PPI) and of the direct selection of training points from the Hyperion imagery assisted by a QuickBird imagery and field-based training sites. Object-based classification outperformed the other techniques with an overall accuracy of 83%. Sub-pixel classification based on the ANN showed an overall accuracy of 52%, very close to that of SAM (48%). SAM applied using the training sites selected directly from the Hyperion imagery supported by the QuickBird image and the field visits returned an increase accuracy by 16%. Yet, all techniques appeared to suffer from the relatively low spatial resolution of the Hyperion imagery, which affected the spectral separation among the land use/cover classes.  相似文献   

13.
14.
Land cover roughness coefficients (LCRs) have been used in multivariate spatial models to test the mitigation potential of coastal vegetation to reduce impacts of the 2004 tsunami in Aceh, Indonesia. Previously, a Landsat 2002 satellite imagery was employed to derive land cover maps, which were then combined with vegetation characteristics, i.e., stand height, stem diameter and planting density to obtain LCRs. The present study tested LCRs extracted from 2003 and 2004 Landsat (30 m) images as well as a combination of 2003 and 2004 higher spatial resolution SPOT (10 m) imagery, while keeping the previous vegetation characteristics. Transects along the coast were used to extract land cover, whenever availability and visibility allowed. These new LCRs applied in previously developed tsunami impact models on wave outreach, casualties and damages confirmed previous findings regarding distance to the shoreline as a main factor reducing tsunami impacts. Nevertheless, the models using the new LCRs did not perform better than the original one. Particularly casualties models using 2002 LCRs performed better (δAIC > 2) than the more recent Landsat and SPOT counterparts. Cloud cover at image acquisition for Landsat and low area coverage for SPOT images decreased statistical predictive power (fewer observations). Due to the large spatial heterogeneity of tsunami characteristics as well as topographic and land-use features, it was more important to cover a larger area. Nevertheless, if more land cover classes would be referenced and high resolution imagery with low cloud cover would be available, the full benefits of higher spatial resolution imagery used to extract more precise land use roughness coefficients could be exploited.  相似文献   

15.
Invasive ericaceous shrubs (e.g. Kalmia angustifolia, Rhododendron groenlandicum, Vaccinium spp.) may reduce the regeneration and early growth of black spruce (Picea mariana) seedlings, the most economically important boreal tree species in Quebec. Our study focused, therefore, on developing a method for mapping ericaceous shrubs from satellite images. The method integrates very high resolution satellite imagery (IKONOS) to guide classifiers applied to medium resolution satellite imagery (Landsat-TM). An object-oriented image classification approach was applied using Definiens eCognition software. An independent ground survey revealed 80% accuracy at the very high spatial resolution. We found that the partial use (70%) of classified polygons derived from the IKONOS images were an effective way to guide classification algorithms applied to the Landsat-TM imagery. The results of this latter classification (78.4% overall accuracy) were assessed by the remaining portion (30%) of unused very high resolution classified polygons. We further validated our method (65.5% overall accuracy) by assessing the correspondence of an ericaceous cover classification scheme done with a Landsat-TM image and results of our ground survey using an independent set of 275 sample plots. Discrimination of ericaceous shrub cover from other land cover types was achieved with precision at both spatial resolutions with producer accuracies of 87.7% and 79.4% from IKONOS and Landsat, respectively. The method is weaker for areas with sparse cover of ericaceous shrubs or dense tree cover. Our method is adapted, therefore, for mapping the spatial distribution of ericaceous shrubs and is compatible with existing forest stand maps.  相似文献   

16.
Abstract

Changing environmental and socio-economic conditions make land degradation, a major concern in Central and East Asia. Globally satellite imagery, particularly Normalized Difference Vegetation Index (NDVI) data, has proved an effective tool for monitoring land cover change. This study examines 33 grassland water points using vegetation field studies and remote sensing techniques to track desertification on the Mongolian plateau. Findings established a significant correlation between same-year field observation (line transects) and NDVI data, enabling an historical land cover perspective to be developed from 1998 to 2006. Results show variable land cover patterns in Mongolia with a 16% decrease in plant density over the time period. Decline in cover identified by NDVI suggests degradation; however, continued annual fluctuation indicates desertification – irreversible land cover change – has not occurred. Further, in situ data documenting greater cover near water points implies livestock overgrazing is not causing degradation at water sources. In combination of the two research methods – remote sensing and field surveys – strengthen findings and provide an effective way to track desertification in dryland regions.  相似文献   

17.
The surface fabric of urbanized areas, (i.e. its constituent land covers and land uses) plays an essential role in the generation of the urban/rural temperature differences, i.e. the Urban Heat Island (UHI) effect. Land surface information, derived from satellite imagery, and complementary information such as demographics can be used as the basis for an understanding of the atmospheric and surface thermal variations within cities. The results of comprehensive land surface characterizations of two major Canadian urban areas, the Greater Toronto Area and Ottawa-Gatineau, are described. Spatial information, including land cover fraction maps, land use and its historic changes, population density maps are compared with intra-urban surface temperature variations derived from satellite thermal imagery. Three aspects of the impacts of land cover and land use on urban land thermal characteristics are addressed, namely, (a) the relationships between surface temperature and subpixel land cover and population density (b) intra-city seasonal temperature variations and (c) the intensification of the urban heat island effect due to urban built-up land growth.  相似文献   

18.
朱映  王密  潘俊  胡芬 《测绘学报》2015,44(4):399-406
卫星平台震颤是影响高分辨率卫星成像质量的因素之一,会引起影像模糊和内部畸变。本文从资源三号卫星多光谱相机的成像特点和多光谱影像配准误差影响因素入手,理论推导和仿真分析了卫星平台震颤对配准误差的影响规律,在此基础上提出了基于多光谱影像高精度密集匹配的平台震颤检测方法和流程,最后利用不同波段、不同时间的成像数据进行试验。试验结果表明资源三号卫星在试验数据成像阶段存在约0.6Hz的平台震颤,且垂轨方向震颤幅值大于沿轨方向,同时引起波段间相同频率周期性配准误差。检测结果为进一步提高资源三号处理精度提供了可能,也为卫星平台震颤源的分析和优化卫星平台设计提供了重要参考依据。  相似文献   

19.

Background

A simulation model that relies on satellite observations of vegetation cover from the Landsat 7 sensor and from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate net primary productivity (NPP) of forest stands at the Bartlett Experiment Forest (BEF) in the White Mountains of New Hampshire.

Results

Net primary production (NPP) predicted from the NASA-CASA model using 30-meter resolution Landsat inputs showed variations related to both vegetation cover type and elevational effects on mean air temperatures. Overall, the highest predicted NPP from the NASA-CASA model was for deciduous forest cover at low to mid-elevation locations over the landscape. Comparison of the model-predicted annual NPP to the plot-estimated values showed a significant correlation of R2 = 0.5. Stepwise addition of 30-meter resolution elevation data values explained no more than 20% of the residual variation in measured NPP patterns at BEF. Both the Landsat 7 and the 250-meter resolution MODIS derived mean annual NPP predictions for the BEF plot locations were within ± 2.5% of the mean of plot estimates for annual NPP.

Conclusion

Although MODIS imagery cannot capture the spatial details of NPP across the network of closely spaced plot locations as well as Landsat, the MODIS satellite data as inputs to the NASA-CASA model does accurately predict the average annual productivity of a site like the BEF.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号