首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We apply the model of quasistatic equilibrium sequences to describe the time development of magnetic field structures in the plasma of the solar corona, and to determine onset points of a dynamical evolution. The representation of the magnetic field by Euler potentials provides a realistic modeling of the photospheric boundary conditions. We present a numerical method suited for the computation of magnetohydrodynamic equilibrium states and for analysing their stability against perturbations within ideal MHD. Pressure and magnetic footpoint displacement can be prescribed separately as boundary conditions. We consider magnetic arcade structures typical for large two-ribbon flares. Our results indicate that a finite pressure gradient seems to be essential for the existence of onset points. Furthermore, it is shown that magnetic shear destabilizes for intermediate values, but can have a stabilizing effect for a large amount of shear.  相似文献   

2.
Measurements of magnetic fields and electric currents in the pre-eruptive corona are crucial to the study of solar eruptive phenomena, like flares and coronal mass ejections (CMEs). However, spectro-polarimetric measurements of certain photospheric lines permit a determination of the vector magnetic field only at the photosphere. Therefore, there is considerable interest in accurate modeling of the solar coronal magnetic field using photospheric vector magnetograms as boundary data. In this work, we model the coronal magnetic field above multiple active regions with the help of a potential field and a nonlinear force-free field (NLFFF) extrapolation code over the full solar disk using Helioseismic and Magnetic Imager (SDO/HMI) data as boundary conditions. We compare projections of the resulting magnetic field lines with full-disk coronal images from the Atmospheric Imaging Assembly (SDO/AIA) for both models. This study has found that the NLFFF model reconstructs the magnetic configuration closer to observation than the potential field model for full-disk magnetic field extrapolation. We conclude that many of the trans-equatorial loops connecting the two solar hemispheres are current-free.  相似文献   

3.
A coronal magnetic field model with horizontal volume and sheet currents   总被引:1,自引:0,他引:1  
When globally mapping the observed photospheric magnetic field into the corona, the interaction of the solar wind and magnetic field has been treated either by imposing source surface boundary conditions that tacitly require volume currents outside the source surface (Schatten, Wilcox, and Ness, 1969) or by limiting the interaction to thin current sheets between oppositely directed field regions (Wolfson, 1985). Yet observations and numerical MHD calculations suggest the presence of non-force-free volume currents throughout the corona as well as thin current sheets in the neighborhoods of the interfaces between closed and open field lines or between oppositely directed open field lines surrounding coronal helmet-streamer structures. This work presents a model including both horizontal volume currents and streamer sheet currents. The present model builds on the magnetostatic equilibria developed by Bogdan and Low (1986) and the current-sheet modeling technique developed by Schatten (1971). The calculation uses synoptic charts of the line-of-sight component of the photospheric magnetic field measured at the Wilcox Solar Observatory. Comparison of an MHD model with the calculated model results for the case of a dipole field and comparison of eclipse observations with calculations for CR 1647 (near solar minimum) show that this horizontal current-current-sheet model reproduces polar plumes and axes of corona streamers better than the source-surface model and reproduces coronal helmet structures better than the current-sheet model.  相似文献   

4.
E. J. Weber 《Solar physics》1969,9(1):150-159
A model of the solar atmosphere is presented in which we discuss the conservation of angular momentum for the two basic states in which the solar gas can be: namely, either confined by closed field lines or outflowing along open magnetic field lines. It can be shown that the boundary conditions are in general different for these two cases. From this we obtain the results that in the closed configuration the gas can corotate at the solar surface with the magnetic field lines and its angular velocity will then increase with height, whereas for a gas flowing along an open field line the angular velocity will decrease. An exception to the latter case can be found where the open magnetic field lines are strongly nonradial and where the density is a slowly varying function of radius. In such regions the angular velocity may initially increase with height, reach a maximum and then decrease.Kitt Peak National Observatory Contribution No. 439.Operated by The Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

5.
This paper is an exploration of the possibility that the large-scale equilibrium of plasma and magnetic fields in the solar corona is a minimum energy state. Support for this conjecture is sought by considering the simplest form of that equilibrium in a dipole solar field, as suggested by the observed structure of the corona at times of minimum solar activity. Approximate, axisymmetric solutions to the MHD equations are constructed to include both a magnetically closed, hydrostatic region and a magnetically open region where plasma flows along field lines in the form of a transonic, thermally-driven wind. Sequences of such solutions are obtained for various degrees of magnetic field opening, and the total energy of each solution is computed, including contributions from both the plasma and magnetic field. It is shown that along a sequence of increasingly closed coronal magnetic field, the total energy curve is a non-monotonic function of the parameter measuring the degree of magnetic field opening, with a minimum occurring at moderate field opening.For reasonable choices of model parameters (coronal temperature, base density, base magnetic field strength, etc.), the morphology of the minimum energy solution resembles the observed quiet, solar minimum corona. The exact location energy minimum along a given sequence depends rather sensitively on some of the adopted parameter values. It is nevertheless argued that the existence of an energy minimum along the sequences of solutions should remain a robust property of more realistic coronal wind models that incorporate the basic characteristics of the equilibrium corona- the presence of both open and closed magnetic regions.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

6.
The magnetic fields in the solar atmosphere structure the plasma, store free magnetic energy and produce a wide variety of active solar phenomena, like flare and coronal mass ejections (CMEs). The distribution and strength of magnetic fields are routinely measured in the solar surface (photosphere). Therefore, there is considerable interest in accurately modeling the 3D structure of the coronal magnetic field using photospheric vector magnetograms. Knowledge of the 3D structure of magnetic field lines also help us to interpret other coronal observations, e.g., EUV images of the radiating coronal plasma. Nonlinear force-free field (NLFFF) models are thought to be viable tools for those task. Usually those models use Cartesian geometry. However, the spherical nature of the solar surface cannot be neglected when the field of view is large. In this work, we model the coronal magnetic field above multiple active regions using NLFFF extrapolation code using vector magnetograph data from the Synoptic Optical Long-term Investigations of the Sun survey (SOLIS)/Vector Spectromagnetograph (VSM) as a boundary conditions. We compare projections of the resulting magnetic field lines solutions with their respective coronal EUV-images from the Atmospheric Imaging Assembly (SDO/AIA) observed on October 15, 2011 and November 13, 2012. This study has found that the NLFFF model in spherical geometry reconstructs the magnetic configurations for several active regions which agrees to some extent with observations. During October 15, 2011 observation, there are substantial number of trans-equatorial loops carrying electric current.  相似文献   

7.
We analyse the magnetic support of solar prominences in two-dimensional linear force-free fields. A line current is added to model a helical configuration, well suited to trap dense plasma in its bottom part. The prominence is modeled as a vertical mass-loaded current sheet in equilibrium between gravity and magnetic forces.We use a finite difference numerical technique which incorporates both vertical photospheric and horizontal prominence magnetic field measurements. The solution of this mixed boundary problem generally presents singularities at both the bottom and top of the model prominence. The removal of the singularities is achieved by superposition of solutions. Together with the line current equilibrium, these three conditions determine the amplitude of the magnetic field in the prominence, the flux below the prominence and the current intensity, for a given height of the line current. A numerical check of accuracy in the removal of singularities, is done by using known analytical solutions in the potential limit.We have investigated both bipolar and quadrupolar photospheric regions. In this mixed boundary problem the polarity of the field component orthogonal to the prominence is mainly fixed by the imposed height of the line current. For bipolar regions above (respectively below) a critical height the configuration is inverse (respectively normal). For quadrupolar regions the polarity is reversed if we refer the prominence polarity to the closest photospheric polarities. We introduce the polarity of the component parallel to the prominence axis with reference to a sheared arcade. Increasing the shear with fixed boundary conditions can increase or decrease the mass supported depending on the configuration.  相似文献   

8.
Magnetic helicity is a quantity of great importance in solar studies because it is conserved in ideal magnetohydrodynamics. While many methods for computing magnetic helicity in Cartesian finite volumes exist, in spherical coordinates, the natural coordinate system for solar applications, helicity is only treated approximately. We present here a method for properly computing the relative magnetic helicity in spherical geometry. The volumes considered are finite, of shell or wedge shape, and the three-dimensional magnetic field is considered to be fully known throughout the studied domain. Testing of the method with well-known, semi-analytic, force-free magnetic-field models reveals that it has excellent accuracy. Further application to a set of nonlinear force-free reconstructions of the magnetic field of solar active regions and comparison with an approximate method used in the past indicates that the proposed method can be significantly more accurate, thus making our method a promising tool in helicity studies that employ spherical geometry. Additionally, we determine and discuss the applicability range of the approximate method.  相似文献   

9.
Nonlinear equilibrium solutions for two-dimensional magnetic arcades (/z = 0) using a Grad-Shafranov equation in which the axial magnetic field and the pressure are specified as functions of the component of the vector potential in the z direction are re-examined.To compute nonlinear solutions one is restricted to seeking solutions on finite computational domains with specified boundary conditions. We consider two basic models which have appeared in the literature. In one model the field is laterally restricted by means of Dirichlet boundary conditions and free to extend vertically by means of a Neumann condition at the top of the domain. For such fields, bifurcating solutions only appear for a narrow range of values for the parameter (the ratio of a typical length scale of the field to the gravitational scale height). Nevertheless, we show that the presence of this parameter is essential for bifurcating solutions in such domains. For the second model with Neumann conditions on three sides of the domain representing the region above the photosphere we do not find bifurcating solutions. Instead high-energy solutions with detached field lines evolve smoothly from low-energy solutions which have all field lines attached to the photosphere. Again the presence or absence of detached flux is dependent on the magnitude of for those fields which are evolved quasi-statically via an increase in the plasma pressure.  相似文献   

10.
Using more than five years of data from the magnetometer and electron reflectometer (MAG/ER) on Mars Global Surveyor (MGS), we derive the draping direction of the magnetic field above a given latitude band in the northern hemisphere. The draping direction varies on timescales associated with the orbital period of Mars and with the solar rotation period. We find that there is a strongly preferred draping direction when Mars is in one solar wind sector, but the opposite direction is not preferred as strongly for the other solar wind sector. This asymmetry occurs at or below the magnetic pileup boundary (MPB), is observed preferentially on field lines that connect to the collisional ionosphere, and is independent of planetary longitude. The observations could be explained by a hemispherical asymmetry in the access of field lines to the low-altitude ionosphere, or possibly from global modification of the low-altitude solar wind interaction by crustal magnetic fields. We show that the draping direction affects both the penetration of sheath plasma to 400 km altitudes on the martian dayside and the radial component of the magnetic field on the planetary night side.  相似文献   

11.
Boundary condition asymmetries inherent in the solar wind flow past the Moon are included in a cylindrical model of the interplanetary magnetic field - Moon interaction. Numerical examinations of the sunward side response of this model are compared in the frequency domain with those of symmetrically excited spherical and cylindrical models and two characteristic differences are observed: the response of the asymmetric model is depressed at low frequencies due to magnetic diffusion around a conducting core, and is flattened at high frequencies because of the finite application time of the incident interplanetary magnetic field. The diffusion of field lines around the core is also evident in the time response of the model in the anti-solar cavity. The above features of the lunar response resulting from boundary condition asymmetries are shown to be evident in observational measurements.  相似文献   

12.
A global numerical 3-D MHD model of the solar wind   总被引:2,自引:0,他引:2  
A. V. Usmanov 《Solar physics》1993,146(2):377-396
A fully three-dimensional, steady-state global model of the solar corona and the solar wind is developed. A numerical, self-consistent solution for 3-D MHD equations is constructed for the region between the solar photosphere and the Earth's orbit. Boundary conditions are provided by the solar magnetic field observations. A steady-state solution is sought as a temporal relaxation to the dynamic equilibrium in the region of transonic flow near the Sun and then traced to the orbit of the Earth in supersonic flow region. The unique features of the proposed model are: (a) uniform coverage and self-consistent treatment of the regions of subsonic/sub-Alfvénic and supersonic/super-Alfvénic flows, (b) inferring the global structure of the interplanetary medium between the solar photosphere and 1 AU based on large-scale solar magnetic field data. As an experimental test for the proposed technique, photospheric magnetic field data for CR 1682 are used to prescribe boundary condition near the Sun and results of a simulation are compared with spacecraft measurements at 1 AU. The comparison demonstrates a qualitative agreement between computed and observed parameters. While the difference in densities is still significant, the 3-D model better reproduces variations of the solar wind velocity than does the 2-D model presented earlier (Usmanov, 1993).  相似文献   

13.
14.
B. C. Low 《Solar physics》1980,65(1):147-165
This is a study of the relationship between a magnetic field and its embedding plasma in static equilibrium in a uniform gravity. The ideal gas law is assumed. A system invariant in a given direction is treated first. We show that an exact integral of the equation for force balance across field lines can be derived in a closed form. Using this integral, exact solutions can be generated freely by integrating directly for the distributions of pressure, density and temperature necessary to keep a given magnetic field in equilibrium. Particular solutions are presented for illustration with the solar atmosphere in mind. Extending the treatment to the general system depending on all three spatial coordinates, we arrive at the general form of a theorem of Parker that a magnetic field in static equilibrium must possess certain symmetries. We derive an equation involving the Euler potentials of the magnetic field stipulating these necessary symmetries. Only those magnetic fields satisfying this equation can be in static equilibrium and for these fields, the endowed symmetries make the construction of exact solutions an essentially two dimensional problem as exemplified by the special case of invariance in a given direction.  相似文献   

15.
Topology of Magnetic Field and Coronal Heating in Solar Active Regions   总被引:2,自引:0,他引:2  
Force-free magnetic fields can be computed by making use of a new numerical technique, in which the fields are represented by a boundary integral equation based on a specific Green's function. Vector magnetic fields observed on the photospheric surface can be taken as the boundary conditions of this equation. In this numerical computation, the following two points are emphasized: (1) A new method for data reduction is proposed, for removing uncertainties in boundary data and determining the parameter in this Green's function, which is important for solving the boundary integral equation. In this method, the transverse components of the observed boundary field are calibrated with a linear force-free field model without changing their azimuth. (2) The computed 3-D fields satisfy the divergence-free and force-free conditions with high precision. The alignment of these field lines is mostly in agreement with structures in Hα and Yohkoh soft X-ray images. Since the boundary data are calibrated with a linear force-free field model, the computed 3-D magnetic field can be regarded as a quasi-linear force-free field approximation. The reconstruction of 3-D magnetic field in active region NOAA 7321 was taken as an example to quantitatively exhibit the capability of our new numerical technique.  相似文献   

16.
A. V. Usmanov 《Solar physics》1993,143(2):345-363
An attempt is made to infer parameters of the solar corona and the solar wind by means of a numerical, self-consistent MHD simulation. Boundary conditions for the magnetic field are given from the observations of the large-scale magnetic field at the Sun. A two-region, planar (the ecliptic plane is assumed) model for the solar wind flow is considered. Region I of transonic flow is assumed to cover the distances from the solar surface up to 10R S (R S is the radius of the Sun). Region II of supersonic, super-Alfvénic flow extends between 10R S and the Earth's orbit. Treatment for region I is that for a mixed initial-boundary value problem. The solution procedure is similar to that discussed by Endler (1971) and Steinolfson, Suess, and Wu (1982): a steady-state solution is sought as a relaxation to the dynamic equilibrium of an initial state. To obtain a solution to the initial value problem in region II with the initial distribution of dependent variables at 10R S (deduced from the solution for region I), a numerical scheme similar to that used by Pizzo (1978, 1982) is applied. Solar rotation is taken into account for region II; hence, the interaction between fast and slow solar wind streams is self-consistently treated. As a test example for the proposed formulation and numerical technique, a solution for the problem similar to that discussed by Steinolfson, Suess, and Wu (1982) is obtained. To demonstrate the applicability of our scheme to experimental data, solar magnetic field observations at Stanford University for Carrington rotation 1682 are used to prescribe boundary conditions for the magnetic field at the solar surface. The steady-state solution appropriate for the given boundary conditions was obtained for region I and then traced to the Earth's orbit through region II. We compare the calculated and spacecraft-observed solar wind velocity, radial magnetic field, and number density and find that general trends during the solar rotation are reproduced fairly well although the magnitudes of the density in comparison are vastly different.  相似文献   

17.
Yun-Tung Lau 《Solar physics》1993,148(2):301-324
We study the magnetic field-line topology in a class of solar flare models with four magnetic dipoles. By introducing a series of symmetry-breaking perturbations to a fully symmetric potential field model, we show that isolated magnetic nulls generally exist above the photosphere. These nulls are physically important because they determine the magnetic topology above the photosphere. In some special cases, there may be a single null above the photosphere with quasi two-dimensional properties. For such a model, aquasi null line connects the null to the photosphere. In the limit of small non-ideal effects, boundary layers and current sheetsmay develop along the quasi null line and the associated separatrix surfaces. Field lines can then reconect across the quasi null line, as in two-dimensional reconnection. In a more general force-free case, the field contains a pair of nulls above the photosphere, with a field line (theseparator) connecting the two nulls. In the limit of small non-ideal effects, boundary layers and current sheets develop along the separator and the associated separatrix surfaces. The system exhibits three-dimensional reconnection across the separator, over which field lines exchange identity. The separatrices are related to preferable sites of energy release during solar flares.  相似文献   

18.
Zhixing Mei  Jun Lin   《New Astronomy》2008,13(7):526-540
The flare-related, persistent and abrupt changes in the photospheric magnetic field have been reported by many authors during recent years. These bewildering observational results pose a challenge to the current flare theories in which the photospheric magnetic field usually remains unchanged in the eruption. In this paper, changes in the photosphere magnetic field during the solar eruption are investigated based on the catastrophe model. The results indicate that the projection effect is an important source that yields the change in the observed photospheric magnetic field in the line-of-sight. Furthermore one may observe the change in the normal component of magnetic field if the spectrum line used to measure the photospheric magnetic field does not exactly come from the photospheric surface. Our results also show that the significance of selecting the correct spectral lines to study the photospheric field becomes more apparent for the magnetic configurations with complex boundary condition (or background field).  相似文献   

19.
On the maximum energy release in flux-rope models of Eruptive Flares   总被引:1,自引:0,他引:1  
We determine the photospheric boundary conditions which maximize the magnetic energy released by a loss of ideal-MHD equilibrium in two-dimensional flux-rope models. In these models a loss of equilibrium causes a transition of the flux rope to a lower magnetic energy state at a higher altitude. During the transition a vertical current sheet forms below the flux rope, and reconnection in this current sheet releases additional energy. Here we compute how much energy is released by the loss of equilibrium relative to the total energy release. When the flux-rope radius is small compared to its height, it is possible to obtain general solutions of the Grad-Shafranov equation for a wide range of boundary conditions. Variational principles can then be used to find the particular boundary condition which maximizes the magnetic energy released for a given class of conditions. We apply this procedure to a class of models known as cusp-type catastrophes, and we find that the maximum energy released by the loss of equilibrium is 20.8% of the total energy release for any model in this class. If the additional restriction is imposed that the photospheric magnetic field forms a simple arcade in the absence of coronal currents, then the maximum energy release reduces to 8.6%.  相似文献   

20.
A rapid and flexible manual method is described that maps individual coronal loops of a 2D EUV image as Bézier curves using only four points per loop. Using the coronal loops as surrogates of magnetic-field lines, the mapping results restrict the magnetic-field models derived from extrapolations of magnetograms to those admissible and inadmissible via a fitness parameter. We outline explicitly how the coronal loops can be employed in constraining competing magnetic-field models by transforming 2D coronal-loop images into 3D field lines. The magnetic-field extrapolations must satisfy not only the lower boundary conditions of the vector field (the vector magnetogram) but also must have a set of field lines that satisfies the mapped coronal loops in the volume, analogous to an upper boundary condition. This method uses the minimization of the misalignment angles between the magnetic-field model and the best set of 3D field lines that match a set of closed coronal loops. The presented method is an important tool in determining the fitness of magnetic-field models for the solar atmosphere. The magnetic-field structure is crucial in determining the overall dynamics of the solar atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号