首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
8.6毫米波段太阳射电亮度温度分布   总被引:1,自引:0,他引:1  
周爱华  吴洪敖 《天文学报》1994,35(2):195-203
本文根据1980年2月16日的8.6毫米波长射电日食观测资料,计算了太阳射电辐射的亮度温度的径向分布,由日食过程的第一,第二和第三接触的计算结果表明,在日面光学边缘内侧的二角分范围内,均存在明显的单峰状增亮结构。三个接触的平均增亮峰值约为18%,增亮区的射电辐射占日面总辐射的4%。日食当天在8.6毫米波段上测得的日面平均亮度温度为9727K。  相似文献   

2.
1997年3月9日日全食8.6mm波段射电观测资料的分析表明,8.6mm波段射电太阳的半径为1.012R,总流量为2540sfu(1sfu=10^-22W/m^2Hz),日面平均亮温度为9632K,径向亮温度分布,在日面光学边缘内侧0.936-0.992R处,存在临边增亮,平均增亮幅度相对于日面中心为9.7%。  相似文献   

3.
1997年3月9日日全食8.6mm波段射电观测资料的分析表明:8.6mm波段射电太阳的半径为1.012R,总流量为2540sfu(1sfu=10-22W/m2Hz),日面平均亮温度为9632K,径向亮温度分布,在日面光学边缘内侧0.936-0.992R处,存在临边增亮,平均增亮幅度相对于日面中心为9.7%.  相似文献   

4.
以新月时月亮的射电辐射为温度基准和准口面温度定标的方法,在22GHz频率上于1993年7月 ̄8月测量了13.7m射电望远镜抛物面天线的增益,根据测量的增益值(67.10±0.07db)定标了太阳射电流量。流量测量的系统差为±5.8%,偶然差为±2.7%,测量的宁静太阳亮温度(非源区)为10100±300K。除此之外,还推导和计算了不同源模型下的天线方向图改正因子Ks,并计算了太阳射电源的流量密度。  相似文献   

5.
以新月时月亮的射电辐射为温度基准和准口面温度定标的方法,在22GHz频率上于1993年7月~3月测量了13.7m射电望远镜抛物面天线的增益。根据测量的增益值(67.10─±0.07db)定标了太阳射电流量,流量测量的系统差为±5.8%,偶然差为±2.7%,测量的宁静太阳亮温度(非源区)为10100±300K。除此之外,还推导和计算了不同源模型下的天线方向图改正因子Ks,并计算了太阳射电源的流量密度。  相似文献   

6.
周树荣 《天文学报》1996,37(1):60-67
本文介绍了高空间分辨率的太阳射电观测流量的归算方法,即对观测的太阳天线温度值作天线功率方向图K因子的修正,即可得到太阳射电流量值.文中推导了不同温度分布模型下的K因子表达式,并计算了日面宁静太阳流量值和部分射电源的SVC辐射流量值.对日面宁静区的射电辐射而言,因K的年变化(0.0236—0.0252)不大,因此按其平均值0.0244可计算出22GHz频率上宁静太阳流量s。=0.15Ta。(以sfu为单位,Ta。是宁静区辐射的太阳天线温度),相应的宁静太阳温度为10100土300K.1990年7月2日源区的SVC辐射计算结果表明:日面源区的SVC辐射总和为20sfu,约占日面总辐射的2.4%.  相似文献   

7.
本文介绍了上海天文台与上海自然博物馆天文组合作用6米射电望远镜在6cm波段上对1987年9月23日日环食观测所取得的结果。给出了局部源的流量、一维半功率角径、平均亮温度、部分局部源高度以及太阳射电半径等参数。  相似文献   

8.
明安图射电频谱日像仪(Mingantu Spectral Radioheliograph, MUSER)能够在0.4--15GHz超宽频带内实现高时间、高空间、高频率分辨率的太阳射电成像. 而射电亮温度是描述太阳物理过程的一个重要的参数, 在研究不同射电辐射机制、太阳磁场以及太阳爆发过程中非热粒子加速等问题上有着非常重要的作用, 因此必须对MUSER观测的图像进行亮温度定标. 将介绍一种适用于射电日像仪图像强度定标的方法. 太阳射电图像中包含着太阳圆盘的结构信息, 利用射电日像仪短基线的可视度函数拟合第一类贝塞尔函数, 可以得到图像中宁静太阳圆盘的射电半径和强度, 再利用瑞利-金斯定律和每天的太阳射电流量可以计算得到每天图像的定标因子$G_c$, 从而实现对MUSER图像强度的定标. 将该方法应用到MUSER的实际观测数据中, 包括宁静太阳和有太阳射电爆发等不同的情况, $G_c$的误差基本不超过10%, 得到的宁静太阳亮温度与其他宁静太阳的结果具有较高的相关性, 表明了此方法的可行性和有效性.  相似文献   

9.
分析了1993-10-02 0739.5-0745.0UT在2.840GHz-2.545GHz观测到的一次太阳射射电爆发事件,证认了这次爆发的一部分是微波类Ⅲ型爆发。计算结果表明,这次Ⅲ型爆发是由速度为1.0×10^8m/s的相对论性电子束所引起的,产生电子束的源区背景温度为T-3×10^7K,射电爆发亮温度Tb=10612K,爆发源区的悄度L-3.4×10^2km。  相似文献   

10.
本文作者使用美国VLA,对快速目转的晚型巨星FKCom在3.6、6、18、20厘米波长上进行了射电观测,探测到mJy量级的射电辐射,而没有探测到圆偏振。我们用热模型对射电频谱进行了拟合,结果都不成功。当发射体内电子密度为9×108cm-3,温度为5×107K时,半径为120R⊙.可获得较为接近的流量,但109量级的电子密度不大可能扩展到如此大的范围。这样的发射体用热模型得到的X射线光度比Einstein天文台所观测到的值大两个数量级。FKCom的射电光度和X射线光度与RSCVn双星系统相近,如果FKCom的射电发射也是由相对论电子在中等强度的磁场中作加速运动产生的话,则在10高斯磁场中半径为3R⊙左右的发射区在相应波段即可达到观测的流量值。  相似文献   

11.
分析了1993-10-020739.5-0745.0UT在2.840GHz-2.545GHz观测到的一次太阳射电爆发事件,证认了这次爆发的一部分是微波类II型爆发.计算结果表明,这次II型爆发是由速度为1.0×108m/s的相对论性电子束所引起的,产生电子束的源区背景温度为T~3×107K,射电爆发亮温度Tb~1012K,爆发源区的尺度L~3.4×102km.  相似文献   

12.
本文介绍采用标准增益喇叭和精确的噪声标准在35GHz频率上对太阳射电流量进行绝对测量的工作。我们用聚氨脂软泡沫塑料试制成功了一种角锥簇形的微波黑体,在8.6毫米波段上其垂直入射的反射系数达—50db,把这种黑体浸于液氮中,可作为精确、稳定的低温噪声标准源。1980年2月中旬,我们用在喇叭口面定标的方法,进行了多次的绝对测量,得到太阳流量密度的平均值为2548sfu(相应亮温度为9651°K),其系统误差为4%,偶然差为1.1%。  相似文献   

13.
亚秒级U 型爆首次由北京天文台2 .6 - 3 .8GHz 高时间分辨(8 ms) 太阳射电频谱仪报道。本文对这些环状结构的时间和空间演化进行了研究,并和相关的光学、X 射线及其它射电波段的观测进行了比较  相似文献   

14.
李小聪  Wegner  R 《天体物理学报》1995,15(4):313-322
本文讨论BLO0716+714中观测到的光学和射电快速变化(IDV)的相关性及可能的解释。详细的分析表明,这种相关性有三个特点:(1)光学变化和5GHz射电变化呈反相关,即光学极大和5GHz射电极小相对应,反之亦然;(2)光学变化和射电频谱指数α5^8.3的变化相关,具体地说,光学的增强和极大都与射电频谱反转频率向高频的位移有关;(3)光学和射电都有 ̄1天的准周期变化,特别是射电频谱指数α5^8.  相似文献   

15.
一个含有丰富快速精细结构的射电大爆发   总被引:2,自引:2,他引:0  
本文对1990年7月30日云南天文台四波段太阳射电高时间分辨率同步观测系统^「1,2」所观测到的太阳射电大爆发进行了分析,对在1.42GHz,2.00GHz,2.84GHz三个波段上观测到的大量尖峰辐射作了关于寿命和强度的统计,最后,针对本次爆发中的ms-spikes的特点做了一些讨论。  相似文献   

16.
北京天文台1 .02 .0GHz 太阳射电频谱仪从1994 年开始观测至1998 年9 月记录到太阳射电爆发171 个,2 .63 .8GHz 太阳射电频谱仪1996 年9 月投入观测至1998 年9 月,记录到146 个太阳射电爆发。1998 年4 月15 日太阳射电爆发同时在这两台频谱仪上记录到。这个事件在时间和频率上显示了丰富的幅度和结构的变化。发现了微波Ⅲ型爆发对群,并存在着丰富的快速活动现象。取得了高时间分辨率、高质量的动态谱资料,为研究耀斑各种尺度的时间及空间演化过程提供了丰富的信息。  相似文献   

17.
本文综合分析了1968年9月22日新疆日全食3.2、11.1和21厘米波长的射电观测资料,得出了射电源的流量和活动区活动性的关系、射电源辐射与谱斑及黑子的相关等观测结果。另外,从综合三个波段的资料通盘考虑了射电源流量值的误差分析、射电源的角径和高度、射电食甚、射电太阳等效半径和日面小爆发等。  相似文献   

18.
云南天文台“四波段(1.42GHz,2.13GHz,2.84GHz和4.26GHz)太阳射电高时间同步观测系统”在1990.1 ̄1994.1期间,观测到5个具有短时标漂移结构的射电爆发事件,也就是微波Ⅲ型爆发。本文从中选取较典型的1991年3月13日事件,对Ⅲ型爆发的时间轮廓(持续时间,衰减时间)作了分析,并与米波,分米波和微波段其它观测结果作了一些比较,以求对长厘米 ̄短分米波段(微波低端)Ⅲ型爆  相似文献   

19.
本文对1990年7月30日云南天文台四波段(1.42GHz、2.00GHz、2.84GHz和4.00GHz)太阳射电高时间分辨率同步观测系统[1,2]所观测到的太阳射电大爆发进行了分析,对在1.42GHz、2.00GHz、2.84GHz三个波段上观测到的大量尖峰辐射(ms—spikes)作了关于寿命和强度的统计,最后,针对本次爆发中的ms—spikes的特点做了一些讨论。  相似文献   

20.
1991年7月11日日食期间,在大熊湖天文台进行了白光观测.图象是用65cm反射系统和OSL的CCD获得的.月亮边缘始终包含在视场之中,从模糊的月亮边缘轮廓推得了一维的视宁度点扩散函数(PSF),其中包含了望远镜引起的畸变。当天的PSF的宽度介于0.8到1.3弧秒之间。假设存在圆柱对称性,则可得到二维的PSF。然后,运用视宁度函数,对所观测的白光像消卷积。复原方法将观测到的rms反衬值由5%增强到18%;亮桥可能亮于正常的光球强度;暗的半影纤维可能暗到正常光球的50%;而亮纤维可能达到正常光球值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号