首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
SHRIMP dating of detrital zircons from sandstones of the Gackowa Formation (Kaczawa Complex, Sudetes, SW Poland) indicates input from late (550–750 Ma) and early Proterozoic to Archaean sources (∼2.0–3.4 Ga, the latter being the oldest recorded age from the Sudetic region). These dates preclude within-terrane derivation from seemingly correlatory acid volcanic rocks of early Palaeozoic age. Rather, they indicate provenance from Cadomian and older rocks that currently form part of other, geographically distant terranes; the most likely source identified to date is the Lusatian Block in the Saxothuringian Zone. Hence, the Gackowa Formation may be late Proterozoic rather than early Palaeozoic in depositional age, possibly coeval with the late Proterozoic (pre-Cadomian) greywackes of Lusatia, being subsequently tectonically interleaved with early Palaeozoic volcanic rocks into the Kaczawa accretionary prism during the Variscan orogeny. However, correlation with the lithologically similar early Ordovician Dubrau Quartzite of Saxothuringia, and so assignation to the early Paleozoic (post-Cadomian) rift succession deposited at the northern margin of Gondwana, cannot yet be precluded.  相似文献   

2.
Metamorphosed volcanic and sedimentary successions in the central European Variscides are, in many areas, poorly biostratigraphically constrained, making palaeotectonic interpretations uncertain. In such instances, geochronological data are crucial. Sensitive high resolution ion microprobe (SHRIMP) dating of volcanic zircons from a quartz–white mica schist (interpreted as deformed metavolcaniclastic/epiclastic rock) within the stratigraphically controversial Wojcieszów Limestone of the Kaczawa Mountains (Sudetes, SW Poland), near to the eastern termination of the European Variscides, has yielded an age of 498 ± 5 Ma (2σ error), corresponding to late Cambrian to early Ordovician magmatism in that area and constraining the depositional age of the limestones. The new SHRIMP data are not consistent with the recent revision of the age of the Wojcieszów Limestone based on Foraminifera findings that ascribed them to a Late Ordovician—Silurian or even younger interval. They are though, consistent with sparse macrofossil data and strongly support earlier interpretations of the lower part of the Kaczawa Mountains succession as a Cambrian–Early Ordovician extensional basin‐fill with associated initial rift volcanic rocks, likely emplaced during the breakup of Gondwana. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The Eckergneiss Complex (EGC) is a geologically unique medium- to high-grade metamorphic unit within the Rhenohercynian domain of the Mid-European Variscides. A previously, poorly defined conventional lower U–Pb intercept age of about 560 Ma from detrital zircons of metasedimentary rocks has led to speculations about an East Avalonian affinity of the EGC. In order to unravel the provenance and to constrain the age of the sediment protolith, we carried out sensitive high-resolution ion microprobe U–Pb analyses on detrital zircons from five different EGC quartzite occurrences. The obtained age spectrum indicates a SW Baltica provenance of the detritus. Sveconorwegian ages between 0.9–1.2 Ga are particularly well represented by analyses from metamorphic recrystallization/alteration zones penetrating into igneous zircon. Cadomian (Pan-African) ages, which might reflect a metamorphic event, could not be substantiated. Instead, zircons of igneous origin yielded concordant Lower Devonian and Silurian ages of 410±10, 419±10, and 436±6 Ma (1), implying that sedimentation of the EG protolith must have taken place after 410±10 Ma. The lower age limit of the EGC metamorphism is constrained by 295 Ma intrusion ages of the adjacent, nonmetamorphosed Harzburg Gabbronorite and Brocken Granite. Sedimentation and metamorphism must thus have taken place between about 410 Ma and 295 Ma. Given that this time span coincides with most of the sedimentation within the virtually nonmetamorphosed (lowest grade) Rhenohercynian in the Harz Mountains, including the direct vicinity of the EGC, along with the high-grade metamorphism, the EGC can hardly be seen as uplifted local basement. A possible candidate for the root region is an easterly, concealed marginal segment of the Rhenohercynian domain of the Variscides, which is tectonically overridden and suppressed by the Mid-German Crystalline Rise during continent collision. However, based on the concept of strike-slip movement of Variscan terranes with different P–T–t histories as a result of postaccretion intraplate deformation, the EGC could also represent a fault-bounded complex with an origin located far east or south east of the present location.
Thorsten GeislerEmail:
  相似文献   

4.
This study is an attempt to unravel the tectono-metamorphic history of high-grade metamorphic rocks in the Eastern Erzgebirge region. Metamorphism has strongly disturbed the primary petrological genetic characteristics of the rocks. We compare geological, geochemical, and petrological data, and zircon populations as well as isotope and geochronological data for the major gneiss units of the Eastern Erzgebirge; (1) coarse- to medium-grained “Inner Grey Gneiss”, (2) fine-grained “Outer Grey Gneiss”, and (3) “Red Gneiss”. The Inner and Outer Grey Gneiss units (MP–MT overprinted) have very similar geochemical and mineralogical compositions, but they contain different zircon populations. The Inner Grey Gneiss is found to be of primary igneous origin as documented by the presence of long-prismatic, oscillatory zoned zircons (540 Ma) and relics of granitic textures. Geochemical and isotope data classify the igneous precursor as a S-type granite. In contrast, Outer Grey Gneiss samples are free of long-prismatic zircons and contain zircons with signs of mechanical rounding through sedimentary transport. Geochemical data indicate greywackes as main previous precursor. The most euhedral zircons are zoned and document Neoproterozoic (ca. 575 Ma) source rocks eroded to form these greywackes. U–Pb-SHRIMP measurements revealed three further ancient sources, which zircons survived in both the Inner and Outer Grey Gneiss: Neoproterozoic (600–700 Ma), Paleoproterozoic (2100–2200 Ma), and Archaean (2700–2800 Ma). These results point to absence of Grenvillian type sources and derivation of the crust from the West African Craton. The granite magma of the Inner Grey Gneiss was probably derived through in situ melting of the Outer Grey Gneiss sedimentary protolith as indicated by geological relationships, similar geochemical composition, similar Nd model ages, and inherited zircon ages. Red Gneiss occurs as separate bodies within fine- and medium-grained grey gneisses of the gneiss–eclogite zone (HP–HT overprinted). In comparison to Grey Gneisses, the Red Gneiss clearly differs in geochemical composition by lower contents of refractory elements. Rocks contain long-prismatic zircons (480–500 Ma) with oscillatory zonation indicating an igneous precursor for Red Gneiss protoliths. Geochemical data display obvious characteristics of S-type granites derived through partial melting from deeper crustal source rocks. The obtained time marks of magmatic activity (ca. 575 Ma, ca. 540 Ma, ca. 500–480 Ma) of the Eastern Erzgebirge are compared with adjacent units of the Saxothuringian zone. In all these units, similar time marks and geochemical pattern of igneous rocks prove a similar tectono-metamorphic evolution during Neoproterozoic–Ordovician time.  相似文献   

5.
Conodont colour alteration index (CAI) values have been used for the assessment of the thermal history of Lower Palaeozoic strata in the southwestern margin of the Malopolska Massif, along the contact with the Upper Silesian Massif. The CAI data provide no evidence for a previously suggested greenschistgrade regional metamorphism in the Cracow-Myszkow zone during the Caledonian epoch. Near Zarki, the Silurian rocks display a relatively uniform thermal overprint (CAI values of 4) resulting from sedimentary burial during the early Late Carboniferous. The estimated maximum temperatures of 200–220°C can be explained by an elevated heat flow associated with the Cracow Fault system. This thermal maturation level was locally enhanced (CAI values up to 8) after the Westphalian, due to the magmatic activity caused by the Variscan regional extension.  相似文献   

6.
Fossils from the Cambrian to Devonian rocks of southern Thailand, the Langkawi Islands, mainland Kedah, Perlis, north Perak and central West Peninsular Malaysia are listed and reviewed, and their stratigraphy and correlation reassessed. The hitherto anomalous record of the trilobite Dalmanitina from Malaysia is reviewed and found to be of latest Ordovician (Hirnantian) age, rather than Lower Silurian age as previously reported, and is considered a probable synonym of the widespread Mucronaspis mucronata. A new stratigraphical nomenclature is erected for part of the Langkawi, mainland Kedah and Perlis area successions, in which the term Setul Limestone (which stretched from the Ordovician to the Devonian) is abandoned and replaced by the Middle Ordovician Kaki Bukit Limestone, the late Ordovician and early Silurian Tanjong Dendang Formation, the Silurian Mempelam Limestone, and the early Devonian Timah Tasoh Formation, all underlying the paraconformity with the late Devonian Langgun Red Beds. There was a single depositional basin in the generally shallow-water and cratonic areas of southern Thailand, Langkawi, and mainland Kedah and Perlis, in contrast to the deeper-water basin of north Perak. Only Silurian rocks are dated with certainty within another basin in central West Malaysia, near Kuala Lumpur, which were also cratonic and shallow-water, although to the east in west Pahang there are basal Devonian deeper-water sediments with graptolites. The area is reviewed in its position within the Sibumasu Terrane, which, in the Palaeozoic, also included central and northern Thailand, Burma (Myanmar) and southwest China (part of Yunnan Province).  相似文献   

7.
The Lower Devonian (Lochkovian‐Emsian) Cosheston Group of south Pembrokeshire is one of the most enigmatic units of the Old Red Sandstone of Wales. It consists of a predominantly green, exceptionally thick succession (up to 1.8 km) within the red c. 3 km‐thick fill of the Anglo‐Welsh Basin, but occupies a very small area (27 km2). Four formations—Llanstadwell (LLF), Mill Bay (MBF), Lawrenny Cliff (LCF) and New Shipping (NSF)—group into lower (LLF + MBF) and upper (LCF + NSF) units on stratigraphical and sedimentological criteria. Two palynostratigraphic associations (Hobbs Point and Burton Cliff) are recognised in the LLF. Overall, the Cosheston succession comprises a fluvial, coarsening‐upward megasequence, mostly arranged in fining‐upward rhythms. It is interpreted as the fill of an east‐west graben bounded by faults to the north and south of the Benton and Ritec faults, respectively. Both ‘lower Cosheston’ formations were deposited by east‐flowing, axial river systems draining a southern Irish Sea landmass. Drainage reversal, early in the deposition of the LCF, resulted in ‘upper Cosheston’ lateral, SW‐flowing rivers which carried predominantly second‐ and multi‐cycle detritus. The ‘lower Cosheston’ is characterized by an abundance of soft‐sediment deformation structures, probably seismically triggered by movements along the graben's northern bounding fault. A minimum average (≥ mesoseismic) earthquake recurrence interval of c. 4000 yr is estimated for the MBF. This and the correlative Senni Formation of south‐central Wales form a regionally extensive green‐bed development that represents a pluvial climatic interval. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Analyses on 27 sediment cores taken from the bottom of the Szczecin Lagoon allowed environmental reconstruction of the postglacial main stages of basin development, based on detailed sedimentological, geochemical, diatomological and malacological studies of selected key cores. Studies revealed that during the Late Glacial and Holocene this area developed in several stages. In the Late Glacial the whole study area constituted a low alluvial plain. At the turn from Younger Dryas to Holocene the alluvial plain was cut through by the Odra river to a level of 10–11 m below sea level (b.s.l.). Along with the first phases of the Holocene marine transgression at the southern Baltic Sea's coasts the accumulation of the limnic-swampy deposits began in this lower part of the Odra valley. At ca. 6–6.5 ka BP the transgression proceeded and Littorina Sea waters flooded the area. At that time the Szczecin Lagoon constituted a marine embayment in which series of sands, partly rich in malacofauna, was deposited. The development of the Swina barrier resulted in the isolation of the embayment from the direct inflow of Baltic Sea waters.  相似文献   

9.
Two high-grade gneissic complexes of the Western Sudetes, the Góry Sowie Block and the Śnieżnik area complex, contain small, predominantly felsic granulitic inliers with minor Cpx-bearing intercalations. The P–T  conditions of the granulite facies events and of the subsequent re-equilibration are estimated using the ternary feldspar thermometer and the Geo-Calc computer program (version TWQ, Jan 92).
In the Góry Sowie granulites, the peak granulitic event occurred at c . 18–20 kbar and 900 °C, and the late decompressive re-equilibration within a range of 4–10 kbar and temperatures decreasing to 600–700 °C. The latter event is thought to have coincided with the main metamorphic phase in the surrounding gneisses.
The P–T  estimates are more scattered in the Śnieżnik granulites, but the peak conditions for the granulitic event are estimated at pressure over 22 kbar (possibly around 30 kbar) and temperature exceeding 900 °C. The analysed samples from the Śnieżnik area bear no significant evidence of lower-pressure re-equilibration.
Integrating the thermobarometric data and some age constraints indicates that the Góry Sowie granulites belong to the early stage 'type I' granulites of the Variscan Belt ( c . 400 Ma old), which are interpreted as fragments of continental crustal materials subducted to mantle depths in the earliest stages of the Variscan orogeny. The Śnieżnik granulites are more problematic; they may belong to a 'younger high- P suite' ( c . 350 Ma old), widespread in the southern and eastern parts of the Bohemian Massif, and possibly related to the climax of the Variscan continent–continent collision.  相似文献   

10.
The spatial and temporal distribution of diagenetic alterations has been constrained in relationship to depositional facies and sequence stratigraphy of the Upper Ordovician glaciogenic quartzarenite sandstones in the Murzuq Basin, SW Libya, which were deposited during the Haritanian glaciation when the basin was laying along the continental margin of Gondwana. Eogenetic alterations encountered include: (i) replacement of detrital silicates, mud matrix and pseudomatrix by kaolinite in paraglacial, tide-dominated deltaic, in foreshore to shoreface (highstand systems tract; HST) and in post-glacial, Gilbert-type deltaic (lowstand systems tract; LST) sandstones, particularly below the sequence boundaries (SB). Kaolinite formation is attributed to the influx of meteoric water during relative sea level fall and basinward shift of the shoreline. (ii) Cementation by calcite (δ18OVPDB = − 3.1‰ to + 1.1‰ and δ13CVPDB = + 1.7‰ to + 3.5‰) and Mg-rich siderite in the paraglacial, tide-dominated deltaic and foreshore to shoreface HST sandstones, in the glacial, tide-dominated estuarine (transgressive systems tract; TST) sandstones and in the post-glacial, shoreface TST sandstones is interpreted to have occurred from marine pore-waters. (iii) Cementation by Mg-poor siderite, which occurs in the post-glacial, Gilbert-type deltaic LST sandstones and in the paraglacial, tide-dominated deltaic and foreshore to shoreface HST sandstones, is interpreted to have occurred from meteoric waters during relative sea level fall and basinward shift of the shoreline. (iv) Pervasive cementation by iron oxides has occurred in the glacial, shoreface–offshore TST sandstones and post-glacial, shoreface TST sandstones immediately below the maximum flooding surfaces (MFS), which was presumably enhanced by prolonged residence time of the sediments under oxic diagenetic conditions at the seafloor. (v) Formation of grain-coating infiltrated clays mainly in the glacial, fluvial incised-valley LST sandstones and in the post-glacial, Gilbert-type deltaic LST sandstones as well as, less commonly, in the paraglacial, foreshore to shoreface HST sandstones and in the tide-dominated deltaic HST sandstones below the SBs.

Mesogenetic alterations include mainly the formation of abundant quartz overgrowths in the glacial, fluvial incised-valley LST sandstones, post-glacial, Gilbert-type deltaic LST sandstones and glacial, shoreface TST sandstones, in which early carbonate cements are lacking. Illite, chlorite and albitized feldspars, which occur in small amounts, are most common in the glacial, tide-dominated estuarine TST sandstones and paraglacial, shoreface HST sandstones. This study demonstrates that the spatial and temporal distribution of diagenetic alterations and their impact on reservoir-quality evolution in glacial, paraglacial and post-glacial sandstones can be better elucidated when linked to the depositional facies and sequence stratigraphic framework.  相似文献   


11.
The chemical characteristics of sedimentary rocks provide important clues to their provenance and depositional environments. Chemical analyses of 192 samples of Katangan sedimentary rocks from Kolwezi, Kambove–Kabolela and Luiswishi in the central African Copperbelt (Katanga, Congo) are used to constrain (1) the source and depositional environment of RAT and Mines Subgroup sedimentary rocks and (2) the geochemical relations between the rocks from these units and the debate on the lithostratigraphic position of the RAT Subgroup within the Katangan sedimentary succession. The geochemical data indicate that RAT, D. Strat., RSF and RSC are extremely poor in alkalis and very rich in MgO. SD are richer in alkalis, especially K2O. Geochemical characteristics of RAT and Mines Subgroups sedimentary rocks indicate deposition under an evaporitic environment that evolved from oxidizing (Red RAT) to reducing (Grey RAT and Mines Subgroup) conditions. There is no chemical difference between RAT and fine-grained clastic rocks from the lower part of the Mines Subgroup. The geochemical data preclude the genetic model that RAT are syn-orogenic sedimentary rocks originating from Mines Group rocks by erosion and gravity-induced fragmentation in front of advancing nappes.  相似文献   

12.
13.
Dolerite dykes intruding Variscan plutonites were studied in terms of mineralogy, petrology, geochemistry and geochronology. The main mineral constituents were studied and the sequence of crystallization has been derived. The geochemical characteristic indicate mantle origin of the dolerites and magma sources different from the hosting granitoids. From SHRIMP analyses of five spots on four different zircon crystals, resulted a 292.0±4.1 Ma age that is interpreted as the time of crystallization of the dolerite. The hosting granitoids are probably the result of mixing between two possible end-members: enriched mantle and acid metaigneous or lower crustal metasediments.

The Variscan age of the dolerites, in combination with the geochemical characteristics, indicated that the enriched mantle basaltic material should be the source of the dolerite veins. These mantle-derived basaltic melts may represent the underplated material, which probably provided the necessary thermal input to the dehydration melting in the lower crust. The dolerites should have intruded the newly formed batholiths before or at the first stages of their uplift, recording the last events of the Variscan subduction.  相似文献   


14.
Isotopic and cladoceran investigations of Eemian (MIS 5e) lake sediments from Imbramowice, SW Poland, allow us to reconstruct the environmental conditions, especially changes of water level and trophic status, during the early and middle Eemian Interglaciation. We analyzed the sediments from 6.5 to 11.0 m depth in a core provided by Mamakowa (1989). The upper 6.5 m had insufficient carbonates and cladoceran contents for analyses. The analyzed section consists of sandy and organic silts at the bottom, followed by gyttja characterized by increasing CaCO3 content. Measured δ18O values oscillate from ca. - 9 to - 4‰ and δ13C from - 3.5 to above + 6‰. Based on stable isotope analyses of carbonates, we define and characterize eight isotopic horizons (Is). We identify 26 taxa of subfossil Cladocera and seven zones (CLZ) of faunal development. Probably the greatest depth of the lake occurred with pollen zone E2; shallowing then took place. During pollen zones E2-E3, gradual warming is observed and expressed through a positive trend in both δ18O and δ13C values. Pollen zone E4 is characterized by frequent changes of water level. During the Eemian Interglaciation, excluding the initial phase of lake evolution, the lake was meso-eutrophic and eutrophic with high phytoplankton productivity.  相似文献   

15.
The aim of this paper is to study the provenance of Late Cretaceous sandstones deposited along the south flank of the Golfo San Jorge Basin. For this purpose, detrital modes of three hundred thirty-seven sandstone samples collected in the Mina del Carmen, Bajo Barreal, and Cañadón Seco Formations were studied in ten oil fields. According to the modal composition of the sandstones, six petrofacies were defined allowing the identification of not only principal, but also secondary provenance areas. The QVM and VQM petrofacies are more than 20% metamorphic, sedimentary, and polycrystalline quartz clasts (Lm + Ls + Qpg > 20%), evidencing a secondary signal of basement supply masked by a predominant volcanic provenance. The petrofacies VP and VF are characterized by Lm + Ls + Qpg <20% and more than 20% total feldspar (Pm + Om >20%.), which indicate a supply of sediment from volcanic terrains and scarce derivation of materials from basement rocks. Based on the plagioclase/k-feldspar ratio, the VF petrofacies is interpreted to be dominated by the supply of sand grains from the Andean volcanic-arc, while VP is supposed have originated through the erosion of intermediate volcanic rock outcroppings in the Macizo del Deseado. Finally, both the VQ and QV petrofacies show Lm + Ls + Qpg <20% and Pm + Om<20%, indicating a provenance of volcanic areas coupled with minor contributions from basement rocks. During the Late Cretaceous, the Golfo San Jorge Basin underwent a sag phase that was characterized by very scarce volcanism and tectonic activity. Although these conditions did not favor defined patterns in the vertical stacking of petrofacies, the sandstones exhibit remarkable changes in their regional distribution, which were determined by the paleogeography of the basin and differences in basement composition within the source areas. Finally, a paleogeographic model for sediment circulation in the basin is proposed. This model recognizes the main fluvial dispersal trends that flowed northwest to southeast and transported large amounts of volcanic clasts (associated with petrofacies VF-VQ). To the extent that rivers flowed eastward, a secondary supply from the Precambrian basement, which were composed of low-to high-grade metamorphic rocks, was also important (petrofacies association VQM and QVM). The southwestern area of the basin is dominated by VP petrofacies that record the supply of plagioclase-rich volcanic clasts. This petrofacies likely corresponds to the erosion of Jurassic volcanic units that crop out in the Macizo del Deseado.  相似文献   

16.
The sedimentology and sequence stratigraphy of a retrogradational fan-delta system within Lower Triassic in the Mabei area of Junggar Basin in northwestern China were investigated using seismic, well log, and core data, complemented by the modern deposition and a flume tank experiment. The Lower Triassic in the Mabei area is dominated by fan deltas, which are composed of fan-delta plain (including subaerial debris flow, braided channel, conglomerate overbank, and floodplain), fan-delta front (including conglomerate shoal and sandy shoal), and prodelta. The braided channels form during the low flood period. The conglomerate overbanks form during the flood period and occupy most part of the fan-delta plain. The conglomerate shoals and sandy shoals form by a sheet flow prograding into lakes and occur as a sheet. The braided channels, conglomerate shoals, and sandy shoals are easy to form high-porosity reservoirs. One long-term base level cycles (LSC1), three middle-term base level cycles (MSC1, MSC2, and MSC3), and fifteen short-term base level cycles are identified. MSC1 is dominated by the fan-delta plain; MSC2 is dominated by the fan-delta front; and MSC3 is dominated by the fan-delta front and prodelta. The stratigraphy shows a proximal-middle-distal trend demonstrating an overall retrogradation stacking pattern. The sequence architecture is controlled by an interplay between lake level changes and sediment supply. The quick rise in the lake level and the creation of accommodation outpacing the rate of sediment supply result in a retrogradational fan-delta syste.  相似文献   

17.
为研究低可容空间浅水三角洲体系沉积层序及聚煤模式,以渤海湾地区下二叠统山西组为主要研究对象,开展层序地层研究,在层序地层格架内揭示低可容空间浅水三角洲体系聚煤模式。根据沉积相转换面以及下切谷冲刷面两类不整合面(SU)可将山西组划分为3个三级层序Sq1、Sq2及Sq3,每个三级层序代表 1期三角洲。通过最大洪泛面(MFS)与最大水退面(MRS)将每个三级层序划分为LST、TST及HST 3个体系域,代表 9个四级层序。根据岩性参数等值线绘制一系列特定于层序的沉积相图,在可容空间增长速率及泥炭堆积速率的控制下,三角洲平原泛滥平原及三角洲前缘泥炭沼泽为聚煤中心,位于冀中坳陷东部、黄骅坳陷中北部以及济阳坳陷部分地区。泛滥平原中形成的煤层厚度大,且聚煤中心具有随三角洲推进逐渐南移的趋势,三角洲前缘聚煤环境相对较差,形成的煤层厚度较薄,且易被分流河道砂体冲刷。渤海湾地区下二叠统浅水三角洲层序地层学及沉积学分析为聚煤模式提供了基础,该模式包括LST、TST早期、TST中期、TST晚期以及HST 5个时期的演化。煤层主要聚集在Sq1与Sq2的TST以及HST时期。这些成果对渤海湾地区煤炭资源勘探及提高钻探工程地质效果具有现实意义。  相似文献   

18.
为研究低可容空间浅水三角洲体系沉积层序及聚煤模式,以渤海湾地区下二叠统山西组为主要研究对象,开展层序地层研究,在层序地层格架内揭示低可容空间浅水三角洲体系聚煤模式。根据沉积相转换面以及下切谷冲刷面两类不整合面(SU)可将山西组划分为3个三级层序Sq1、Sq2及Sq3,每个三级层序代表 1期三角洲。通过最大洪泛面(MFS)与最大水退面(MRS)将每个三级层序划分为LST、TST及HST 3个体系域,代表 9个四级层序。根据岩性参数等值线绘制一系列特定于层序的沉积相图,在可容空间增长速率及泥炭堆积速率的控制下,三角洲平原泛滥平原及三角洲前缘泥炭沼泽为聚煤中心,位于冀中坳陷东部、黄骅坳陷中北部以及济阳坳陷部分地区。泛滥平原中形成的煤层厚度大,且聚煤中心具有随三角洲推进逐渐南移的趋势,三角洲前缘聚煤环境相对较差,形成的煤层厚度较薄,且易被分流河道砂体冲刷。渤海湾地区下二叠统浅水三角洲层序地层学及沉积学分析为聚煤模式提供了基础,该模式包括LST、TST早期、TST中期、TST晚期以及HST 5个时期的演化。煤层主要聚集在Sq1与Sq2的TST以及HST时期。这些成果对渤海湾地区煤炭资源勘探及提高钻探工程地质效果具有现实意义。  相似文献   

19.
Makarkinia kerneri sp. nov. is described from the Lower Cretaceous Crato Formation of Brazil, based on an incomplete but very well-preserved hind wing (Neuroptera: Kalligrammatidae). The previously presumed attribution of the genus is confirmed, based on the diagnostic characters of its wing venation (e.g., dense crossvenation; the anteriorly directed branches of MP) and the presence of a distinct eye-spot on the wing. Makarkinia is the only American representative and youngest known genus of Kalligrammatidae. With an estimated wing length of 100–160 mm, it has the largest wings amongst all fossil and extant Neuroptera.  相似文献   

20.
ABSTRACT

Siliciclastic sediments from the Upper Palaeozoic Konya Complex and its Mesozoic cover were studied by a multi-method approach combining thin-section petrography, bulk-rock geochemistry, mineral chemistry of rutile, and U–Pb geochronology of detrital zircons. Provenance sensitive data of samples from the Upper Palaeozoic Hal?c? Formation indicate sediment supply from mainly low- to medium-grade metamorphosed sedimentary rocks of felsic character, while the contribution from volcanic rocks was rare. The detrital zircon record of sediments from the Hal?c? Formation documents sediment supply from different sources and excludes a similar provenance. Some samples show great similarities with Palaeozoic sandstones from the cover sequence of the Saharan Metacraton and the Arabian–Nubian Shield, while the other samples indicate a provenance that must be sought in units with a southern Eurasian affinity. The upper limit for sediment deposition in the Hal?c? Formation is mostly constrained by Early Palaeozoic zircon populations; however, sediment accumulation in Pennsylvanian–Cisuralian time is more likely, contemporaneously with the Upper Palaeozoic succession on the Karaburun Peninsula (western Turkey). The provenance of sediments from the Upper Triassic Ard?çl? Formation remains enigmatic, but the source should be sought nonetheless in units close to the depositional site. In any case, detrital zircon age spectra and compositional data exclude recycling of underlying rock units (i.e. Hal?c? Formation). Overall, our new provenance data reveal great similarities between the Konya Complex and comparable units (Chios, Karaburun) but also highlight distinct differences in terms of sediment composition and provenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号