首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sediments are considered as suitable matrices to study the contamination levels of aquatic environment since they represent a sink for multiple contaminant sources. In this study, the influence of sediment characteristics on the distribution of polycyclic aromatic hydrocarbons (PAHs) and its potential risk in euryhaline, freshwater and humic aquatic bodies of Douglas/Stubbs creek, Ikpa River and Eniong River, respectively, were investigated. The level of PAHs in sediment was quantified using GC–MS, while sediment properties including total organic carbon (TOC) content and grain size were determined by the wet oxidation and hydrometer methods, respectively. The results revealed that the total levels of PAHs in sediment varied significantly between the euryhaline, freshwater and humic freshwater ecosystems. In Ikpa River freshwater ecosystem, a total PAHs load of 1055.2 ng/g was recorded with the suites concentration ranging from 13.0 ng/g (for acenaphthylene) to 161 ng/g (for pyrene). The humic ecosystem of Eniong River had a total PAH load of 11.06 ng/g, while the suites level recorded ranged from 0.04 ng/g for acenaphthene to 2.65 ng/g for chrysene. The total level of PAHs detected in the euryhaline Douglas/Stubbs creek was 14.47 ng/g, and suite concentrations varied between 4.27 ng/g for naphthalene and 5.13 ng/g for acenaphthylene. This shows variation in quantity and quality of PAH contaminants with the nature of ecosystems. It implies complex and diverse contamination sources as well as different capabilities to recover from PAH contamination. Correlation analysis has shown that sediment particle and TOC content influenced PAHs burden in bottom sediments, but the effects varied with the molecular weight of PAHs and the nature of the ecosystems. The TOC was the most significant determinant of PAHs load and distribution in sediment of the freshwater Ikpa River and euryhaline Douglas/Stubbs but had little or no influence in the humic sediment of Eniong River, while the influence of particle size was generally indefinite but slightly associated with PAHs accumulation in the euryhaline sediment. Generally, the total PAH levels (11.0–1055.2 ng/g) recorded were low and below the allowable limit for aquatic sediments. The ecological risk assessment revealed that these levels were lower than the effects range low and effects range medium values. This indicates no acute adverse biological effect although the accumulation of PAHs in freshwater ecosystem of Ikpa River may pose ecological risks as most of the carcinogenic PAH suites had relatively high pollution indices compared to other ecosystem types studied.  相似文献   

2.
The relationship among H2S, total organic carbon (TOC), total sulfur (TS) and total nitrogen contents of surface sediments (0–1 cm) was examined to quantify the relationship between H2S concentrations and TOC content at the sediment water interface in a coastal brackish lake, Nakaumi, southwest Japan. In this lake, bottom water becomes anoxic during summer due to a strong halocline. Lake water has ample dissolved SO4 2? and the surface sediments are rich in planktic organic matter (C/N 7–9), which is highly reactive in terms of sulfate reduction. In this setting the amount of TOC should be a critical factor regulating the activity of sulfate reduction and H2S production. In portions of the lake where sediment TOC content is less than 3.5 %, H2S was very low or absent in both bottom and pore waters. However, in areas with TOC >3.5 %, H2S was correlated with TOC content (pore water H2S (ppm) = 13.9 × TOC (%) ? 52.1, correlation coefficient: 0.72). H2S was also present in areas with sediment TS above 1.2 % (present as iron sulfide), which suggests that iron sulfide formation is tied to the amount of TOC. Based on this relationship, H2S production has progressively increased after the initiation of land reclamation projects in Lake Nakaumi, as the area of sapropel sediments has significantly increased. This TOC–H2S relationship at sediment–water interface might be used to infer H2S production in brackish–lagoonal systems similar to Lake Nakaumi, with readily available SO4 2? and reactive organic matter.  相似文献   

3.
The presence of arsenic (As) in surface water constitutes an important environmental risk, where mobility and adsorption processes are responsible for its behavior in the sediment–water interface. Therefore, the assessment of adsorption, mobility and water availability of arsenic in freshwater sediments, with agricultural, livestock and urban soil uses was performed. Arsenic concentrations in sediments ranged from 5.4 to 15.9 mg kg?1 (total) and 2.8 to 6.5 mg kg?1 (labile), and those of iron and manganese were 11,563–23,500 and 140.6–662.1 mg kg?1, respectively. The As levels in water were significantly lower than those of sediments. Results would suggest that As co-precipitation and adsorption on Fe oxides are probably the major route of immobilization, determining its low lability. Manganese did not present an outstanding contribution to the retention, and cation-exchange capacity, pH and organic matter of sediments did not show an influence on the mobility of As.  相似文献   

4.
Oxygen profiles were measured in the sediments of the Gulf of Aqaba (Red Sea), an oligotrophic marine system affected by episodic seasonal flash floods and intense aeolian dry deposition. Sediment cores were retrieved from shallow (15–45 m), intermediate (250–561 m) and deep (700 m) water sites of south–north and east–west transects. Dissolved oxygen concentrations were measured simultaneously by using microelectrodes and microoptodes immediately after sampling and after transportation. Oxygen penetration depths were found to increase from 2 to 5 mm at the shallow water sites with sandy permeable sediments to 10–21 mm at the deeper sites with cohesive muddy sediments. This increase corresponds to decrease in oxygen diffusive fluxes at the sediment–water interface and oxygen consumption rates with depth. Oxygen consumption rates exhibit local maxima at the oxic–anoxic sediment boundary, which may be attributed to oxygen reduction coupled to oxidation of dissolved Fe(II) and Mn(II) at deep and intermediate water sites and of hydrogen sulfide at shallow water sites. Microelectrodes and microoptodes measurements of cohesive sediments from deep and intermediate water sites yielded similar results. By comparison, the microoptodes displayed more robust measurements than microelectrodes in sandy near-shore sediments. This was attributed to their flexible fiber structure that is less likely to break or to abruptly displace sand particles. After transportation of sediment cores from Eilat to Beer Sheva followed by ≤?24-h storage, no changes in oxygen fluxes and consumption rates were detected.  相似文献   

5.
The availability of reactive phosphorus (P) may promote cyanobacterial blooms, a worldwide increasing phenomenon. Cyanobacteria may also regulate benthic P cycling through labile organic input to sediments, favouring reduced conditions and P release, ultimately acting as self-sustainment mechanism for the phytoplankton blooms. To analyse P–cyanobacteria feedbacks and compare external versus internal loads, we investigated P cycling in the Curonian Lagoon, a freshwater estuary with recurrent summer blooms. At two sites representing the dominant sediment types, we characterised P pools and mobility, via combined pore water analysis, calculation of diffusive exchanges and flux measurements via sediment core incubations. Annual P budgets were also calculated, to analyse the whole lagoon role as net sink or source. Muddy sediments, representing nearly 50 % of the lagoon surface, displayed higher P content if compared with sandy sediments, and most of this pool was reactive. The muddy site had consequently higher pore water dissolved inorganic phosphorus (DIP) concentrations maintaining high diffusive gradients. However, measured fluxes suggested that both sediment types were mostly P sinks except for a large DIP regeneration (nearly 30 μmol m?2 h?1) recorded at the muddy site during an intense cyanobacteria bloom. Such internal regeneration had the same order of magnitude as the annual external P load and may offset the net annual DIP sink role of the estuary. It may also prolong the duration of the bloom. Our results suggest that positive feedbacks can regulate N-fixing cyanobacteria blooms and internal P recycling, through either diffusive fluxes or sediment settling and resuspension.  相似文献   

6.
The Riogrande II reservoir in Colombia has a total storage capacity of 240 million m3 and lies 2,270 m above sea level. The reservoir is used for power generation, water supply and environmental improvement. Dissolved manganese (Mn) is removed from reservoir water dedicated to domestic use by purification processes. Removal of Mn, however, poses a major challenge to purification processes and warrants the study of ways to naturally reduce dissolved Mn levels in the reservoir. The source of Mn within the reservoir is not well understood, however, presumably arises from sediment mobilization initiated by variation in pH, redox potential (ORP or Eh), dissolved oxygen (O2) and ionic strength conditions. This study investigated conditions within the reservoir to further understand Mn transfer from the sediment into the water column. O2, pH, oxidation–reduction potential (ORP or Eh), organic matter content and electric conductivity were measured in water samples and sediment from the reservoir. Sequential extraction (SE) procedures were used to test the specific effects exerted by each of these conditions on Mn mobilization from the sediments. The European Community Bureau of Reference (BCR) sequential extraction procedure was used to quantify metals in sediment (referred to as the BCR extraction below). Statistical analysis of geochemical data from water samples (both water column and sediment pore water) and sediments demonstrated the conditions under which Mn can be released from sediments into the water column. The results indicated a primarily oxic water column and anoxic reducing conditions in the sediment (ORP or Eh ≤ ?80 mV). The pH of water in contact with bottom sediments varied from 7.6 to 6.8. The pH of sedimentary pore water varied from 6.8 to 4.7. The sediments contained significant amounts of organic matter (20 %). Chemical extractions showed that the exchangeable fraction contained over 50 % of the total Mn within sediments. Microscopic analysis using scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS) indicated that Mn does not occur within well-crystallized mineral phases in the Riogrande II sediments. A large proportion of Mn exists instead as material adsorbed onto the surfaces of recently deposited sediment particles. Bacterial oxidation of organic matter may cause the observed anoxic conditions at the bottom of the reservoir. Mineralization of organic matter therefore contributes to reducing conditions within the sediments. Mobilization of Mn from the sediment into the water column may result from reductive dissolution of this fraction. Manganese release by this mechanism diminishes the water quality of the Riogrande II reservoir and warrants further study.  相似文献   

7.
Community Oxygen and Nutrient Fluxes in Seagrass Beds of Florida Bay, USA   总被引:1,自引:0,他引:1  
We used clear, acrylic chambers to measure in situ community oxygen and nutrient fluxes under day and night conditions in seagrass beds at five sites across Florida Bay five times between September 1997 and March 1999. Underlying sediments are biogenic carbonate with porosities of 0.7–0.9 and with low organic content (<1.6%). The seagrass communities always removed oxygen from the water column during the night and produced oxygen during daylight, and sampling date and site significantly affected both night and daytime oxygen fluxes. Net daily average fluxes of oxygen (?4.9 to 49 mmol m?2 day?1) ranged from net autotrophy to heterotrophy across the bay and during the 18-month sampling period. However, the Rabbit Key Basin site, located in the west-central bay and covered with a dense Thalassia testudinum bed, was always autotrophic with net average oxygen production ranging from 4.8 to 49 mmol m?2 day?1. In November 1998, three of the five sites were strongly heterotrophic and oxygen production was least at Rabbit, suggesting the possibility of hypoxic conditions in fall. Average ammonium (NH4) concentrations in the water column varied widely across the bay, ranging from a mean of 6.9 μmol l?1 at Calusa in the eastern bay to a mean of 0.6 μmol l?1 at Rabbit Key for the period of study. However, average NH4 fluxes by site and date (?240 to 110 μmol m?2 h?1) were not correlated with water column concentrations and did not vary in a consistent diel, seasonal, or spatial pattern. Concentrations of dissolved organic nitrogen (DON) in the water column, averaged by site (15–25 μmol l?1), were greater than mean NH4 concentrations, and the range of day and night DON fluxes (?920 to 1,300 μmol m?2 h?1), averaged by site and date, was greater than the range of mean NH4 fluxes. Average DON fluxes did not vary consistently from day to night, seasonally or spatially. Mean silicate fluxes ranged from ?590 to 860 μmol m?2 h?1 across all sites and dates, but mean net daily fluxes were less variable and most of the time contributed small amounts of silicate to the water column. Mean concentrations of filterable reactive phosphorus (FRP) in the water column across the bay were very low (0.021–0.075 μmol l?1); but site average concentrations of dissolved organic phosphorus (DOP) were higher (0.04–0.15 μmol l?1) and showed a gradient of increasing concentration from east to west in the bay. A pronounced gradient in average surficial sediment total phosphorus (1.1–12 μmol g DW?1) along an east-to-west gradient was not reflected in fluxes of phosphorus. FRP fluxes, averaged by site and date, were low (?5.2 to 52 μmol m?2 h?1), highly variable, and did not vary consistently from day to night or across season or location. Mean DOP fluxes varied over a smaller range (?8.7 to 7.4 μmol m?2 h?1), but also showed no consistent spatial or temporal patterns. These small DOP fluxes were in sharp contrast to the predominately organic phosphorus pool in surficial sediments (site means?=?0.66–7.4 μmol g DW?1). Significant correlations of nutrient fluxes with parameters related to seagrass abundance suggest that the seagrass community may play a major role in nutrient recycling. Integrated means of net daily fluxes over the area of Florida Bay, though highly variable, suggest that seagrass communities might be a source of DOP and NH4 to Florida Bay and might remove small amounts of FRP and potentially large amounts of DON from the waters of the bay.  相似文献   

8.
The composition of river water, sediments, and pore waters (down to 30 cm below the bed) of Las Catonas Stream was studied to analyze the distribution of trace elements in a peri-urban site. The Las Catonas Stream is one of the main tributaries of Reconquista River, a highly polluted water course in the Buenos Aires Province, Argentina. The semi-consolidated Quaternary sediments of the Luján Formation are the main source of sediments for Las Catonas Stream. The coarse-grained fraction in the sediments is mainly composed of tosca (calcretes), intraclasts, bone fragments, glass shards, quartz, and aggregates of fine-grained sediments together with considerably amounts of vegetal remains. The clay minerals are illite, illite–smectite, smectite, and kaolinite. For the clay-sized fraction, the external surface area values are mostly between 70 and 110 m2g?1, although the fraction at 15 cm below the bottom of the river shows a lower surface area of 12 m2g?1. The N2 adsorption–desorption isotherms at 77 K for this sample display a behavior indicative of non-porous or macroporous material, whereas the samples above and below present a typical behavior of mesoporous materials with pores between parallel plates (slit-shaped). As, Cr, Cu, and Cd concentrations increase down to 15 cm depth in the sediments, where the highest trace element and total organic carbon (TOC) concentrations were found, and then decrease toward the bottom of the core. Except for As, the levels of the other heavy metals show higher concentration in surficial waters than in pore waters. Distribution coefficients between the sediments, pore water, and surficial water phases indicate that As is released from the sediments to the pore and surficial waters. Cu content strongly correlates with TOC (mainly from vegetal remains), suggesting that this element is mainly bound to the organic phase.  相似文献   

9.
Surface sediment samples at 89 locations and 300-cm cores from 43 sites in the Mississippi Sound were examined for evidence of pollutant impact upon this coastal environment. Chemical variables determined were total organic carbon, Kjeldahl nitrogen, phenols, and hydrocarbons. Values of these pollutant indicators were about the same or lower in Gulf of Mexico samples compared to Missippi Sound sediments and considerably lower than those from rivers and bays emptying into the sound, indicating limited impact from sites of pollutant sources into the sound. Concentrations of sedimentary pollutants peaked in the Pascagoula River where levels of total organic carbon (TOC), Kjeldahl nitrogen (TKN), phenols, and hydrocarbons exceeded sound values by one to three orders of magnitude. Analysis of cores shows pollutant intrusion to sediment strata predating industrial development. The level of pollution varies from site to site but fortunately is only serious at localized sites within the sound.  相似文献   

10.
This study addresses the distribution of total phosphorus (TP) and its inorganic (IP) and organic (OP) fractions, grain-size and organic matter of surface and recent sediments, coupled to the behavior of total and dissolved inorganic phosphorus (TP and DIP) of the water column, of the semi-pristine Guaratuba Bay estuary, SE Brazil. Surface sediment samples were taken at 43 sites spread along the estuarine gradient and recent sediments from 3 short (35 cm long) cores from the upper, central and lower portions of the estuary, respectively. Highest TP and IP concentrations of surface sediments were detected within the upper sector and the transition zone between the upper and central sectors, all characterized by fine sediments, low salinities and water depths. In contrast, the lower sector and its narrow and deep tidal channel, subject to more intense tidal forcing, exhibited a higher fraction of sandy sediments with lower TP, IP and OP contents. In spite of the spatial variability in sediment grain size, IP corresponded to the major fraction of TP in all estuarine sectors and both TP and IP correlated significantly with the fine sedimentary (silt + clay) grain-size fraction. The fine surface sediments acted as a trap for IP at the fresh water–low salinity interface, which also corresponded to the region of a DIP sink in surface waters. In general, the short sediment cores showed that TP and IP contents increased from 15 cm depths to the top layer. Published sedimentation rates from additional cores taken at the sites of the short cores of this study, implied that depositional alterations of TP and IP increased during the early 1970s, which corresponded to the onset of anthropogenic disturbances from crop plantations in the lowland plains of the river end-member and urbanization at the estuary’s mouth and along the adjacent coast.  相似文献   

11.
Oxygen fluxes across the sediment–water interface reflect primary production and organic matter degradation in coastal sediments and thus provide data that can be used for assessing ecosystem function, carbon cycling and the response to coastal eutrophication. In this study, the aquatic eddy covariance technique was used to measure seafloor–water column oxygen fluxes at shallow coastal sites with highly permeable sandy sediment in the northeastern Gulf of Mexico for which oxygen flux data currently are lacking. Oxygen fluxes at wave-exposed Gulf sites were compared to those at protected Bay sites over a period of 4 years and covering the four seasons. A total of 17 daytime and 14 nighttime deployments, producing 408 flux measurements (14.5 min each), were conducted. Average annual oxygen release and uptake (mean ± standard error) were 191 ± 66 and ?191 ± 45 mmol m?2 day?1 for the Gulf sites and 130 ± 57 and ?152 ± 64 mmol m?2 day?1 for the Bay sites. Seasonal variation in oxygen flux was observed, with high rates typically occurring during spring and lower rates during summer. The ratio of average oxygen release to uptake at both sites was close to 1 (Bay: 0.9, Gulf: 1.0). Close responses of the flux to changes in light, temperature, bottom current velocity, and wave action (significant wave height) documented tight physical–biological, benthic–pelagic coupling. The increase of the sedimentary oxygen uptake with increasing temperature corresponded to a Q10 temperature coefficient of 1.4 ± 0.3. An increase in flow velocity resulted in increased oxygen uptake (by a factor of 1–6 for a doubling in flow), which is explained by the enhanced transport of organic matter and electron acceptors into the permeable sediment. Benthic photosynthetic production and oxygen release from the sediment was modulated by light intensity at the temporal scale (minutes) of the flux measurements. The fluxes measured in this study contribute to baseline data in a region with rapid coastal development and can be used in large-scale assessments and estimates of carbon transformations.  相似文献   

12.
Remobilization of authigenic uranium in marine sediments by bioturbation   总被引:1,自引:0,他引:1  
Uranium behaves as a nearly conservative element in oxygenated seawater, but it is precipitated under chemically reducing conditions that occur in sediments underlying low-oxygen bottom water or in sediments receiving high fluxes of particulate organic carbon. Sites characterized by a range of bottom-water oxygen (BWO) and organic carbon flux (OCF) were studied to better understand the conditions that determine formation and preservation of authigenic U in marine sediments. Our study areas are located in the mid latitudes of the northeast Pacific and the northwest Atlantic Oceans, and all sites receive moderate (0.5 g/cm2 kyr) to high (2.8 g/cm2 kyr) OCF to the sediments. BWO concentrations vary substantially among the sites, ranging from <3 to ∼270 μM. A mass balance approach was used to evaluate authigenic U remobilization at each site. Within each region studied, the supply of particulate nonlithogenic U associated with sinking particles was evaluated by means of sediment traps. The diffusive flux of U into sediments was calculated from pore-water U concentration profiles. These combined sources were compared with the burial rate of authigenic U to assess the efficiency of its preservation. A large fraction (one-third to two-thirds) of the authigenic U precipitated in these sediments via diffusion supply is later regenerated, even under very low BWO concentrations (∼15 μM). Bioturbating organisms periodically mix authigenic U-containing sediment upward toward the sediment-water interface, where more oxidizing conditions lead to the remobilization of authigenic U and its loss to bottom waters.  相似文献   

13.
Numerous studies of marine environments show that dissolved organic carbon (DOC) concentrations in sediments are typically tenfold higher than in the overlying water. Large concentration gradients near the sediment–water interface suggest that there may be a significant flux of organic carbon from sediments to the water column. Furthermore, accumulation of DOC in the porewater may influence the burial and preservation of organic matter by promoting geopolymerization and/or adsorption reactions. We measured DOC concentration profiles (for porewater collected by centrifugation and “sipping”) and benthic fluxes (with in situ and shipboard chambers) at two sites on the North Carolina continental slope to better understand the controls on porewater DOC concentrations and quantify sediment–water exchange rates. We also measured a suite of sediment properties (e.g., sediment accumulation and bioturbation rates, organic carbon content, and mineral surface area) that allow us to examine the relationship between porewater DOC concentrations and organic carbon preservation. Sediment depth-distributions of DOC from a downslope transect (300–1000 m water depth) follow a trend consistent with other porewater constituents (ΣCO2 and SO42−) and a tracer of modern, fine-grained sediment (fallout Pu), suggesting that DOC levels are regulated by organic matter remineralization. However, remineralization rates appear to be relatively uniform across the sediment transect. A simple diagenetic model illustrates that variations in DOC profiles at this site may be due to differences in the depth of the active remineralization zone, which in turn is largely controlled by the intensity of bioturbation. Comparison of porewater DOC concentrations, organic carbon burial efficiency, and organic matter sorption suggest that DOC levels are not a major factor in promoting organic matter preservation or loading on grain surfaces. The DOC benthic fluxes are difficult to detect, but suggest that only 2% of the dissolved organic carbon escapes remineralization in the sediments by transport across the sediment-water interface.  相似文献   

14.
We calculated Chesapeake Bay (CB) sediment and carbon fluxes before and after major anthropogenic land clearance using robust monitoring, modeling and sedimentary data. Four distinct fluxes in the estuarine system were considered including (1) the flux of eroded material from the watershed to streams, (2) the flux of suspended sediment at river fall lines, (3) the burial flux in tributary sediments, and (4) the burial flux in main CB sediments. The sedimentary maximum in Ambrosia (ragweed) pollen marked peak land clearance (~1900 a.d.). Rivers feeding CB had a total organic carbon (TOC)/total suspended solids of 0.24?±?0.12, and we used this observation to calculate TOC fluxes from sediment fluxes. Sediment and carbon fluxes increased by 138–269% across all four regions after land clearance. Our results demonstrate that sediment delivery to CB is subject to significant lags and that excess post-land clearance sediment loads have not reached the ocean. Post-land clearance increases in erosional flux from watersheds, and burial in estuaries are important processes that must be considered to calculate accurate global sediment and carbon budgets.  相似文献   

15.
In the present study, sediments and biotas from two freshwater lakes in Yangze delta area were collected and analyzed for polybrominated diphenyl ethers (PBDEs) and methoxylated PBDEs (MeO–PBDEs). The concentrations of PBDEs in sediments and biotas ranged from 0.41 to 5.8 ng/g dry weight and from 4.6 to 100 ng/g lipid weight, respectively, while those of MeO–PBDEs were much lower (sediment: <LOQ-0.014 ng/g dry weight, biota: <LOQ-2.1 ng/g lipid weight). The levels of both brominated substances in sediments and biotas were in the moderate to low range compared with other studies. Different BDE congeners were found between two lakes probably due to the different exogenous sources and metabolic stages. Similar occurrence of higher brominated congeners (e.g., BDE-209) in sediments and biotas indicated sediments as a possible source of PBDEs for biotas. The different contribution of lower and higher brominated congeners between sediments and biotas may be due to the combined effect of biotransformation and bioavailability.  相似文献   

16.
The conversion of undisturbed coastal regions to commercial and suburban developments may pose a threat to surface and groundwater quality by introducing nitrate-nitrogen (NO3 ?-N) from runoff of land-applied wastewater and fertilizers. Microbial denitrification is an important NO3 ?-N removal mechanism in coastal sediments. The objective of this study was to compare denitrification and nitrate conversion rates in coastal sediments from a golf course, suburban site, undeveloped marsh, and nonmarsh area near rapidly developing Hilton Head Island, South Carolina. Nitrous oxide was measured using gas chromatography and nitrate and ammonium concentrations were measured using a flow injection autoanalyzer in microcosms spiked, with 50 μg NO3 ?-N gdw?1. The two marsh sites had the greatest ammonium production, which was correlated with fine sediment particle size and higher background sediment nitrate and surface water sulfate concentrations. The golf course swale had greatest denitrification rates, which were correlated with higher total carbon and organic nitrogen in sediments. Nitrate was consumed in golf course sediments to a greater extent than in the undeveloped marsh and upland freshwater sites, suggesting that the undeveloped sites and receiving estuaries may be more susceptible to nitrate contamination than the golf course swale and marsh under nonstorm conditions. Construction of swales and vegetated buffers using sediments with high organic carbon content as best management practices may aid in removing nitrate and other contaminants from runoff prior to its transport to the receiving marsh and estuary.  相似文献   

17.
The distribution and composition of neutral carbohydrates in the solid phase and porewater, and their role in carbon cycling were investigated in contrasting marine sediments of the Baltic-North Sea region. Depth-invariant profiles of particulate carbohydrates (PCHO) and low PCHO yields (PCHO/organic carbon) indicated that a small inert carbohydrate fraction deposits on the sediment at the deeper stations in the northern Kattegat and Skagerrak compared to the shallower stations further South. This was supported by long-term sediment incubations, in which the PCHO concentrations remained unchanged during 480 days, revealing that neutral carbohydrates play a minor role in carbon mineralization at the deeper sites. In contrast, the reactivity of PCHO was high (first-order rate constant of 3.2 yr−1) at one shallow site in the Belt Sea. Monosaccharide spectra were uniform with sediment depth and between sites with the exception of the shallowest site in the middle of Kattegat, where glucose dominated the polymers at the surface. This was likely due to benthic diatoms. Addition of fresh algae to surface sediment from the deeper sites resulted in a preferential mineralization of particulate glucose polymers. The addition of algae also resulted in an initial pulse of glucose in the porewater pools of total hydrolyzable carbohydrates (THCHO), indicating a faster hydrolysis of glucose polymers in the particulate phase than the subsequent hydrolysis and bacterial consumption of oligo- and polymers of glucose in the porewater. This study shows that some carbohydrates such as glucose polymers are selectively utilized by heterotrophic bacteria during the settling of organic particles through the water column, and a relatively inert fraction arrives to the sediments where much of it escapes mineralization and becomes permanently buried. In shallow coastal environments, where the degradation in the water column is less extensive and where benthic algae may represent a local carbohydrate source, neutral carbohydrates appear to be more important in organic matter mineralization.  相似文献   

18.
Continental shelf sediments from nine locations off Washington and Oregon have 239,240Pu inventories which average 8.0 ± 2.6 mCi/km2. The Columbia River and seawaters advecting over the shelf supply Pu which is removed to underlying sediments, principally through scavenging by inorganic paniculate matter. Mass balance calculations argue that less than 20 percent of the advected Pu need be scavenged from the water column to balance river input and total shelf sediment inventories. The percentage of the Pu removed through scavenging is consistent with observed participate concentrations in shelf waters and published sediment/water distribution coefficients.No marked separation of Pu from 137Cs is observed with depth in Pacific shelf sediments as has been reported in Atlantic coastal sediments. This interocean distinctness can be explained by differences in particle mixing and downward diffusion of Cs in sediments of varying porosities. The transuranic inventories and Pu/Cs ratios in the Pacific sediments do not support the hypothesis of Livingston and Bowen that Pu is remobilized within the sediment column by ‘complexone’ formation with (principally) organic substances.Excess 210Pb/239,240Pu inventory ratios in eight representative cores from the Washington shelf average 100 ± 19, even though absolute values of both inventories vary by much larger factors. This reasonably constant ratio, for a given water depth, permits estimation of total Pu inventories and prediction of sites of unusual Pu accumulation from data on the more easily measured natural radionuclide.  相似文献   

19.
The delivery of dissolved carbon from rivers to coastal oceans is an important component of the global carbon budget. From November 2013 to December 2014, we investigated freshwater-saltwater mixing effects on dissolved carbon concentrations and CO2 outgassing at six locations along an 88-km-long estuarine river entering the Northern Gulf of Mexico with salinity increasing from 0.02 at site 1 to 29.50 at site 6 near the river’s mouth. We found that throughout the sampling period, all six sites exhibited CO2 supersaturation with respect to the atmospheric CO2 pressure during most of the sampling trips. The average CO2 outgassing fluxes at site 1 through site 6 were 162, 177, 165, 218, 126, and 15 mol m?2 year?1, respectively, with a mean of 140 mol m?2 year?1 for the entire river reach. In the short freshwater river reach before a saltwater barrier, 0.079 × 108 kg carbon was emitted to the atmosphere during the study year. In the freshwater-saltwater mixing zone with wide channels and river lakes, however, a much larger amount of carbon (3.04 × 108 kg) was emitted to the atmosphere during the same period. For the entire study period, the river’s freshwater discharged 0.25 × 109 mol dissolved inorganic carbon (DIC) and 1.77 × 109 mol dissolved organic carbon (DOC) into the mixing zone. DIC concentration increased six times from freshwater (0.24 mM) to saltwater (1.64 mM), while DOC showed an opposing trend, but to a lesser degree (from 1.13 to 0.56 mM). These findings suggest strong effects of freshwater-saltwater mixing on dissolved carbon dynamics, which should be taken into account in carbon processing and budgeting in the world’s estuarine systems.  相似文献   

20.
Sediment accretion was measured at four sites in varying stages of forest-to-marsh succession along a fresh-to-oligohaline gradient on the Waccamaw River and its tributary Turkey Creek (Coastal Plain watersheds, South Carolina) and the Savannah River (Piedmont watershed, South Carolina and Georgia). Sites included tidal freshwater forests, moderately salt-impacted forests at the freshwater–oligohaline transition, highly salt-impacted forests, and oligohaline marshes. Sediment accretion was measured by use of feldspar marker pads for 2.5 year; accessory information on wetland inundation, canopy litterfall, herbaceous production, and soil characteristics were also collected. Sediment accretion ranged from 4.5 mm year?1 at moderately salt-impacted forest on the Savannah River to 19.1 mm year?1 at its relict, highly salt-impacted forest downstream. Oligohaline marsh sediment accretion was 1.5–2.5 times greater than in tidal freshwater forests. Overall, there was no significant difference in accretion rate between rivers with contrasting sediment loads. Accretion was significantly higher in hollows than on hummocks in tidal freshwater forests. Organic sediment accretion was similar to autochthonous litter production at all sites, but inorganic sediment constituted the majority of accretion at both marshes and the Savannah River highly salt-impacted forest. A strong correlation between inorganic sediment accumulation and autochthonous litter production indicated a positive feedback between herbaceous plant production and allochthonous sediment deposition. The similarity in rates of sediment accretion and sea level rise in tidal freshwater forests indicates that these habitats may become permanently inundated if the rate of sea level rise increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号