首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
文中采用钻探技术对南口-孙河断裂带进行了试验探测研究,并通过层序地层学、岩性岩相分析、磁化率分析与年代测定等方法建立了钻孔联合剖面,进而研究了断层距今60ka以来的多期活动特征,得出断裂带的3个活跃期是60~47kaBP、36~28kaBP与16kaBP以来,其余时段为相对平静期。断裂带的平均垂直位错速率,距今60~37ka之间约为0.35mm/a,37~32ka之间为0mm/a,32~12ka之间为0.78mm/a,12ka以来为0.35mm/a。研究认为,与传统的岩性、沉积相分析方法相比,层序地层学方法在钻孔地层对比与隐伏断层活动分期研究中有一定的优势  相似文献   

2.
Geomorphic study on Wjiahe segment of Serteng piedmont fault,Inner Mongolia is made.Throuth analysis of the available data in combination with the results of predecessors‘studies it can be obtained that average vertical displacement rate is 0.48-0.75mm/a along the Wujiahe segment since the late Pleistocene(14.450-22.340ka BP)and 0.56-0.88mm/s since the early-middle Holocene(5.570-8.830ka BP).Analyzing paleoseismic phenomena revealed in the excavated 5trenches in combination with the results of predecessors‘studies of paleoearthquakes on the fault,we determine five paleoseismic events on the Wujiahe segment of Serteng piedmont fault since 27.0ka BP and the recurrence interval to be about 4.300-4.400ka,A cluster of paleoearthquakes occurred probably during 8.000-9.000ka BP and two paleoeismic events in 10.000-20.000ka BP may be missed.A comparison between height of fault scarps and sum of displacement caused by paleoseismic events revealed in trenches,and recurrence interval of paleoseismic events obtained from average displacement rate along the fault and the disloca-tion by one event suggest that three paleoseismic events are absent in Alagaitu trench.Two paleoseismic events may be absent on the whole active fault segment.  相似文献   

3.
We investigate the late Quaternary active deformation along the Jordan Valley segment of the left-lateral Dead Sea Fault and provide new insights on the behaviour of major continental faults. The 110-km-long fault segment shows systematic offsets of drainage systems surveyed at three sites along its southern section. The isotopic dating of six paleoclimatic events yields a precise chronology for the onset of six generations of gully incisions at 47.5 ka BP, 37.5 ka BP, 13 ka BP, 9 ka BP, 7 ka BP, and 5 ka BP. Additionally, detailed mapping and reconstructions provide cumulative displacements for 20 dated incisions along the fault trace. The individual amounts of cumulative slip consistently fall into six distinct classes. This yields: i) an average constant slip rate of 4.7 to 5.1 mm/yr for the last 47.5 kyr and ii) a variable slip rate ranging from 3.5 mm/yr to 11 mm/yr over 2-kyr- to 24-kyr-long intervals. Taking into account that the last large earthquake occurred in AD 1033, we infer 3.5 to 5 m of present-day slip deficit which corresponds to a Mw  7.4 earthquake along the Jordan Valley fault segment. The timing of cumulative offsets reveals slip rate variations critical to our understanding of the slip deficit and seismic cycle along major continental faults.  相似文献   

4.
The Longmenshan fault zone is located in eastern margin of Tibetan plateau and bounded on the east by Sichuan Basin, and tectonically the location is very important. It has a deep impact on the topography, geomorphology, geological structure and seismicity of southwestern China. It is primarily composed of multiple parallel thrust faults, namely, from northwest to southeast, the back-range, the central, the front-range and the piedmont hidden faults, respectively. The MS8.0 Wenchuan earthquake of 12th May 2008 ruptured the central and the front-range faults. But the earthquake didn't rupture the back-range fault. This shows that these two faults are both active in Holocene. But until now, we don't know exactly the activity of the back-range fault. The back-range fault consists of the Pingwu-Qingchuan Fault, the Wenchuan-Maoxian Fault and the Gengda-Longdong Fault. Through satellite image(Google Earth)interpretation, combining with field investigation, we preliminarily found out that five steps of alluvial platforms or terraces have been developed in Minjiang region along the Wenchuan-Maoxian Fault. T1 and T2 terraces are more continuous than T3, T4 and T5 terraces. Combining with the previous work, we discuss the formation ages of the terraces and conclude, analyze and summarize the existing researches about the terraces of Minjiang River. We constrain the ages of T1, T2, T3, T4 and T5 surfaces to 3~10ka BP,~20ka BP, 40~50ka BP, 60ka BP and 80ka BP, respectively. Combining with geomorphologic structural interpretation, measurements of the cross sections of the terraces by differential GPS and detailed site visits including terraces, gullies and other geologic landforms along the fault, we have reason to consider that the Wenchuan-Maoxian Fault was active between the formation age of T3 and T2 terrace, but inactive since T2 terrace formed. Its latest active period should be the middle and late time of late Pleistocene, and there is no activity since the Holocene. Combining with the knowledge that the central and the front-range faults are both Quaternary active faults, the activity of Longmenshan fault zone should have shifted to the central and the front-range faults which are closer to the basin, this indicates that the Longmenshan thrust belt fits the "Piggyback Type" to some extent.  相似文献   

5.
在青藏高原东北隅发育一系列向北东凸出的弧形断裂带.其中最主要的三条断裂带从北到南分别为牛首山-罗山断裂带、香山-天景山断裂带和天祝一海原断裂带。香山-天景山断裂带从上世新以来一直有过活动,并在1709年发生了中卫南7t/2级地震。近期,宁夏地震局在孟家湾村南开挖了一个探槽.揭露出石炭纪的煤系地层逆冲于晚更新世风成沙之上.根据风成沙光释光测年结果表明。此探槽显示的断裂活动时代在距今约26.14±1.08ka.极有可能为22.09±0.4ka与26.14±1.08ka之间.  相似文献   

6.
The Langshan range-front fault (LRF)is a Holocene active normal fault that bounds the Langshan Mountain and Hetao Basin at the northwest corner of the Ordos Plateau. Paleoseismic trenching research at three sites, Dongshen Village trench (TC1), Qingshan trench (TC2)and Wulanhashao trench (TC3)from north to south was performed in this study to reveal the seismic hazard risk in Hetao Basin. The paleoevents ED1, ED2, ED3 from TC1 can be constrained to have occurred (6±1.3)ka, (9.6±2)ka and (19.7±4.2)ka respectively, while the paleoevent EQ1 from TC2 occurred about (6.7±0.1)ka and the paleoevents EW1, EW2, EW3 at TC3 took place about (2.3±0.4)ka, (6±1)ka and before 7ka respectively. In combination with paleoseismic results of previous researchers, the Holocene earthquake sequence of the LRF could be established as 2.3~2.43ka BP (E1), 4.41~3.06ka BP (E2), 6.71~6.8ka BP (E3), 7.6~9.81ka BP (E4), and (19.7±4.2)ka BP (E5). Although the possibility of missing events cannot totally be ruled out, based on the analysis on faulted geomorphology at Wulanhashao site, we argue the paleoearthquake history of the LRF during Holocene may be complete with an average recurrent interval about 2500 yrs. The apparent displacements associated with events E1, E3 and E4 are significantly larger than that of event, E2, that suggests that they might be great events with magnitudes 7.5 to even over 8 that ruptured the entire LRF, while the event E2 may be a smaller event that only ruptured a segment of the fault. The magnitude of event E2 might be about M7. This poses a significant seismic hazard to the area of the Linhe depression in the western Hetao graben region. With the further limitation of previous radiocarbon dating result near our trench site at Wulanhashao, the slip rate at Wulanhashao should be not smaller than, but close to 0.66mm/a since 15ka BP. And the slip rate at Qingshan site is supposed to be about 1.4~1.6mm/a since 6.8ka BP. Both our combined most recent paleoseismic cognition and current tectonic geomorphologic research results supports to reveal that the Langshan range-front fault now is an unsegmented fault, preferring to rupture the whole fault in a surface-rupture event. Considering the most recent event E1 and fault slip rate obtained above, the accumulated strain on the LRF could be estimated as about 1.52~3.94m. Given the ~2500a recurrent interval, we argue that the elapsed time since last major quake, E1, is approaching or even over the recurrence, and the seismic risk for another major quake is imminent, at least cannot be ignored.  相似文献   

7.
Since 1996 paleoseismological investigations have been used to develop the surface- rupturing history of the Bree fault scarp, the morphologically best-defined segment of the southwestern border fault of the Roer Valley graben in northeastern Belgium. The first studies determined that the escarpment is associated with a surface fault, and they exposed evidence for three surface displacements since about 40 ka BP. The most recent eventprobably occurred between 1000 and 1350 yr cal BP. Geophysical and trenching studies at a new site near the southeastern end of the fault scarp reconfirmed the coincidence of the frontal escarpment with a shallow normal fault, which displaces the Middle Pleistocene `Main Terrace' of the Maas River, as well as overlying coversands of Saalian to late Weichselian age. Different amounts of displacement shown by the two youngest coversand units indicate two discrete faulting events, but primary evidence for the coseismic nature of these events is sparse. Radiocarbon and optically stimulated luminescence dating constrainthe age of these events to the Holocene and between 14.0 ± 2.3 ka BP and 15.8 ± 2.9 ka BP, respectively. In addition, four older surface-rupturing events are inferred from the presence of four wedge-shaped units of reworked Main Terrace deposits that are interbedded with coversand units in the hanging wall of the trench and in shallow boreholes. These wedges are interpreted as colluvial wedges, produced by accelerated slope processes in response torejuvenation of the fault scarp, most probably in a periglacial environment. Luminescence dating indicates that five out of a total of six identified faulting events are younger than 136.6 ± 17.6 ka. The antepenultimate event was the largest faulting event, associated with a total fault displacement in excess of 1 m. Thus, the newly investigated trench site represents the longest and most complete record of surface rupturing recovered so far along the Bree fault scarp. This study also demonstrates the viability of the paleoseismological approach to identify past large earthquakes in areas of present-day moderate to low seismic activity.  相似文献   

8.
2 Conclusion Fenghuangshan-Tianshui fault is a Holocene active fault. It laterally slips at the average rate of 1.1 mm/a during 6.4 ka and vertically slips at the average rate of 0.37 mm/a and 0.16 mm/a since the time 16.6 ka and 6.4 ka before respectively. Diaogoumeng-Dongjiawan segment has occurred an abrupt event in the period of 6.4 ka BP, which is assumed to be related to the 734 Tianshui M=7 earthquake, but further work is still necessary. Foundation item: Chinese Joint Seismological Science Foundation (198023).  相似文献   

9.
刘兴旺  袁道阳  邵延秀  张波  柳煜 《地震》2019,39(3):1-10
玉门—北大河断裂是酒西盆地南侧的一条重要的活动断裂, 断裂西起青草湾, 向东经老玉门市、 青头山、 大红泉, 止于北大河以东骨头泉一带, 长约80 km, 走向北西西, 倾向南, 倾角20°~60°。 玉门—北大河断裂为一条全新世活动的逆冲断裂, 断裂东段保留了地震破裂带遗迹, 通过野外断错地貌调查和探槽开挖, 揭示该破裂带形成于距今1.7±0.3 ka, 此前断裂在4.1±0.3~5.4±0.3 ka及8.4±1.0 ka还有过2次古地震事件, 利用经验公式和已有震例估算, 每次地震震级约为M7。  相似文献   

10.
顺义地裂缝成因与顺义-良乡断裂北段第四纪活动性讨论   总被引:3,自引:0,他引:3  
本文通过钻孔地层对比方法研究了顺义一良乡断裂北段的第四纪活动性,资料显示该断裂在第四纪期间呈现强弱交替的分期活动特征,距今315万年以来有3个较强活动期和3个较弱活动期,前三者分别距今266~315、171~228、73~147万年,后三者距今分别为228.266、147~171、0~73万年。中更新世晚期以来断裂活动不明显。超量开采地下水导致地面不均匀沉降是造成顺义地裂缝现今活动的主要原因。  相似文献   

11.
龙首山北缘断裂带是潮水盆地与龙首山地的地貌分界线,展布于龙首山隆起的北麓。前期曾在龙首山北缘断裂带东段的白家嘴、中段包代河、西段斜坡山开挖了三个探槽,均揭露出多期古地震。本文通过三个探槽古地震事件的对比分析认为,龙首山北缘断裂带第1次古地震(11 ka)到最后1次古地震(1.6 ka)间隔9.4 ka,约1万年时间里有6次古地震发生。如果取算术平均(9.4 ka/6=1.57 ka),则每隔1 500年左右,龙首山北缘断裂带就有一次强地震事件,即古地震平均重复间隔约1.57 ka。这和其它各大断裂带得出的古地震优势重现周期(1~2 ka)并不矛盾。①5 ka年以前龙首山北缘断裂带仅有2次古地震事件,重复间隔5.3 ka,明显偏长,可能有古地震的遗漏问题;②5 ka年以后该断裂地震活动明显丛集,最短间隔0.7 ka,最长间隔1.5 ka,平均重复间隔约0.8 ka。无论是最短、最长或平均重复间隔,均与山丹-张掖地区历史地震的最长重复间隔0.79 ka接近。  相似文献   

12.
嫩江断裂带是松辽盆地的西边界断裂,但受第四系强覆盖等研究条件的限制,前人对该断裂第四纪构造活动的研究较少。本文针对该断裂带北段开展了野外地质调查,并综合大地电磁测深和纵波速度结构等结果,初步研究了嫩江断裂带北段的第四纪活动特征。调查发现,该断裂北段主要发育地貌陡坎、基岩滑坡、地层揉皱变形、近垂直擦痕、基岩崩塌与线性断塞塘等特征。探槽古地震研究揭示断裂带北段在(80.9±4.6)—(62.9±2.3)ka BP曾发生1次古地震事件,运动方式为正断,垂直位移量约1.5m,震级约为MS 7.1—7.3,断裂在晚更新世曾发生过强烈活动。研究结果有助于认识了解该断裂和松辽盆地的第四纪构造变形过程,并为评价该断裂及邻区的地震活动潜势提供参考。  相似文献   

13.
青海德令哈巴音郭勒河断裂带的新活动特征   总被引:3,自引:0,他引:3       下载免费PDF全文
在青海德令哈巴音郭勒河北侧山前冲洪积扇上新发现了一条长约60km的逆断裂带,属于本区NNW-NWW向的柴达木盆地北缘活动断裂系内的一条次级挤压构造。断裂在地貌上表现为明显的挤压逆冲断层陡坎,晚更新世晚期以来的平均垂直滑动速率为0.41±0.27mm/a。探槽剖面确定了三次古地震事件,其年代分别为距今约32.7±1.45ka、15.54±1.32ka和3.2±0.33ka。  相似文献   

14.
Given the scarcity of research on the activity of Xinyi-Sihong segment of the Tanlu Fault zone, this paper focuses on the Zhangshan segment where there are quite evident geomorphic features to complement the shortage of the research on the northern part of Xinyi-Sihong segment. This study enriches evidences for the late Quaternary activity and paleoseismological events on the Xinyi-Sihong segment. The Zhangshan segment is located at Xiaodian Town to Jintou Village of Suqian City, stretching towards NE for 7 kilometers with a dip angle of 60~80. Research of tectonic geomorphology shows that gullies in northern part of Zhangshan segment were evidently displaced, while in the southern, two NE-trending right-stepped fault scarps are developed, with an average height of 3 meters, which generally suggests that the fault was dominated by thrust and dextral motion. Two trenches were excavated in the southern part of Zhangshan segment, numbered Mayao trench 1 and Mayao trench 2. Both trenches reveal that:(1)within this segment, Tanlu Fault shows periodic fault activity, that is, normal faulting during Pliocene epoch while thrust faulting in Quaternary period; (2)an event occurred between 15.12ka BP to 11.82 BP; (3)the latest event possibly took place around 3 500 a BP. Based on integrated results of previous studies, we identify the dates of paleoseismic events on the Xinyi-Sihong segment as follows:more than 960 thousands years ago, early to middle period of late Pleistocene, (15.12~11.82)ka BP, (11.76±0.05)ka~(10.53±0.05)ka BP, (10.15±0.05)ka~(8.16±0.05)ka BP and 4 960~3 510a BP.  相似文献   

15.
巴彦浩特断裂位于阿拉善地块与鄂尔多斯地块相互作用的边界构造带上,其晚第四纪活动特征和古地震数据对全面理解贺兰山周边区域地震构造和地震危险性具有重要意义,为此在研究相对薄弱的巴彦浩特断裂北段开展了断错地貌和古地震槽探研究。观测显示巴彦浩特断裂阿拉善左旗以北段以右旋走滑活动为主兼具逆倾滑,断层西盘相对抬升,在浅表形成半正花状构造组合。年代(56.28±4.04)~(82.2±5.78)ka的冲洪积地貌面上冲沟断错137 m,并在东侧形成断塞塘地貌,估计断层右旋走滑速率为1.67~2.43 mm/a。探槽揭示了3次具有显著地表逆倾滑破裂的强震事件,时间分别为(56.28±4.04)~(55.33±3.04)、(32.79±2.22)~(13.76±1.1)、(13.76±1.1)~(7.86±0.43)ka,逆倾滑量分别为0.44、0.35、0.29 m。与前人在巴彦浩特断裂南段的古地震研究进行对比,可知这3次古地震可能仅为部分事件记录。结合已有研究成果建立了贺兰山周边区域地震构造模型,贺兰山西侧右旋走滑的巴彦浩特断裂强震发震能力不容忽视,贺兰山两侧盆地不同性质断裂系共同构成了阿拉善地块与鄂尔多斯地块的活动边界构造带。  相似文献   

16.
Based on the 1︰50000 active fault geological mapping, combining with high-precision remote imaging, field geological investigation and dating technique, the paper investigates the stratum, topography and faulted landforms of the Huashan Piedmont Fault. Research shows that the Huashan Piedmont Fault can be divided into Lantian to Huaxian section (the west section), Huaxian to Huayin section (the middle section) and Huayin to Lingbao section (the east section) according to the respective different fault activity. The fault in Lantian to Huaxian section is mainly contacted by loess and bedrock. Bedrock fault plane has already become unsmooth and mirror surfaces or striations can not be seen due to the erosion of running water and wind. 10~20m high fault scarps can be seen ahead of mountain in the north section near Mayu gully and Qiaoyu gully, and we can see Malan loess faulted profiles in some gully walls. In this section terraces are mainly composed of T1 and T2 which formed in the early stage of Holocene and late Pleistocene respectively. Field investigation shows that T1 is continuous and T2 is dislocated across the fault. These indicate that in this section the fault has been active in the late Pleistocene and its activity becomes weaker or no longer active after that. In the section between Huaxian and Huayin, neotectonics is very obvious, fault triangular facets are clearly visible and fault scarps are in linear distribution. Terrace T1, T2 and T3 develop well on both sides of most gullies. Dating data shows that T1 forms in 2~3ka BP, T2 forms in 6~7ka BP, and T3 forms in 60~70ka BP. All terraces are faulted in this section, combing with average ages and scarp heights of terraces, we calculate the average vertical slip rates during the period of T3 to T2, T2 to T1 and since the formation of T1, which are 0.4mm/a, 1.1mm/a and 1.6mm/a, and among them, 1.1mm/a can roughly represent as the average vertical slip rate since the middle stage of Holocene. Fault has been active several times since the late period of late Pleistocene according to fault profiles, in addition, Tanyu west trench also reveals the dislocation of the culture layer of(0.31~0.27)a BP. 1~2m high scarps of floodplains which formed in(400~600)a BP can be seen at Shidiyu gully and Gouyu gully. In contrast with historical earthquake data, we consider that the faulted culture layer exposed by Tanyu west trench and the scarps of floodplains are the remains of Huanxian MS8½ earthquake. The fault in Huayin to Lingbao section is also mainly contacted by loess and mountain bedrock. Malan loess faulted profiles can be seen at many river outlets of mountains. Terrace geomorphic feature is similar with that in the west section, T1 is covered by thin incompact Holocene sand loam, and T2 is covered by Malan loess. OSL dating shows that T2 formed in the early to middle stage of late Pleistocene. Field investigation shows that T1 is continuous and T2 is dislocated across the fault. These also indicate that in this section fault was active in the late Pleistocene and its activity becomes weaker or no longer active since Holocene. According to this study combined with former researches, we incline to the view that the seismogenic structure of Huanxian MS8½ earthquake is the Huashan Piedmont Fault and the Northern Margin Fault of Weinan Loess, as for whether there are other faults or not awaits further study.  相似文献   

17.
山西峨嵋台地北缘断裂是汾渭断陷带内临汾-侯马盆地与峨嵋台地隆起之间的边界断裂,对临汾-侯马盆地内的侯马次级盆地具有控制作用。该断裂自西向东分为西、中、东3段,西段为早中更新世活动,中段为全新世活动,东段为晚更新世活动。在断裂中段的任庄村和金沙村附近开挖了两个探槽,通过对探槽所揭露的古地震事件的年代学分析,结合前人研究结果,认为峨嵋台地北缘断裂全新世发生过A1及A2两次古地震事件,年代分别为466a BC、约4.6ka BP。事件A1即史料记载的466a BC晋空桐地震,震级可能达71/2级。  相似文献   

18.
The Yuguang basin is a half-graben basin in the basin-range tectonic zone in northwest Beijing, located at the northern end of the Shanxi graben system, and the Yuguang basin southern marginal fault (YBSMF) controls the formation of this basin. A linear fault escarpment has formed in the proluvial fan on the piedmont fault zone of the Tangshankou segment of YBSMF. A trench across this escarpment reveals three paleo-earthquake events on two active faults. One fault ruptured at about 9ka for the first time, and then faulted again at about 7.3ka, causing the formation and synchronous activity of another fault. Finally, they faulted for the third time, but we cannot determine the faulting time due to the lack of relevant surface deposition. The accumulative vertical displacement of these three events is about 8.1m. We estimate that the average recurrence period of the piedmont fault is about 1.7ka, and the average slip rate of the piedmont fault is about 1.6mm/a. We also estimate the reference magnitude of each event according to the empirical formula.  相似文献   

19.
五台山北麓断裂位于山西地堑系北部。本文以五台山北麓断裂繁峙段的地质地貌为研究对象,分别在繁峙县的大峪村和岗里村两地断裂沿线进行了无人机测量。利用三维结构的运动重建技术(Structure from Motion,SfM)进行影像数据处理,得到高精度点云数据,并通过进一步处理获得了分辨率达0.5m的高清断错地貌正射影像(DOM)和数字高程模型(DEM)。通过对典型地区的详细野外调查和挖掘探槽等手段对该段晚第四纪的活动性进行研究,发现断层晚第四纪以来的活动主要是以正倾滑运动为主。同时在五台山北麓断裂沿线的大峪村、岗里村等地进行了断错地貌分析和晚第四纪滑动速率计算,得到约20ka以来的断层垂向滑动速率为0.4—0.6mm/a,近18ka以来该段发生过至少两次古地震事件。古地震事件和滑动速率分析表明,五台山北麓断裂晚第四纪,尤其是全新世以来活动强烈,且不同段落存在明显的活动性差异。  相似文献   

20.
阿尔金构造系晚更新世中晚期以来的逆冲活动   总被引:5,自引:1,他引:5       下载免费PDF全文
在阿尔金构造系中,阿尔金走滑断裂具有逆冲分量。文中将阿尔金构造系的逆冲活动分为西、中、东3段描述。西段从阿依耐克至车尔臣河河口,阿尔金南缘断裂具有逆冲活动迹象,在山前发育了规模较小的逆冲断层,有较新的地貌面被错动;中段从车尔臣河河口至拉配泉一带,在阿尔金山北缘发育大规模的逆冲断层,有较新的地貌面被错动;东段从拉配泉至宽滩山,逆冲断层有2种形式,此段阿尔金北缘断裂有逆冲分量,同时在阿尔金山北缘及山前冲洪积扇上发育逆冲断裂。自晚更新世中晚期以来,中段及东段逆冲速率<2mm/a。中段西部江尕拉萨依地区自16kaBP以来逆冲速率约为0.33mm/a,中部米兰桥一带自32kaBP以来的逆冲速率约为1.42mm/a。东段最大的逆冲速率在近中部的团结乡,自约5.31kaBP以来达到约1.81mm/a,向东西两端有减小的趋势,在西部柳城子自约72.36kaBP以来的逆冲速率为0.57mm/a,而东端的红柳沟自约8.99kaBP以来仅为0.05mm/a。团结乡地区约自19kaBP以来,逆冲活动有增强的趋势  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号