首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 624 毫秒
1.
Strong ground motions recorded on the sedimentary deposits of the Po River alluvial plain during the Emilia (Northern Italy) Mw 5.7 earthquake of May 29, 2012 are used to assess the vertical profile of shear-wave velocity above the limestone basement. Data were collected by a linear array installed for site effect studies after the Mw 5.9 mainshock of May 20, 2012. The array stations, equipped with both strong and weak motion sensors, are aligned in the South–North direction, at distances ranging from 1 to 26 km from the epicenter. The vertical components of ground motion show very distinctive, large-amplitude, low-frequency dispersive wave trains. Wavelet analysis yields group-velocity dispersion curve in the 0.2–0.7 Hz frequency band. The availability of a long ambient noise record allows estimates of the site resonance frequency along with its stability among stations. The joint inversion of dispersion of surface waves and ellipticity curves derived from ambient noise H/V allows extending investigations down to the sediment-limestone interface, at a depth of about 5,000 m. Our results add new information about the velocity structure at a scale that is intermediate between the local scale already investigated by other authors with small-aperture arrays using ambient noise and the regional scale inferred from modeling of seismogram waveforms recorded at hundreds of kilometers from the source.  相似文献   

2.
2021年3月5日新西兰克马德克群岛发生M7.8地震,本文计算了全球台网692个台站和中国地震台网全球监测台网112个台站的面波震级,并对此震级进行了偏差分析.结果表明:由于面波震级测定公式的不同,我国和美国测震的面波震级偏差为0.2;面波震级的测定受震源破裂过程的影响,由于此次地震主要破裂方向沿北东向,地震的多普勒效...  相似文献   

3.
Just after the occurrence of anM=5.2 earthquake in Shimian, Sichuan, two three-component seismometers were set up near the epicenter of the earthquake. Field observations were made for the four-year period from 1989 to 1992. Analysis of the data recorded from either aftershocks following theM=5.2 earthquake or from small earthquakes scattered in this region indicates the presence of shear wave splitting. And shear wave splitting varies with time. The mean direction of polarization of the faster shear waves is N18°W during the period of aftershock activity, which is consistent with the strike of the faulting plane of the mainshock; but has turned to N46°W from 1990 to 1992, which is consistent with the regional maximum compressive stress. The time delays between split shear waves measured on records from 1990 to 1992 are about half of that in 1989. The results obtained from observations at two temporary stations are similar. This indicates that the temporal changes may be related to the occurrence of theM=5.2 mainshock.  相似文献   

4.
周红 《地球物理学报》2018,61(5):2111-2121
北京时间2017年8月8日21时19分在四川阿坝州九寨沟县(北纬33.2°、东经103.8°)发生了7.0级地震,作者利用新提出的震源破裂过程控制的NNSIM随机有限断层方法,对震中约100 km范围内强地面运动进行了情景构建,并与研究区范围内的8个强震测震台观测记录进行了加速度、速度、反应谱对比,对比的一致性说明模拟过程中所应用的各种震源参数适合九寨沟7.0地震的近震源强地面运动重建.论文的后半部分基于相同参数模拟了九寨沟7.0级地震的近震源强地面运动场的空间分布,结果显示此次地震强地面运动的PGA、PGV以及反应谱分布均呈现出以震中为圆心的圆形分布,不具有大地震沿断层走向的分布特点.论文最后关于反应谱的讨论,揭示了此次九寨沟县城灾害不重的直接原因.  相似文献   

5.
基于江苏、安徽、山东和浙江等省区域台网共19个宽频带数字台站的地震波形,采用HypoDD双差定位方法确定了2012年7月20日江苏高邮—宝应MS4.9级地震震中位置,再利用时间域矩张量反演法TDMT_INV获得了其震源机制解和震源深度.反演结果显示:最佳双力偶解为节面Ⅰ走向290°,倾角88°,滑动角-21°;节面Ⅱ走向21°,倾角69°,滑动角-177°,地震矩震级为MW4.95,震源深度约为7~9km.利用滑动时窗相关法提取sPn震相测定震源深度为8.95km,两者一致性较好.随后不同地壳模型和不同震中定位误差对反演结果的影响试验揭示了反演结果具有稳定性.通过以下几种分析:1与利用CAP(Cut and Paste)矩张量反演法得到的结果进行对比;2P波初动投影;3正反演试验探求反演结果不稳定的影响因素等方法,验证了反演结果的可靠性.综合本文研究成果、震后科学考察结果(包括重力测量和地震烈度分布图)及现有的地质构造资料,推测此次地震的发震构造为杨汊仓—桑树头断裂,节面Ⅱ为断层面,是一个右旋走滑兼有少量正断层性质的错动.  相似文献   

6.
Just after the occurrence of anM=5.2 earthquake in Shimian, Sichuan, two three-component seismometers were set up near the epicenter of the earthquake. Field observations were made for the four-year period from 1989 to 1992. Analysis of the data recorded from either aftershocks following theM=5.2 earthquake or from small earthquakes scattered in this region indicates the presence of shear wave splitting. And shear wave splitting varies with time. The mean direction of polarization of the faster shear waves is N18°W during the period of aftershock activity, which is consistent with the strike of the faulting plane of the mainshock; but has turned to N46°W from 1990 to 1992, which is consistent with the regional maximum compressive stress. The time delays between split shear waves measured on records from 1990 to 1992 are about half of that in 1989. The results obtained from observations at two temporary stations are similar. This indicates that the temporal changes may be related to the occurrence of theM=5.2 mainshock. This study was supported by the Chinese Joint Seismological Science Foundation. The English version is improved by Prof. Xin-Ling QIN, Institute of Geophysics, SSB, China.  相似文献   

7.
We process the standard 30 s, static GPS data and the 1 s, high-rate GPS (HRGPS) data provided by the Crustal Movement Observation Network of China with GAMIT/GLOBK software package, and obtain the co-seismic displacements of near field and far field, and the epoch-by-epoch time series of HRGPS during Lushan earthquake. GPS data from about 20 sites in Sichuan province, which located between 40 and 450 km from the epicenter, are analyzed so as to study the characteristics of the static displacements and the dynamic crustal deformations, with periods ranging from several minutes to over a month. The result shows that: the static displacements caused by Lushan earthquake are limited to several centimeters; the nearest station SCTQ at 43 km from the epicenter has the largest static displacement of about 2 cm, while the other stations generally have insignificant displacements of less than 5 mm. the stations in the east of Sichuan–Yunnan region shifts 5–10 mm toward the southwest, and the stations in the middle-west of Sichuan Basin moves indistinctively 1–2 mm toward the northwest; station SCTQ has the largest kinematic displacement of about 4 and 3 cm peak-to-peak on the north and east component, respectively, and is much greater than the static permanent displacement; for the stations located at a distance greater than 150 km from the epicenter, the kinematic motions are generally insignificant; exceptionally, station SCNC and station SCSN in central Sichuan Basin have significant kinematic motions although they are more than 200 km away from the epicenter.  相似文献   

8.
宋超  盖增喜 《地球物理学报》2018,61(4):1225-1237
据中国地震台网测定,北京时间2015年4月15日15时39分,在内蒙古自治区阿拉善左旗(39.8°N,106.3°E)发生MS5.8地震,震源深度为10 km.地震发生后多家机构对其开展了研究,本文使用喜马拉雅Ⅱ期布设在南北地震带北段的台站观测数据,通过走时反演和波形拟合反演的迭代,获得了该地区地壳一维速度结构,接着利用直达P波观测与理论走时差对震中位置重定位,然后反演地震的最佳双力偶解以及震源深度,最终得到了区域速度结构、地震的三维坐标、发震时刻以及震源机制解.结果显示,此次地震发生于世界时2015年4月15日7时39分26.718s,震中(39.7663°N,106.4304°E),震源矩心深度18 km,矩震级MW5.25,节面Ⅰ走向176°,倾角85°,滑动角-180°,节面Ⅱ走向86°,倾角90°,滑动角-5°.结合该区域断裂带构造运动分析,本文认为此次地震是左旋走滑破裂,略带正断分量,断层面是节面Ⅱ,走向为NEE(近E-W)向,发震构造为震中附近的E-W向隐伏断裂.  相似文献   

9.
Using the signals excited by the large-volume airgun source at the Binchuan transmitting seismic station from January to June, 2016, arrival-time data was acquired at four stations near the epicenter of the Eryuan MS4.5 and MS4.0 earthquakes on February 8, 2016, as well as the epicenter of the Yunlong MS5.0 and Eryuan MS4.6 earthquakes on May 18, 2016 through the waveform cross-correlation technique. The wave velocity ratio of the four stations was calculated using the single-station method. At the same time, the b-value and the focal mechanism consistency parameters of the study area were also calculated. The results show that:(1) the wave velocity ratio of each station experienced a process of decline-recovery-fast rise before the two strong earthquakes, and a significant quasi-synchronous rapid rise occurred within 3-12 days before the earthquake; (2) the timing of the rapid rise of the wave velocity ratio of the four stations before the Yunlong MS5.0 and Eryuan MS4.6 earthquakes were related to the epicentral distance. The station which observed the earliest increase in rapid rise is the farthest one from the epicenter, and the station where the rapid rise appeared in the latest is closest to the epicenter; (3) the form of change of the wave velocity ratio before the earthquake was different between stations located at different directions in the epicenter area; (4) the b-value and the focal mechanism consistency parameter which is commonly used to characterize the stress level both showed a downward trend before the two strong earthquakes, and were consistent with the change in the wave velocity ratio. According to the preliminary analysis, the wave velocity ratio obtained by using airgun source can better reflect the change in the stress state of the underground medium.  相似文献   

10.
Tsunami induced by earthquake is an interaction problem between liquid and solid.Shallow-water wave equation is often used to modeling the tsunami,and the boundary or initial condition of the problem is determined by the displacement or velocity field from the earthquake under sea floor,usually no interaction between them is consid-ered in pure liquid model.In this study,the potential flow theory and the finite element method with the interaction between liquid and solid are employed to model the dynamic processes of the earthquake and tsunami.For model-ing the earthquake,firstly the initial stress field to generate the earthquake is set up,and then the occurrence of the earthquake is simulated by suddenly reducing the elastic material parameters inside the earthquake fault.It is dif-ferent from seismic dislocation theory in which the relative slip on the fault is specified in advance.The modeling results reveal that P,SP and the surface wave can be found at the sea surface besides the tsunami wave.The surface wave arrives at the distance of 600 km from the epicenter earlier than the tsunami 48 minutes,and its maximum amplitude is 0.55 m,which is 2 times as large as that of the sea floor.Tsunami warning information can be taken from the surface wave on the sea surface,which is much earlier than that obtained from the seismograph stations on land.The tsunami speed on the open sea with 3 km depth is 175.8 m/s,which is a little greater than that pre-dicted by long wave theory,(gh)1/2=171.5 m,and its wavelength and amplitude in average are 32 km and 2 m,respectively.After the tsunami propagates to the continental shelf,its speed and wavelength is reduced,but its amplitude become greater,especially,it can elevate up to 10 m and run 55 m forward in vertical and horizontal directions at sea shore,respectively.The maximum vertical accelerations at the epicenter on the sea surface and on the earthquake fault are 5.9 m/s2 and 16.5 m/s2,respectively,the later is 2.8 times the former,and therefore,sea water is a good shock  相似文献   

11.
Long-term series of midnight temperature in the mesopause region have been obtained from spectral observations of hydroxyl airglow emission (OH(6-2) λ840 nm band) at the Tory station (52° N, 103° E) in 2008–2016 and Zvenigorod (56° N, 37° E) station in 2000–2016. On their basis, the Lomb-Scargle spectra of the variations in the period range from ~12 days to ~11 years have been determined. Estimates of the amplitudes of statistically significant temperature fluctuations are made. The dominant oscillations are the first and second harmonics of the annual variation, the amplitudes of which are 23–24 K and 4–7 K, respectively. The remaining variations, the number of which was 16 for the Tory and 22 for Zvenigorod stations, have small amplitudes (0.5–3 K). Oscillations with combinational frequencies, which arise from modulation of the annual variation harmonics, are observed in a structure of the variation spectra in addition to interannual oscillations (periods from ~2 to ~11 years) and harmonics of the annual variation (up to its tenth harmonic).  相似文献   

12.
中国东北新生代板内火山广泛发育,其中诺敏河火山由于上地幔结构研究的匮乏,火山成因尚不明确.利用布设在诺敏河火山周围的40个流动台站所记录到的远震剪切波数据,测量得到82对各向异性参数和219个无效分裂结果.结果表明,研究区快慢波延迟时间变化范围为0.4~1.4s,平均0.78±0.21s;各向异性快波方向范围为N77°W—N18°E,绝大多数快波方向集中在N6.9°W±9.87°,平行于中生代晚期岩石圈伸展变形方向,推测由残留在岩石圈中的化石各向异性所引起.同时,在火山中心及周边部分台站,只观测到无效分裂而没有观测到有效分裂结果,可能是由于残存在岩石圈内的古老形变被上涌的热地幔物质所侵蚀.  相似文献   

13.
2013年7月22日甘肃省定西市岷县漳县交界(东经104.2°,北纬34.5°)发生M6.6地震。甘肃强震动台网在该地区覆盖良好,获得了丰富的主震加速度记录。本文收集整理了此次地震中各强震动台站获得的加速度记录资料并进行了基本处理;经统计分析绘出了峰值加速度分布图。  相似文献   

14.
河北遥测台网速报震级偏差与量规函数关系的研究   总被引:2,自引:2,他引:2  
选取河北数字遥测地震台网自2001年11月正式运行至2004年6月所记录到的河北省及邻区64次较大的速报地震事件,计算单台震级与多台平均震级的偏差。分析发现,目前所用量规函数在震中距小于70km和大于390km时偏小,认为在大震速报中直接采用震中距70~390km的台站参与计算震级是一种更简便可行的办法;发现平均周期在0.2~0.6s的区间内△M相对稳定,因此,在读取最大振幅和周期时,应尽量避免较高频波段或较低频波段,如果是计算机自动读取振幅则应舍掉平均周期小于0.2s和大于0.6S的台站。  相似文献   

15.
利用CAP方法反演了2010年6月5日阳曲MS4.6地震震源机制解,得到震级MW为4.5,节面I走向213°、倾角47°、滑动角-161°,节面II走向109°,倾角76°,滑动角-44°,属于倾滑型;精确定位显示震中处于石岭关隆起区,CAP反演和精定位结果推断本次地震的震源深度为17~20km。震源机制解节面参数与震中附近的山根底断裂和系舟山西麓断裂产状存在差异,这两条断裂不是阳曲地震的发震断裂,由于现场野外地质考察未发现地表断裂,不排除本次地震为隐伏断层活动的结果。  相似文献   

16.
Tsunami Warning Centers issue rapid and accurate tsunami warnings to coastal populations by estimating the location and size of the causative earthquake as soon as possible after rupture initiation. Both US Tsunami Warning Centers have therefore been using Mwp to issue Tsunami Warnings 5–10 min after Earthquake origin time since 2002. However, because Mwp (Tsuboi et al., Bulletin of the Seismological society of America 85:606–613, 1995) is based on the far-field approximation to the P-wave displacement due to a double couple point source, we should only very carefully apply Mwp to data obtained in the near field, at distances of less than a few wavelengths from the fault. On the other hand, the surface waves from Great Earthquakes, including those that occur just offshore of populated areas, such as the 2011 Tohoku earthquake, clip seismographs located near the fault. Because the first arriving P-waves from such large events are often on scale, Mwp should provide useful information, even for these Great Earthquakes. We therefore calculate Mwp from 18 unclipped STS-1 broadband P-wave seismograms, recorded at 2–15° distance from the Tohoku epicenter to determine if Mwp can usefully estimate Mw for this earthquake, using data obtained close to the epicenter. In this case there should be a good chance to get reliable Mwp values for stations at epicentral distances of 9–10°, since the source duration for the Tohoku earthquake is less than 200 s and the time window used to estimate Mwp is 120 s in duration. Our analysis indicates that Mwp does indeed give reliable results (Mw ~ 9.1) beginning at about 11° distance from the epicenter. The values of Mwp from seismic waveforms obtained at 11–15° epicentral distance from the Mw 9.1 off the east coast of Tohuku earthquake of March 11, 2011 fell within the range 9.1–9.3, and were available within 4–5 min after origin time. Even the Mwp values of 7.7–8.4, obtained at less than 5° epicentral distance, exceed the PTWC’s threshold of Mw 7.6 for issuing a regional tsunami warning to coastal populations within 1,000 km of the epicenter, and of Mw 6.9 for issuing a local tsunami warning to the coastal populations of Hawaii.  相似文献   

17.
本文利用架设在内蒙古阿巴嘎地区38个宽频带地震台站记录到的远震数据,通过拟合P波接收函数径向Pms转换波到时和叠加不同方位切向分量,确定了地壳各向异性参数.结果表明,大部分台站Pms延迟时间在0.35 s左右;而少数台站时差较大,推测可能受到索伦缝合带附近地壳残留倾斜界面影响.各向异性快波方向变化范围在N95°E到N180°E之间,平均为N130.6°E±19.1°,推测中下地壳矿物在ENE-WSW向区域主压应力作用下发生晶格定向排列可能是导致地壳各向异性的主要成因.研究区壳幔变形特征和机制不同,属于解耦变形.  相似文献   

18.
吕子强  雷建设 《地球物理学报》2016,59(12):4529-4543
利用2001-2003年期间在2015年4月12日尼泊尔MS8.1级强震震源区流动地震观测记录到的连续波形数据,提取了5~25 s周期的瑞利波相速度频散曲线,并构建了尼泊尔地震震源区二维瑞利波相速度分布图像.以0.5°×0.5°为网格大小将研究区网格化,采用NA算法反演得到尼泊尔地震震源地区三维S波速度结构.结果显示,在上地壳,以主前锋逆冲断裂带(MFT)为界,其以北地区为高波速异常,而其以南为明显低波速异常;在中地壳,以藏南拆离系(STDS)为界,南北两侧速度结构也存在明显差别,以南地区为明显高波速异常,而以北地区为明显低波速异常.这些结构特征说明,印度板块与欧亚板块碰撞挤压作用形成地幔热物质上涌并造成地壳物质部分熔融,并由此形成了东西向拉张的南北向裂谷.2015年尼泊尔MS8.1级主震和最大余震均发生于高低波速异常过渡区且偏向高波速异常区,暗示了这样的波速异常区易于积累能量孕育强震.主震和最大余震的南侧均存在明显的低波速异常,与主喜马拉雅滑脱断裂带(MHT)相对应,可能代表部分熔融或深部流体作用于主边界断裂带(MBT)附近的MHT断裂带,降低断层面上的有效正应力,从而触发尼泊尔强震及最大余震的发生.主震与最大余震之间的余震分布于高低波速异常变化较为明显的地区,说明研究区内地震的发生受震源区附近的速度结构控制.  相似文献   

19.
The temporal and spatial rupture process of the 14 November 2001 Kunlun Mountain Pass earthquake (KMPE) is obtained by inverting the high signal-to-noise-ratio P-waveform data of vertical components of 20 stations with epicentral distances less than 90°, which are of Global Digital Seismogragh Network (GDSN). The inverted results indicate that the KMPE consists of 3 sub-events. The rupture of the first sub-event initiated at the instrumental epicenter (35.97°N, 90.59°E) and then propagated both westwards and eastwards, extending 140 km westwards at the speed of 4.0 km/s and 80 km eastwards at the speed of 2.2 km/s, which appeared to be an asymmetrical bilateral rupture dominantly from east to west. This sub-event formed a 220-km-long fault. Fifty-two seconds after initiation of the first sub-event, at which time the first sub-event was not over but in its healing phase, the rupture of the second sub-event initiated 220 km west of the epicenter and propagated both westwards and eastwards, extending 50  相似文献   

20.
根据中国地震台网和ISC台站提供的P波走时资料,使用差异演化全局优化算法(DE算法)和移动窗方法反演了琉球-台湾-吕宋地区岩石层尺度的P波速度结构.在台站和地震分布较为密集的地区,反演窗口为2°×2°,移动步长为1°;在台站和地震较少的地区,反演窗口为4°×4°左右,移动步长为2°.反演结果揭示出琉球-台湾-吕宋地区壳幔结构的横向差异:琉球岛弧西侧受冲绳海槽地幔热扰动的地壳减薄,东侧由于菲律宾海板决的俯冲挤压地壳略有增厚;欧亚大陆与菲律宾海板块的相互碰撞导致台湾地区地壳及岩石层明显增厚;吕宋及菲律宾北部岩石层受岛弧火山下方热流影响较大.结果表明,非线性全局优化算法和移动窗方法能够用于反演较大尺度速度结构的横向变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号