首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paleomagnetic characteristics of Carboniferous-Permian and Early Mesozoic geological complexes in Mongolia are studied. The studied rocks are shown to possess a multicomponent magnetization. Lowtemperature overprinting components of normal polarity discovered in nearly all of the studied strata were acquired after main deformation stages of the rocks, apparently in the Cenozoic. High-temperature overprinting components of reversed polarity identified in rocks of an active continental margin (ACM) were acquired when bimodal magma melts moved through ACM volcanic sequences. Late Carboniferous and Early Permian paleomagnetic poles of Mongolia calculated from directions of primary magnetization components are, respectively (Λ = 154.6, Φ = 32.2, A = 7.8) and (Λ = 95, Φ = 71, A = 8.7). Apparently, the territory of Mongolia in the Early Permian was a margin of the Siberian craton and was separated from the Northern China block by a basin extending for no less than 2000 km in the E-W direction. The strike of a marginal-continental volcanic belt was submeridional and a plate subducted under the continent from the east. Late Carboniferous-Permian intraplate magmatic complexes of Mongolia formed at various latitudes from various mantle sources during the northward movement of the Mongolian part of the Siberian continent. The oldest bimodal sequences of the Gobi-Tien Shan zone (318–314 Ma) formed at more southern latitudes (40°–47°–54°N) as compared with the 275-Ma complexes of the Gobi-Altai zone (51°–58°–67°N). Thus, sources of the Carboniferous-Permian intraplate magmatism in Central Asia either occupied a vast mantle region (up to 1000 km in the latitude direction) or moved together with the Asian continent.  相似文献   

2.
3.
In the British Tertiary igneous province one commonly observes reversed magnetizations with an abnormally large range of inclinations. Two of the Skye lava sequences which are of Early Eocene age have been chosen to investigate why this range of inclinations exists. Various laboratory studies of the natural remanence reveal a composite palaeomagnetic record. There are two axes of magnetization present: on steeply inclined (~ 75°) and one with an intermediate inclination (~35°). There is an excess of reversed polarity components in the bulk fossil remanence of most lavas and the inclination spread seems basically caused by superposition of these components. The experimental problem of splitting the polyphase magnetization into its separate sub-components is demonstrated by many examples. It is concluded that processes of low-temperature mineral alteration (which strongly overprints the high-temperature exsolution structures) and remagnetization must have been active for a minimum time span of 20 m.y. after the original cooling of the lavas, involving both polarity inversions and a major geomagnetic axis shift in mid-Tertiary times. As a conseqence, the original TRM has probably been erased to a major extent and replaced by CRM's in subsequent times. The polar estimate based on the shallow magnetization group agree well with suggested Lower Tertiary palaeopoles from Northern Ireland and from the Faeroe Irelands. The multivectoral nature of the remanent magnetization in the Skye lavas signifies that even for geologically very young rocks it is necessary to employ much more rigorous analysis techniques than are currently being used in many palaeomagnetic laboratories.  相似文献   

4.
The paleomagnetic study of the Lower Ordovician and Cambrian sedimentary rocks exposed on the Narva River’s right bank revealed a multicomponent composition of natural remanent magnetization. Among four distinguished medium- and high-temperature magnetization components, the bipolar component, which carries the reversal test, is probably the primary component and reflects the geomagnetic field direction and variations during the Late Cambrian and Early Ordovician. The pole positions corresponding to this component have coordinates 22°N, 87°E (dp/dm = 5°/6°) for the Late Cambrian, and 18°N, 55°E (dp/dm = 5°/7°) for the Early Ordovician (Tremadocian and Arenigian). Together with the recently published paleomagnetic poles for the sections of the Early Ordovician in the Leningrad Region and the series of poles obtained when the Ordovician limestones were studied in Sweden, these poles form new key frameworks for the Upper Cambrian-Middle Ordovician segment of the apparent polar-wander path (APWP) for the Baltica. Based on these data, we propose a renewed version of the APWP segment: the model of the Baltica motion as its clockwise turn by 68° around the remote Euler pole. This motion around the great circle describes (with an error of A95 = 10°) both variations in the Baltic position from 500 to 456 Ma ago in paleolatitude and its turn relative to paleomeridians. According to the monopolar components of natural remanent magnetization detected in the Narva rocks, the South Pole positions are 2°S, 351°E (dp/dm = 5°/9°), 39°S, 327°E, (dp/dm = 4°/7°), and 42°S and 311°E (dp/dm = 9°/13°). It is assumed that these components reflect regional remagnetization events in the Silurian, Late Permian, and Triassic.  相似文献   

5.
We have carried out paleomagnetic studies of the Upper Vendian sedimentary rocks from the Bashkirian Meganticlinorium (Southern Ural). The rocks were sampled at three localities spread over more than 100 km. Totally, more than 300 samples were collected from about 40 sampling sites. Stepwise thermal demagnetization up to 700°C revealed a stable component of magnetization of either polarity in 25 sites. The fold test and the reversal test for this component are positive, which is usually regarded as a sound argument in favor of the primary origin of magnetization. However, the Basu paleomagnetic pole (longitude 187.3°E, latitude 1.1°N) is located near the Late Ordovician-Early Silurian segment of the apparent polar wander path for Baltica, which might indicate a Paleozoic remagnetization of Vendian rocks. In this work we analyze different interpretations of the obtained results and evaluate the reliability of the Late Riphean and Vendian paleomagnetic data for Baltica.  相似文献   

6.
Paleomagnetic records of the Gauss-Matuyama reversal were obtained from two loess sections at Baoji on the Chinese Loess Plateau. Stepwise thermal demagnetization shows two obvious magnetization components. A low-temperature component isolated between 100 and 200–250°C is close to the present geomagnetic field direction, and a high-temperature component isolated above 200–250°C reveals clearly normal, reversed, and transitional polarities. Magnetostratigraphic results of both sections indicated that the Gauss-Matuyama reversal consists of a high-frequency polarity fluctuation zone, but the characteristic remanent magnetization directions during the reversal are clearly inconsistent. Rock magnetic experiments demonstrated that for all the specimens with normal, reversed, and transitional polarities magnetite and hematite are the main magnetic carriers. Anisotropy of magnetic susceptibility indicates that the studied loess sediments have a primary sedimentary fabric. Based on virtual geomagnetic pole latitudes, the Gauss-Matuyama reversal records in the two sections are accompanied by 14 short-lived geomagnetic episodes (15 rapid polarity swings) and 12 short-lived geomagnetic episodes (13 rapid polarity swings), respectively. Our new records, together with previous ones from lacustrine, marine, and aeolian deposits, suggest that high-frequency polarity swings coexist with the Gauss-Matuyama reversal, and that the Gauss-Matuyama reversal may have taken more than 11 kyr to complete. However, we need more detailed analyses of sections across polarity swings during reversals as well as more high-resolution reversal records to understand geomagnetic behavior and inconsistent characteristic remanent magnetization directions during polarity reversals.  相似文献   

7.
Magnetic anomalies over the continental shelf off the east coast of India (Orissa) suggest the presence of a highly magnetic rock type magnetized with an intensity of 900 nT in a direction, azimuth(A) = 150° and inclination(I) = +65°. This suggest the occurrence of igneous volcanic rocks which is confirmed from samples found below Tertiary sediments from a few boreholes in this region. The depth of this rock type as estimated from magnetic anomalies varies from approximately 1–2 km near the coast to 4–4.5 km towards the shelf margin. This direction of magnetization is the reverse of the reported direction of magnetization for the Rajmahal Traps of the Cretaceous period (100–110 m.y). A small strip of the body near the continental shelf margin appears, however, to possess normal magnetization suggesting the occurrence of normal and reversed polarities side by side, a characteristic typical for oceanic magnetic anomalies. The reversed polarity of the rocks on the continental shelf suggests that they correspond probably to the MO reversal (115 m.y.) on world magnetostratigraphic scale and provide a paleolatitude of 47°S for the land mass of India which agrees with the palaeoreconstruction of India and Antarctica. In this reconstruction, the Mahanadi Gondwana graben on the Indian subcontinent falls into line with the Lambert Rift in Antarctica, suggesting a probable common ancestry. The volcanic rocks on the continental shelf off the east coast of India might represent a missing link, that is, rocks formed between India and Antarctica at the time of the break-up of Gondwanaland. Satellite magnetic anomalies (MAGSAT) recorded over the Indian shield and interpreted in terms of variations in the Curie point geotherm provide a direction of magnetization which also places this continent close to Antarctica. As such MAGSAT anomalies recorded over eastern Antarctica are found compatible with those recorded over the Indian shield.  相似文献   

8.
Precambrian amphibolite and hyperite rocks from the Bamble and Kongsberg areas in SE Norway, and amphibolite rocks from SW Sweden were investigated for evidence of remagnetization by the Sveconorwegian metamorphic episode. The similarity of the characteristic natural remanent magnetization directions, shown by the various rocks from the Bamble and Kongsberg areas, indeed supports the idea of remagnetization on a regional scale. Therefore the average pole position at 3°S, 153°W, determined from six sites in these areas, is considered to reflect the average virtual pole position for the post-Sveconorwegian period of uplift and cooling (1,120–975) · 106 year ago. The pole positions determined from the characteristic natural remanent magnetization directions of amphibolite rocks in SW Sweden are indicative of being somewhat younger.In addition, two hyperite dikes were studied near Karlshamn in SE Sweden. Their characteristic natural remanent magnetization is consistent with that of the hyperite dikes in central south Sweden (Mulder, 1971).The Precambrian apparent polar wandering path for Europe is reconstructed on the basis of twenty-three pole positions from the Baltic Shield and three pole positions from Great Britain. This pole path requires an average angular rate of apparent polar wandering of 0.2–0.3° per 106 year.  相似文献   

9.
Relatively unmetamorphosed Paleozoic miogeoclinal carbonate rocks in the Basin and Range of E Nevada, SW Nevada and adjacent California, and W Utah yield low-inclination magnetizations that reflect pervasive, regional remagnetization around the close of the Paleozoic. The rocks range in age from mid-Cambrian through Pennsylvanian and lie generally in a broad belt between the mid-Paleozoic Roberts Mountain Thrust and the late Cretaceous Sevier thrusts. Most of the magnetizations reside in magnetite, but at one site the magnetization is evidently carried by pyrrhotite. Preliminary rock-magnetic data suggest samples with magnetite-borne remanences have wasp-waisted hysteresis curves typical of remagnetized carbonates. The origin of the remagnetization is problematic and probably polygenetic: both the Permo-Triassic Sonoma orogeny and deformation associated with the Ancestral Rockies seem too spatially limited, but magnetite from smectite destruction seems difficult to reconcile with the great stratigraphic extent of late Paleozoic remagnetization unless combined with thermal resetting of the lowermost units. A number of sites also appear to have undergone some vertical-axis rotation, and the sense and magnitude of these rotations are grossly consistent with independent geologic evidence. However, the probably large age range of the low-inclination components complicates their use for resolving tectonic rotations. Younger, intermediate-stability components of magnetization, probably of Cretaceous or Cenozoic age, are also found in many sites and also probably have multiple origins. At sites farther W, the late Paleozoic component is not found, which probably reflects its destruction by later Mesozoic or Cenozoic heating. At sites farther E, on and near the Colorado Plateau, gray carbonates yield only Cenozoic magnetizations. Some reddish, oxidized carbonates there locally contain a hematite-borne magnetization of late Paleozoic age. However, it is probably related to the development of thick continental redbed sequences in overlying strata on the plateau rather than to the remagnetization process(es) in the miogeocline.  相似文献   

10.
The characteristic magnetization of redbed samples from the upper part of the Série d'Abadla (probably Early Permian 31°N, 2.7°W) has a mean direction derived from 13 sites of D=129°, I=11°, k=59, α95=6° and a corresponding south paleopole at 29°S, 60°E, A95=5°. All directions have reversed polarity. The paleolatitude of the northern fringe of the Saharan craton was 6°±3°S, which is in excellent agreement with that for the Moroccan Meseta. Therefore, in all probability, there has been no paleolatitudinal displacement greater than about 500 km of the Moroccan Meseta relative to Africa since Permian time. Comparison of results from sedimentary rocks shows no evidence for relative rotation of the Moroccan Meseta since Permian time. Small apparent rotations are indicated by evidence from massive trachyandesite lavas from Morocco, but we argue that these could have arisen from the incomplete averaging of secular variation and uncertainties in estimates of paleohorizontal, rather than from true tectonic rotations. The combined latest Carboniferous/Early Permian paleopole for the Saharan craton and the Meseta differs form the path of apparent polar wandering for North America when the continents are assembled in Wegener's Pangea (Pangea A, in which northwest Africa is opposite North America). It is in reasonable agreement when the continents are assembled in the Pangea B configuration (northwest Africa opposite Europe).  相似文献   

11.
Palaeomagnetic investigation of basic intrusives in the Proterozoic Mount Isa Province yields three groups of directions of stable components of NRM after magnetic cleaning in fields up to 50 mT (1 mT= 10 Oe). The youngest group (IA) includes results from the Lakeview Dolerite, and yields a palaeomagnetic pole at 12°S, 124°E (A95 = 11°). The second group (IB) has a palaeomagnetic pole 53°S, 102°E (A95 = 11°). The third group (IC) is derived from the Lunch Creek Gabbro and contains normal and reversed polarities of magnetization with a palaeomagnetic pole at 63°S, 201°E (A95 = 9°). Some samples from the gabbro have anomalously low intensities of remanent magnetization in obscure directions attributed to the relative enhancement of the non-dipole component of the palaeomagnetic field during polarity reversal. The present attitude of the igneous lamination is probably of primary, not tectonic origin.  相似文献   

12.
Paleomagnetic data may contribute to studying the formation history of orogens; in particular, these data can promote identifying the pattern and scales of deformations at the final stages of orogeny. We have conducted paleomagnetic studies of the Paleozoic and Neoproterozoic sediments in the western part of the Western Ural Megazone in South Urals. The detailed thermal demagnetization revealed the intermediate temperature magnetization component in most samples. This magnetization has a reversed polarity and has been acquired before folding or at the early stages of the deformations. The directions of this component are narrowly grouped in rocks of a different age in all the segments of the studied part of South Urals, and the regional average direction closely agrees with the reference paleomagnetic direction of 270 Ma for the East European Platform. The results of our study suggest the following conclusions: (1) the main magnetization component in the studied sedimentary rocks has a secondary origin; (2) this component has an age of ~270 Ma and has been formed during the Kungur deformations (279–272 Ma ago) of the western part of South Urals; (3) neither a general rotation of the studied part of the Urals relative to the East European Platform nor local rotations of the individual tectonic blocks relative to each other are revealed; (4) the changes in the strike of the structures from NE within the Karatau uplift to the submeridional in the remaining part of the Urals is not an oroclinal bend.  相似文献   

13.
Continous marine sedimentation characterizes many Late Permian to Early Triassic sections on the Yangtze terrane in South China. The Permo-Triassic (P/Tr) boundary section at Shangsi (Sichuan Province) consists of limestones intercalated with clays and mudstones which belong to the Wuchiapingian and Changxingian (Upper Permian) and the Griesbachian and Dienerian (Lower Triassic) stages. The P/Tr boundary is formed by a clay horizon with an unusually high iridium concentration. The intensity of natural remanent magnetization is very low with a mean of 0.15 mA m−1. About 40% of the samples contain secondary or unstable magnetization components only, whereas the remaining samples carry a characteristic remanent magnetization thought to reflect the polarity of the geomagnetic field during deposition with sufficient accuracy. Normal and reversed polarity of the characteristic magnetization constitute a pattern of at least six polarity zones, the P/Tr boundary being situated very close to the transition from a reversed to a normal polarity zone. The Shangsi polarity sequence represents part of the Illawarra interval of mixed polarity, the exact beginning of which has still to be determined.  相似文献   

14.
15.
A paleomagnetic record of the geomagnetic field during its change of polarity from the reversed Matuyama epoch to the normal Brunhes epoch has been obtained from sediments of ancient Lake Tecopa in southeastern California. The polarity switch occurs in siltstone of uniform composition, and anhysteretic magnetization experiments indicate that the magnetic mineralogy does not change markedly across the transition. Within the transition interval, intensity of the magnetization drops to a minimum of 10% of the intensity after the transition. The interval of low field intensity preceded and lasted longer than the interval during which the field direction reversed, the latter being shorter than the interval of low intensity by a factor of at least 2.5. The VGP's make a smooth transit from reversed to normal polarity, with the path lying in the sector of longitude between 30°E and 60°W. Pole paths for the Brunhes-Matuyama transition recorded in California and Japan are completely different, indicating that the dipole field decayed. The transition field appears to be nondipolar, and there is no evidence for an equatorial component. Since there is little dispersion of the VGP's about a great circle path, it is possible that large-scale drift of the nondipole field ceased during this polarity transition.  相似文献   

16.
An intensive paleomagnetic investigation has been conducted on the Middle Triassic Leikoupo Formation on the Wangcang section (32.14°N, 103. 17°E). The results indicate the magnetic minerals are dominant by multidomain magnetite or maghemite, and the characteristic remnant magnetization revealed by stepwise thermal/alternating field demagnetization is close to the present-day geomagnetic direction of the sampling site. This suggests that dolomitization/thermal viscous magnetization is responsible for the remagnetization of this kind of rocks.  相似文献   

17.

An intensive paleomagnetic investigation has been conducted on the Middle Triassic Leikoupo Formation on the Wangcang section (32.14°N, 103. 17°E). The results indicate the magnetic minerals are dominant by multidomain magnetite or maghemite, and the characteristic remnant magnetization revealed by stepwise thermal/alternating field demagnetization is close to the present-day geomagnetic direction of the sampling site. This suggests that dolomitization/thermal viscous magnetization is responsible for the remagnetization of this kind of rocks.

  相似文献   

18.
New paleomagnetic analyses of Triassic, Cretaceous and Eocene strata in the south-central Pyrenees show evidence for a widespread remagnetization, located along the southern border of the Axial Zone, the Internal Sierras, and the northern part of the Jaca-Pamplona basin. This remagnetization, always reversed in polarity, was acquired after an extensive period of Late Eocene–Early Oligocene folding and tilting in the area, and affects limestones, sandstones, marls and red beds. In addition, a characteristic prefolding component was identified in 30% of Upper Cretaceous and Triassic red beds. These results, together with a revaluation of previously published paleomagnetic data from the central Pyrenees, indicate that the spatial distribution of the postfolding remagnetization coincides with that of a domain of pressure solution cleavage. A relationship between the intensity of the remagnetization and the characteristic (prefolding component) with respect to the density of cleavage surfaces, leads us to propose a mechanism for the remagnetization related to the development of pressure solution cleavage that is framed within the tectonic evolution of the central Pyrenees. Partial dissolution of rock under tectonic compression leads to the liberation and subsequent accumulation of insoluble minerals in cleavage planes. Magnetic grains are part of the relatively insoluble residue, and they reorient in the presence of the ambient field after they are freed during dissolution of the rock matrix. Chemical reequilibrium (dissolution and/or neoformation of magnetic carriers) during this process cannot be excluded. The remagnetization mechanism we propose can help to explain widespread remagnetizations in low to moderately deformed rocks without the need of large-scale migration of orogenic fluids.  相似文献   

19.
Two components of magnetization have been observed in fourty-four samples (five sites) of the anorthosites in the Arden Pluton. One component, withD = 325°,I = ?75°,k = 32, α95 = 13.6°, was isolated in many samples by progressive alternating field demagnetization and in the remainder of the collection by the use of intersecting great circles of remagnetization. The corresponding pole is located at 16°N, 303°E,dp = 22.7°,dm = 24.9°. Assuming the age of the last metamorphism (Taconic, ca. 440 Ma) of the Cambrian Arden Pluton to be the age of the magnetization, this pole deviates significantly from coeval poles thus far obtained from the North American craton. The preferred explanation for this deviation is that the Arden Pluton and the surrounding Piedmont rocks belonged to a different Early Paleozoic plate on the south or east side of the Iapetus Ocean, most likely the African (Gondwana) plate, and that it was transferred to the North American plate during a subsequent continental collision.  相似文献   

20.
Based on the results of the preliminary paleomagnetic investigation of 57 Precambrian dikes of the Kola Peninsula, in 31 of them a stable monopolar component of natural remanent magnetization (NRM) is revealed (D = 353.2°, I = 53.0°, K = 58, and α95 = 3.4°). The peculiarities of the distribution of this magnetization component within the Kola Peninsula and the rock magnetic characteristics of the dikes in which this component is isolated suggest its secondary nature and relate the mechanism and formation time to the remagnetization processes which took place in the northwest of Fennoscandia about 1.8 billion years ago during the Svecofennian orogeny. The corresponding geomagnetic pole of Fennoscandia has the coordinates Plat = 54.5°, Plong = 224.0°, and A95 = 3.9° and is located in the immediate vicinity of the known Paleoproterozoic (1.9–1.7 Ga) poles of Baltica (Khramov et al., 1997; Veikkolainen et al., 2014).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号