首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The reflecting events from Moho and other interfaces within the crust are recognized from the wavefield characteristics of P- and S-wave for the 480km long wide-angle seismic profile between Peigu Tso and Pumoyong Tso. Then, seismic crustal structures of P- and S-wave velocities and Poisson ratio under the nearly east-west profile in southern Tibet are interpreted by fitting the observed traveltimes with the calculated ones by forward modelling. Our interpreting results demonstrate that the crustal thickness varies remarkably in the east-west direction, showing a pattern that the crust could be divided into three parts bounded by the west of Dingri and the east of Dinggyê, respectively, where the depth of Moho is about 71km for the western part, about 76km for the middle and about 74km for the eastern. There is one lower velocity layer (LVL) at the bottom of the upper crust with depth of 20–30 km. One of the distinct features is that the thickness of LVL abruptly thins from 24km on the west to 6km on the east. The other is that the velocity variation in the crust along east-west direction for both P- and S-wave displays a feature as quasi-periodic variation. The lower velocity (compared to the average value for the continent of the globe) in the lower crust and three sets of north-southward active normal faults are probably attributed to the coupling process of material delamination in the lower crust, crustal thicking and east-westward escape of the crustal material accompanied with the continental collision between India and Eurasia Plate.  相似文献   

2.
We recognized 6 sets of reflecting P- and S-wave events from Moho and other interfaces within the crust, respectively, with the wide-angle seismic data acquired from 510 km-long Selincuo-Ya'anduo profile in the northern Tibet, fitted the observed events with forward modeling, and interpreted crustal structure of P- and S-wave velocities and Poisson's ratio under the profile. The results demonstrate that the crustal structure between Yarlungzangbo and Bangong-Nujiang sutures changes abruptly, and the crust is the thickest at the middle part of the profile with thickness of 80 km or more. The "down-bowing" Moho is the striking feature for the crustal variation along the west-east direction. The Moho uplifts with steps, and the uplifting rate westward is greater than that eastward. The heterogeneity of P- and S-wave velocities exists both vertically and horizontally, and one lower velocity layer (LVL) exists with the depth range of 27-34 km and the thickness range of 5-7 km. For the upper crust, Poisson's ratio is the lowest at the middle part of the profile; for the lower crust, the Poisson's ratio at the east segment is lower than that at west segment, which means that the crustal rigidity for the upper crust is different from the lower crust, and the lower crust under the east segment of the profile is more ductile. We infer that the substance in the lower crust endured eastward flow along with the collision between Eurasian and Indian plates, and the "down-bowing" Moho is attributable to the multi-phase E-W tectonic processes.  相似文献   

3.
We recognized 6 sets of reflecting P- and S-wave events from Moho and other interfaces within the crust, respectively, with the wide-angle seismic data acquired from 510 km-long Selincuo-Ya’anduo profile in the northern Tibet, fitted the observed events with forward modeling, and interpreted crustal structure of P- and S-wave velocities and Poisson’s ratio under the profile. The results demonstrate that the crustal structure between Yarlungzangbo and Bangong-Nujiang sutures changes abruptly, and the crust is the thickest at the middle part of the profile with thickness of 80 km or more. The “down-bowing” Moho is the striking feature for the crustal variation along the west-east direction. The Moho uplifts with steps, and the uplifting rate westward is greater than that eastward. The heterogeneity of P- and S-wave velocities exists both vertically and horizontally, and one lower velocity layer (LVL) exists with the depth range of 27–34 km and the thickness range of 5–7 km. For the upper crust, Poisson’s ratio is the lowest at the middle part of the profile; for the lower crust, the Poisson’s ratio at the east segment is lower than that at west segment, which means that the crustal rigidity for the upper crust is different from the lower crust, and the lower crust under the east segment of the profile is more ductile. We infer that the substance in the lower crust endured eastward flow along with the collision between Eurasian and Indian plates, and the “down-bowing” Moho is attributable to the multi-phase E-W tectonic processes.  相似文献   

4.
2006年底,我们沿“张渤地震带”布设了一条从唐海—北京—商都的宽频带地震台阵剖面.本文利用台阵记录的远震波形资料,通过接收函数和面波联合反演对剖面下方100 km深度范围内地壳上地幔S波速度结构进行了研究.结果表明剖面东段莫霍面深度约30~34 km,西段深度约38~42 km,平原与山区的过渡地带地壳厚度变化较快.地壳内部10~20 km深度范围内存在多个低速体.在唐山7.8级地震震区附近Moho面出现小幅度隆起,中地壳存在明显的S波低速体.张家口以西,剖面下方10~20 km范围内存在两个S波低速体,张北6.2级地震发生在这两个低速体之间狭小的高速区. 在观测剖面附近,历史上发生的4个大震都与壳内低速体的分布有关. 张家口以东,上地幔普遍存在低速层,顶部埋深在60~80 km之间,并表现出明显的东部浅西部深的特点.  相似文献   

5.
利用青海和甘肃地震台网2007—2009年记录的远震波形资料,提取多频段P波接收函数,反演得到了青藏高原东北缘及相邻地块下方0~100km深度的地壳和上地幔S波速度结构.结果表明:(1)青藏高原东北缘的上、下地壳之间普遍存在一个S波速度低速层,其深度由南端的约35km向北变浅约为20km,推测该低速层为一壳内滑脱层,表明东北缘地区的上地壳变形与下地壳解耦,从滑脱层的深度分布可以认为青藏高原东北缘的地壳缩短自南向北进行,现阶段以上地壳增厚为主;(2)昆仑—西秦岭造山带的下地壳厚度较北侧的祁连地块薄,一种推测是西秦岭造山带的下地壳抗变形能力更强,也可能这种差异在块体拼合前已经存在;(3)青藏高原东北缘及鄂尔多斯和阿拉善地块的下地壳S波速度随深度的增加而增加,这种正梯度增加的S波速度结构反映较高黏滞性的下地壳,推测青藏高原东北缘的地壳结构不利于下地壳流的发育.  相似文献   

6.
龙门山断裂带位于青藏高原东缘,在中生代和晚新生代经历强烈的构造变形,急剧抬升,是研究青藏高原隆升和扩展动力学过程的重要窗口.本文利用起伏地形下的高精度成像方法,对"阿坝一龙门山一遂宁"宽角反射/折射地震数据重新处理,通过走时反演重建研究区地壳速度结构.剖面自西向东跨越松潘一甘孜块体、龙门山断裂带和四川盆地,不同块体速度结构表现了显著的差异.松潘甘孜块体地表复理石沉积层内有高速岩体侵入,低速层低界面起伏不平反映了该区的逆冲推覆构造.中下地壳速度横向上连续变化,平均速度较低(约6.26 km·s~(-1)).四川盆地沉积层西厚东薄,并在西侧出现与挤压和剥蚀作用相关的压扭形态.中下地壳西薄东厚,平均速度较高(约6.39 km.s~(-1)).龙门山断裂带是地壳速度和厚度的陡变带,Moho面自西向东抬升约13 km.在整个剖面上Moho面表现为韧性挠曲,中下地壳横向上连续变化,推测古扬子块体已到达松潘甘孜块体下方.松潘甘孜块体下方中下地壳韧性变形,并在底部拖曳着被断裂切割的脆性上地壳,应力在不同断裂上积累和释放,诱发大量地震.  相似文献   

7.
A teleseismic profile consisting of 26 stations was deployed along 30°N latitude in the eastern Tibetan Plateau. By use of the inversion of P-wave receiver function, the S-wave velocity structures at depth from surface to 80 km beneath the profile have been determined. The inversion results reveal that there is significant lateral variation of the crustal structure between the tectonic blocks on the profile. From Linzhi north of the eastern Himalayan Syntaxis, the crust is gradually thickened in NE direction; the crustal thickness reaches to the maximum value (∼72 km) at the Bangong-Nujiang suture, and then decreased to 65 km in the Qiangtang block, to 57–64 km in the Bayan Har block, and to 40–45 km in the Sichuan Basin. The eastern segment of the teleseismic profile (to the east of Batang) coincides geographically with the Zhubalong-Zizhong deep seismic sounding profile carried out in 2000, and the S-wave velocity structure determined from receiver functions is consistent with the P-wave velocity structure obtained by deep seismic sounding in respect of the depths of Moho and major crustal interfaces. In the Qiangtang and the Bayan Har blocks, the lower velocity layer is widespread in the lower crust (at depth of 30–60 km) along the profile, while there is a normal velocity distribution in lower crust in the Sichuan Basin. On an average, the crustal velocity ratio (Poisson ratio) in tectonic blocks on the profile is 1.73 (σ = 0.247) in the Lhasa block, 1.78 (σ = 0.269) in the Banggong-Nujiang suture, 1.80 (σ = 0.275) in the Qiangtang block, 1.86 (σ = 0.294) in the Bayan Har blocks, and 1.77 (σ = 0.265) in the Yangtze block, respectively. The Qiangtang and the Bayan Har blocks are characterized by lower S-wave velocity anomaly in lower crust, complicated Moho transition, and higher crustal Poisson ratio, indicating that there is a hot and weak medium in lower crust. These are considered as the deep environment of lower crustal flow in the eastern Tibetan Plateau. Flowage of the ductile material in lower crust may be attributable to the variation of the gravitational potential energy in upper crust from higher on the plateau to lower off plateau. Supported by the National Natural Science Foundation of China (Grants No. 40334041 and 40774037) and the International Cooperation Program of the Ministry of Science and Technology of China (Grant No. 2003DF000011)  相似文献   

8.
云南思茅—中甸地震剖面的地壳结构   总被引:7,自引:7,他引:7       下载免费PDF全文
张智  赵兵  张晰  刘财 《地球物理学报》2006,49(5):1377-1384
云南思茅—中甸宽角反射/折射地震剖面切割松潘—甘孜、扬子和华南三个构造单元的部分区域. 我们利用初至波和壳内反射波走时层析成像获得地壳纵波速度结构. 在获得新的地壳速度结构模型基础上,利用地震散射成像思想和低叠加次数的叠前深度偏移方法重建了研究区的地壳、上地幔反射结构. 综合分析研究区地壳P波速度模型和壳内地震反射剖面发现:沿测线从北至南地壳厚度从约50 km减薄至35 km左右,地壳厚度的减薄量主要体现在下地壳,剖面北段下地壳厚度约为30 km,剖面南段下地壳厚度仅为15 km左右;上地幔顶部局部位置P波速度值偏低,一般为76~78 km/s,反映出云南地区是典型的构造活动区的特点.剖面沿线地壳内地震反射发育,其中莫霍强反射出现在景云桥下方;在景云桥弧形断裂带8~10 km深处出现宽约50 km的强反射带.  相似文献   

9.
南北地震带岩石圈S波速度结构面波层析成像   总被引:13,自引:8,他引:5       下载免费PDF全文
本文利用天然地震面波记录和层析成像方法,研究了南北地震带及邻近区域的岩石圈S波速度结构和各向异性特征.结果表明南北地震带的东边界不但是地壳厚度剧变带,也是地壳速度的显著分界.其西侧中下地壳的S波速度显著低于东侧,强震大多发生在低速区内部和边界.青藏高原东缘中下地壳速度显著低于正常大陆地壳,在松潘甘孜地块和川滇地块西部大约25~45 km深度存在壳内低速层;这些低速特征与高原主体的低速区相连,有利于下地壳物质的侧向流动.地壳的各向异性图像与下地壳流动模式相符,即下地壳物质绕喜马拉雅东构造结运动,东向的运动遇到扬子坚硬地壳阻挡而变为向南和向北东的运动.面波层析成像结果支持青藏高原地壳运动的下地壳流动模型.南北地震带的岩石圈厚度与其东侧的扬子和鄂尔多斯地块相似但速度较低.川滇西部地块上地幔顶部(莫霍面至88 km左右)异常低速;松潘甘孜地块上地幔盖层中有低速夹层(约90~130 km深度).岩石圈上地幔的速度分布图像与地壳显著不同,在高原主体与川滇之间存在北北东向高速带,可能会阻挡地幔物质的东向运动.上地幔各向异性较弱且与地壳的分布图像显然不同.因此青藏高原岩石圈地幔的构造运动具有与地壳不同的模式,软弱的下地壳提供了壳幔运动解耦的条件.  相似文献   

10.
南海西沙地块岛屿地震观测和海陆联测初步结果   总被引:6,自引:1,他引:5       下载免费PDF全文
为了研究南海西沙地块下方的地壳结构,我们在岛屿区架设了流动地震台站进行天然地震观测和海底地震仪的人工地震探测.本文利用远震接收函数方法和射线追踪方法对琛航台的远震数据和海陆联测数据进行了初步处理和分析,建立了琛航岛下方的一维横波速度模型以及横穿琛航岛的二维地壳结构模型.琛航岛顶部存在2 km厚的新生代低速沉积层,下地壳...  相似文献   

11.
台湾海峡大容量气枪震源海陆联测初探   总被引:2,自引:0,他引:2       下载免费PDF全文
本文利用在我国台湾海峡采用大容量气枪震源开展海陆联测获得的广角地震测线HX9, 采用二维射线追踪法反演得到了HX9剖面的地壳二维速度结构和地壳界面形态, 初步探明了福建—台湾海峡海陆过渡带的深部构造. 结果表明: HX9剖面的地壳内存在两个速度间断面, 即C界面和莫霍面, 其中: C界面为上、 下地壳的分界面, 是一个小的速度不连续面, 速度变化值达0.08—0.16 km/s; 而地壳底部的莫霍面则有较大的速度反差, 变化值达1.02—1.29 km/s, 莫霍面上、 下的速度分别为6.75—6.97 km/s和8.00—8.07 km/s. 沿剖面的地壳界面形态总体起伏不大, 陆域上、 下地壳的厚度和界面变化趋势均相似, 从陆域到海域呈微倾斜变化趋势, 表现为减薄陆壳的特征. 莫霍面陆域埋深约为31.6 km, 向福建东南沿海逐渐减薄至27.4 km左右.   相似文献   

12.
香港地区海陆地震联测及深部地壳结构研究   总被引:7,自引:0,他引:7       下载免费PDF全文
为了探明南海北部海陆过渡带的深部地壳结构,我们在香港外海域进行了一次海陆地震联洲的实验,利用固定地震台网远距离接收海上气枪信号,接收距离远达200多km,并利用此次实验的测线1剖面模拟得到了海陆过渡带的深部地壳速度结构.速度结构模型表明:研究区海陆过渡带的地壳结构非均匀性较明显,由陆至海沉积层有一个突然增厚的特点;莫霍面深度约为26~29 km,上地壳P波速度约为5.5~6.4 km/s,下地壳P波速度为6.5~6.9 km/s.在担杆列岛往海方向有一个低速破碎带,其上地壳P波速度为5.2~6.1 km/s,下地壳P波速度为6.2~6.4 km/s,结合野外地质调查的结果,推测它可能为滨海断裂带.在担杆列岛往陆方向香港和深圳之间的研究区域,莫霍面有较大起伏,可能与此处发育的海丰断裂有关.  相似文献   

13.
为研究珠江三角洲及近海区域深部地壳结构,广东省地震局联合多家单位于2015年在珠江口区域实施了大规模三维人工地震测深实验.本文利用珠江口西侧NW向鼎湖—高明—金湾L1测线数据进行处理、解释,采用地震射线走时正演构建了该剖面二维速度模型.结果表明:沿剖面莫霍面深度从NW向SE,从30.0km逐渐抬升到28.0km,鼎湖至高明间存在莫霍面隆起;中地壳低速层非均匀连续,NW一侧速度低于SE一侧,且莫霍面隆起区之上为最显著的低速异常区域,中心最低速度为6.05km·s-1;吴川—四会断裂、广州—恩平断裂可能为深部物质上涌的主要通道之一,两条断裂所围限的从珠江口西侧的鼎湖、高明往北东延伸到珠江口东侧的清远、从化区域为可能的连续莫霍面隆起区.  相似文献   

14.
银川盆地深地震断层的三维透射成像   总被引:7,自引:2,他引:5       下载免费PDF全文
为了获得三维地震透射成像技术在活断层探测中的有效性和应用价值的评价,在银川盆地中北部布设了一个三维地震透射台阵,利用该台阵获得的基底初至折射波和莫霍界面反射波资料,采用有限差分反演、时间项反演和连续速度模型反演方法,对台阵区域基底及上地壳结构进行了分析.结果表明:研究区基底呈东西浅、中部深的界面形态,且西陡东缓,最深处大致位于芦花台至西大滩一带,埋深达7 km.芦花台断层、银川—平罗断层、黄河断层在研究区内均表现为北北东走向的速度差异条带,且断层两侧基底及沉积界面埋深存在显著变化.芦花台断层东倾,倾角较陡,延伸至研究区基底之下;银川—平罗断层倾向西,是一条超基底的隐伏断层;黄河断层西倾,延伸深度超过研究区基底.本探测结果证明,初至折射波与莫霍面反射波探测相结合的三维地震透射台阵技术能够给出研究区上地壳三维细结构图像,不仅可以揭示主要断裂的展布位置、浅部空间形态和特征,而且可以揭示断裂向基底之下的延伸状况.  相似文献   

15.
The Sanjiang area in southwest China is considered as a tectonic intersection belt between the Tethys-Alps and the western Pacific, and has endured three-phase evolution processes: Proto-Tethys,Paleo-Tethys and Meso-Tethys[1―4]. In this area, its tectonics and struc- ture are extremely complicated, and intensively extru-sive deformation and faults are widely developed[1―3]. For that, the area is considered as the ideal na- ture-laboratory to study the evolution of Paleo-Tethys and also …  相似文献   

16.
Using seismic data of about one year recorded by 18 broadband stations of ASCENT project,we obtained 2547 receiver functions in the northeastern Tibetan Plateau.The Moho depths under 14 stations were calculated by applying the H-κ domain search algorithm.The Moho depths under the stations with lower signal-noise ratio(SNR) were estimated by the time delay of the PS conversion.Results show that the Moho depth varies in a range of ~40–60 km.The Moho near the Haiyuan fault is vague,and its depth is larger than those on its two sides.In the Qinling-Qilian Block,the Moho becomes shallower gradually from west to east.To the east of 105°E,the average depth of the Moho is 45 km,whereas the west is 50 km or even deeper.Combining our results with surface wave research,we suggest a boundary between the Qinling and the Qilian Mountains at around 105°E.S wave velocities beneath 15 stations have been obtained through a linear inversion by using Crust2.0 as an initial model,and the crustal thickness that was derived by H-κ domain search algorithm was also taken into account.The results are very similar to the results of previous active source studies.The resulting figure indicates that low velocity layers developed in the middle and lower crust beneath the transition zone of the Tibet Block and western Qinling,which may be related to regional faults and deep earth dynamics.The velocity of the middle and lower crust increases from the Songpan Block to the northeastern margin of Tibetan Plateau.Based on the velocity of the crust,the distribution of the low velocity zone and the composition of the curst(Poisson's ratio),we infer that the crust thickening results from the crust shortening along the direction of compression.  相似文献   

17.
利用接收函数方法研究四川地区地壳结构   总被引:3,自引:0,他引:3  
范军  朱介寿  江晓涛  吴朋 《地震》2015,35(1):65-76
采用接收函数反演和共转换点(CCP)偏移叠加成像方法, 利用四川数字地震台网宽频带的52个区域固定地震台站和布设的两条52个宽频带流动地震观测台站的远震地震波形数据资料, 对四川地区地壳结构进行研究。 结果表明, 四川地区的Moho面深度在青藏高原和四川盆地差异明显, 在川西高原地区地壳厚度为52~68 km, 在川滇地块地壳厚度为50~60 km, 在中地壳内存在不连续的低速层分布; 而在四川盆地地壳厚度为38~45 km, 地壳内没有低速层存在。 Moho面深度从川西高原的60多公里至四川盆地的约40 km, 在二者的交界处龙门山断裂带下面, 存在厚度约30 km左右宽的下降过渡带, 说明其下的Moho面可能受断层影响, 结构比较复杂; 在高原地区的上地壳界面和下地壳上界面比四川盆地的相应界面深; 高原地区在中地壳的上部有不连续的低速层分布, 在松潘—甘孜地块的上地壳下部存在向南东运动的脆性推覆体, 在羌塘—理塘地块的上地壳下部存在向南东和南运动的脆性物质流动。  相似文献   

18.
用转换函数方法研究喜马拉雅地区速度结构   总被引:4,自引:2,他引:2       下载免费PDF全文
利用流动数字地震台网提供的三分量地震波形记录,应用转换函数及快速模拟退火算法对喜马拉雅山脉地区46个地震站下的地壳横波速度结构进行了反演,为进一步揭示青藏高原喜马拉雅山脉地区的动力学演化过程提供了可靠的地球物理证据.根据本文结果可清晰看到,喜马拉雅山脉地区作为当今地壳活动最活跃的地区,物质交换非常活跃,地下结构远远未达到平衡,地壳速度有很大差异,在板块边界处莫霍界面速度间断不是非常明显,自喜马拉雅南坡向高原腹地,地壳厚度大致从55 km增加到80 km;沿经度方向,莫霍面也有一定的起伏.通过研究得到另外一个证据是,在喜马拉雅的主中央逆冲断裂,由大陆碰撞产生的主要构造,其深度可能要大于80 km.  相似文献   

19.
佳木斯地块和松嫩地块是东北地区两个十分重要的地质构造单元,由于二者之间发育一套含有蓝片岩的俯冲增生杂岩-黑龙江杂岩(原称黑龙江群),其地质构造意义长期为人们所关注.巴彦—桦南深反射地震剖面揭示,佳木斯地块与松嫩地块之间存在明显向西俯冲的深反射信息,以壳内和幔内向西倾伏的楔状反射区为特征.壳内楔状反射区东与浅表层出露的黑龙江杂岩相连,向西倾伏延深至莫霍面,是俯冲增生杂岩在地壳深部的反映;幔内楔状反射区东起小兴安岭之下的莫霍面,向西倾伏延深至松辽盆地东缘,尖灭深度约78km,与多种方法得出的该区现今的岩石圈厚度(75~80km)基本一致.这一证据充分说明佳木斯地块的岩石圈地幔向西俯冲到松嫩地块岩石圈地幔之下.  相似文献   

20.
山西临汾震区地壳上地幔构造的研究   总被引:5,自引:0,他引:5  
利用郑州-临汾-靖边深地震测深剖面临汾,阳城炮点所获得的太行山至靖边段的观测资料,在以往解释的基础上重新进行了对比解释。研究结果表明:临汾与其东西两侧壳幔结构与构造的差异是极其明显的,其主要特征如下:(1)对仅在临汾以西出现的强震相P2进行了解释,并在PM波之前识别出一组来自下地壳的反射波P5;(2)根据临汾以西Pg与P2波的特征,我们确认在临汾盆地下方及其西侧,中地壳的上部8-12km深度内存在  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号