首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Graphitization and coarsening of organic material in carbonate-bearing metasedimentary rocks is accompanied by carbon isotope exchange which is the basis of a refractory, pressure-independent geothermometer. Comparison of observed isotopic fractionations between calcite and graphite (δ13CCal–Gr) with independent petrological thermometers provides the following empirical calibration over the range 400–800°C: δ13CCal–Gr= 5.81 times 106×T–2(K) - 2.61. This system has its greatest potential in marbles where calcite + graphite is a common assemblage and other geothermometers are often unavailable. The temperature dependency of this empirical calibration differs from theoretical calibrations; reasons for this are unclear but the new empirical calibration yields temperature estimates in better agreement with independent thermometry from several terranes and is preferred for geological applications. Both calcite-graphite isotopic thermometry and calcite-dolomite solvus thermometry are applied to marble adjacent to the Tudor gabbro in the Grenville Province of Ontario, Canada. The marble has undergone two metamorphic episodes, early contact metamorphism and later regional metamorphism. Values of δ13CCal–Gr decrease regularly from c. 8‰ in samples over 2 km from the pluton to values of 3–4‰ within 200 m of the contact. These samples appear to preserve fractionations from the early thermal aureole with the empirical geothermometer, and indicate temperatures of 450–500° C away from the intrusion and 700–750°C near the gabbro. This thermal profile around the gabbro is consistent with conductive heat flow models. In contrast, the distribution of Mg between calcite and dolomite has been completely reset during later regional metamorphism and yields uniform temperatures of c. 500°C, even at the contact. Graphite textures are important for interpreting the results of the calcite–graphite thermometer. Coarsening of graphite approaching the Tudor gabbro correlates with the decrease in isotopic fractionations and provides textural evidence that graphite crystallization took place at the time of intrusion. In contrast to isotopic exchange during prograde metamorphism, which is facilitated by graphitization, retrogressive carbon isotopic exchange appears to require recrystallization of graphite which is sluggish and easily recognized texturally. Resistance of the calcite–graphite system to resetting permits thermometry in polymetamorphic settings to see through later events that have disturbed other systems.  相似文献   

2.
Nine marble horizons from the granulite facies terrane of southern India were examined in detail for stable carbon and oxygen isotopes in calcite and carbon isotopes in graphite. The marbles in Trivandrum Block show coupled lowering of δ13C and δ18O values in calcite and heterogeneous single crystal δ13C values (? 1 to ? 10‰) for graphite indicating varying carbon isotope fractionation between calcite and graphite, despite the granulite facies regional metamorphic conditions. The stable isotope patterns suggest alteration of δ13C and δ18O values in marbles by infiltration of low δ13C–δ18O‐bearing fluids, the extent of alteration being a direct function of the fluid‐rock ratio. The carbon isotope zonation preserved in graphite suggests that the graphite crystals precipitated/recrystallized in the presence of an externally derived CO2‐rich fluid, and that the infiltration had occurred under high temperature and low fO2 conditions during metamorphism. The onset of graphite precipitation resulted in a depletion of the carbon isotope values of the remaining fluid+calcite carbon reservoir, following a Rayleigh‐type distillation process within fluid‐rich pockets/pathways in marbles resulting in the observed zonation. The results suggest that calcite–graphite thermometry cannot be applied in marbles that are affected by external carbonic fluid infiltration. However, marble horizons in the Madurai Block, where the effect of fluid infiltration is not detected, record clear imprints of ultrahigh temperature metamorphism (800–1000 °C), with fractionations reaching <2‰. Zonation studies on graphite show a nominal rimward lowering δ13C on the order of 1 to 2‰. The zonation carries the imprint of fluid deficient/absent UHT metamorphism. Commonly, calculated core temperatures are > 1000 °C and would be consistent with UHT metamorphism.  相似文献   

3.
Oxygen isotope ratios of quartz inclusions (QI) within garnet from granulite and amphibolite facies gneisses in the Adirondack Mountains, NY were analysed and used to determine metamorphic temperatures. Primary QI for eight of 12 samples have δ18O values significantly lower than matrix quartz (MQ). The primary QI retain δ18O values representative of thermal conditions during garnet crystallization, whereas the δ18O values of MQ were raised by diffusive exchange with other matrix minerals (e.g. mica and feldspar) during cooling. The δ18O differences between QI and MQ show that garnet (a mineral with slow diffusion of oxygen) can armour QI from isotopic exchange with surrounding matrix, even during slow cooling. These differences between δ18O in MQ and QI can further be used to test cooling rates by Fast Grain Boundary diffusion modelling. Criteria for identifying QI that preserve primary compositions and are suitable for thermometry were developed based on comparative tests. Relations between δ18O and inclusion size, distance of inclusion to host–garnet rim, core–rim zonation of individual inclusions, and presence or absence of petrological features (healed cracks in QI, inclusions in contact with garnet cracks lined by secondary minerals, and secondary minerals along the inclusion grain boundary) were investigated. In this study, 61% of QI preserve primary δ18O and 39% were associated with features that were linked to reset δ18O values. If δ18O in garnet is homogeneous and inclusions are removed, laser‐fluorination δ18O values of bulk garnet are more precise, more accurate, and best for thermometry. Intragrain δ18O(Grt) profiles measured in situ by ion microprobe show no δ18O zonation. Almandine–rich garnet (Alm60–75) from each sample was measured by laser‐fluorination mass‐spectrometry (LF‐MS) for δ18O and compared with ion microprobe measurements of δ18O in QI for thermometry. The Δ18O(Qz–Grt) values for Adirondack samples range from 2.66 to 3.24‰, corresponding to temperatures of 640–740 °C (A[Qz–Alm] = 2.71). Out of 12 samples that were used for thermometry, nine are consistent with previous estimates of peak temperature (625–800 °C) based on petrological and carbon–isotope thermometry for regional granulite and upper amphibolite facies metamorphism. The three samples that disagree with independent thermometry for peak metamorphism are from the anorthosite–mangerite–charnockite–granite suite in the central Adirondacks and yield temperatures of 640–665 °C, ~100 °C lower than previous estimates. These low temperatures could be interpreted as thermal conditions during late (post‐peak) crystallization of garnet on the retrograde path.  相似文献   

4.
The preservation of premetamorphic, whole-rock oxygen isotope ratios in Adirondack metasediments shows that neither these rocks nor adjacent anorthosites and gneisses have been penetrated by large amounts of externally derived, hot CO2-H2O fluids during granulite facies metamorphism. This conclusion is supported by calculations of the effect of fluid volatilization and exchange and is also independently supported by petrologic and phase equilibria considerations. The data suggest that these rocks were not an open system during metamorphism; that fluid/rock ratios were in many instances between 0.0 and 0.1; that externally derived fluids, as well as fluids derived by metamorphic volatilization, rose along localized channels and were not pervasive; and thus that no single generalization can be applied to metamorphic fluid conditions in the Adirondacks.Analyses of 3 to 4 coexisting minerals from Adirondack marbles show that isotopic equilibrium was attained at the peak of granulite and upper amphibolite facies metamorphism. Thus the isotopic compositions of metamorphic fluids can be inferred from analyses of carbonates and fluid budgets can be constructed.Carbonates from the granulite facies are on average, isotopically similar to those from lower grade or unmetamorphosed limestones of the same age showing that no large isotopic shifts accompanied high grade metamorphism. Equilibrium calculations indicate that small decreases in 18O, averaging 1 permil, result from volatilization reactions for Adirondack rock compositions. Additional small differences between amphibolite and granulite facies marbles are due to systematic lithologie differences.The range of Adirondack carbonate 18O values (12.3 to 27.2) can be explained by the highly variable isotopic compositions of unmetamorphosed limestones in conjunction with minor 18O and 13C depletions caused by metamorphic volatilization suggesting that many (and possibly most) marbles have closely preserved their premetamorphic isotopic compositions. Such preservation is particularly evident in instances of high 18O calcites (25.0 to 27.2), low 18O wollastonites (–1.3 to 3.5), and sharp gradients in 18O (18 permil/15m between marble and anorthosite, 8 permil/25 m in metasediments, and 6 permil/1 m in skarn).Isotopic exchange is seen across marble-anorthosite and marble-granite contacts only at the scale of a few meters. Small (<5 m) marble xenoliths are in approximate exchange equilibrium with their hosts, but for larger xenoliths and layers of marble there is no evidence of exchange at distances greater than 10 m from meta-igneous contacts.  相似文献   

5.
The Elzevir Terrane of the Grenville Orogen in southern Ontario contains metapelites and abundant graphitic marbles that were regionally metamorphosed from the upper greenschist to upper amphibolite facies. Comparative thermometry was undertaken with widely used calibrations for the systems garnet-biotite, calcite-dolomite, and calcite-graphite. Temperatures that are obtained from matrix biotites paired with prograde garnet near-rim analyses are usually consistent with those determined using calcite-graphite thermometry. However, calcite-graphite thermometry occasionally yields low temperatures due to lack of equilibration of anomalously light graphite. Application of calcite-graphite and garnet-biotite systems may yield temperatures up to 70 °C higher than calcite-dolomite in amphibolite facies rocks. Calcite-dolomite temperatures most closely approach those from calcite-graphite and garnet-biotite when the samples contain a single generation of dolomite and calcite grains contain no visible dolomite exsolution lamellae. However, some of these samples yield temperatures considerably lower than temperatures calculated from calcite-graphite and garnet-biotite thermometry, indicating that the calcite-dolomite thermometer may have been partially reset during retrogression. Estimated peak metamorphic temperatures of regional metamorphism between Madoc (upper greenschist facies) and Bancroft (upper amphibolite facies) range from 500 to 650 °C. These results place the chlorite-staurolite isograd at 540 °C, the kyanite-sillimanite isograd at 590 °C, and the sillimanite-K-feldspar isograd at 650 °C. Although each thermometer may have an absolute uncertainty of as much as ±50 °C, the 50 to 60 °C temperature differences between the isograds are probably accurate to 10 to 20 °C. An incomplete picture of the thermal gradients can result from the application of only one thermometer in a given area. Simultaneous application of several systems allows one to recognize and overcome the inherent limitations of each thermometer. Received: 26 March 1997 / Accepted: 15 April 1998  相似文献   

6.
Ultrahigh-temperature (UHT) metamorphism in the Madurai Block of the southern Indian granulite terrain has been verified using the calcite-graphite isotope exchange thermometer. Carbon isotope thermometry has been applied to marbles from a locality near the reported occurrence of sapphirine granulites that have yielded temperature estimates of around 1000 degrees C. The delta(13)C and delta(18)O values of calcite are homogenous, implying equilibration of the isotopes during metamorphism. However, the delta(13)C values of single graphite crystals show variations in the order of 1 per thousand within a hand specimen. Detailed isotopic zonation studies indicate that graphite preserves either the time-integrated crystal growth history or reequilibrium fractionation during its cooling history. The graphite cores preserve higher delta(13)C values than the rims. The fractionation between calcite and graphite cores gives the highest metamorphic temperature of about 1060 degrees C, which matches the petrologically inferred temperature estimates in the high-magnesian pelites. The fractionation between graphite rims and calcite suggests a temperature of around 750 degrees C, which is interpreted to reflect retrograde cooling. This event is also observed in the sapphirine granulites. Calcite-graphite thermometry thus provides a useful tool to define UHT metamorphism in granulite terrains.  相似文献   

7.
The temperature dependence of carbon isotopic fractionations between calcite and graphite, and between dolomite and graphite are calibrated by the calcite-dolomite solvus geothermometry using marbles collected from the contact metamorphic aureole in the Kasuga area, central Japan. The carbon isotopic fractionations (Δ13CCc-Gr and Δ13CDoGr) systematically decrease with increasing metamorphic temperature. The concordant relationships between the fractionations and solvus temperatures are approximately linear with T?2 over the temperature range. 400° to 680°C: Δ13CCcGr (%.) = 5.6 × 106 × T?2 (K) ? 2.4 Δ13CDoGr (%.) = 5.9 × 106 × T?2 (K) ? 1.9 These systematic relationships between fractionation and temperature suggest that carbon isotopic equilibria between carbonates and graphite were attained in many cases. The equation for the calcite-graphite system has a slope steeper than Bottinga's (1969) results. It is, however, in good agreement with that of Valley and O'Neil (1981) in the temperature range from 600° to 800°C.Because of the relatively high sensitivity to temperature, these isotopic geothermometers are useful for determining the temperatures in moderate- to high-grade metamorphosed carbonate rocks.  相似文献   

8.
The role of volatiles in the stabilization of the lower (granulite facies) crust is contentious. Opposing models invoke infiltration of CO2-rich fluids or generally vapour-absent conditions during granulite facies metamorphism. Stable isotope and petrological studies of granulite facies metacarbonates can provide constraints on these models. In this study data are presented from metre-scale forsteritic marble boudins within Archaean intermediate to felsic orthogneisses from the Rauer Group, East Antarctica. Forsteritic marble layers and associated calcsilicates preserve a range of 13C- and 18O-depleted calcite isotope values (δ13C= -9.9 to -3.0% PDB, δ18O = 4.0 to 12.1% SMOW). A coupled trend of 13C and 18O depletion (~2%, ~5%, respectively) from core to rim across one marble layer is inconsistent with pervasive CO2 infiltration during granulite facies metamorphism, but does indicate localized fluid-rock interaction. At another locality, more pervasive fluid infiltration has resulted in calcite having uniformly low, carbonatite-like δ18O and δ13C values. A favoured mechanism for the low δ18O and δ13C values of the marbles is infiltration by fluids that were derived from, or equilibrated with, a magmatic source. It is likely that this fluid-rock interaction occurred prior to high-grade metamorphism; other fluid-rock histories are not, however, ruled out by the available data. Coupled trends of 13C and 18O depletion are modified to even lower values by the superposed development of small-scale metasomatic reaction zones between marbles and internally folded mafic (?) interlayers. The timing of development of these layers is uncertain, but may be related to Archaean high-temperature (>1000d?C) granulite facies metamorphism.  相似文献   

9.
Metamorphic temperatures and pressures of the Archean Miyun Group were determined from orthopyroxene-clinopyroxene, garnet-clinopyroxene, garnet-biotite and δO Q 18 -δO Mt 18 geothermometers and orthopyroxene barometer. The results show that the temperature in the first metamorphic stage of the Miyun Group is 820°+50°C and the pressure about 10 kb, which suggests that the granulite facies occurs under moderate pressures with a geothermal gradient of 22°–25°C/km. The corresponding burial depth is about 35 km. The temperature prevailing during the second metamorphic stage is in the range 650°–700°C, indicating a moderate condition between granulite and high grade amphibolite facies. Oxygen isotope data also show that the temperature of later superimposed regression metamorphism of high green schist facies in this area may be within the range of 470°–560°C.  相似文献   

10.
Carbon isotope fractionations between calcite and graphite in the Panamint Mountains, California, USA, demonstrate the importance of mass balance on carbon isotope values in metamorphosed carbon-bearing minerals while recording the thermal conditions during peak regional metamorphism. Interbedded graphitic marbles and graphitic calcareous schists in the Kingston Peak Formation define distinct populations on a δ13C(gr)–δ13C(cc) diagram. The δ13C values of both graphite and calcite in the marbles are higher than the values of the respective minerals in the schists. δ13C values in both rock types were controlled by the relative proportions of the carbon-bearing minerals: calcite, the dominant carbon reservoir in the marble, largely controlled the δ13C values in this lithology, whereas the δ13C values in the schists were largely controlled by the dominant graphite. This is in contrast to graphite-poor calcsilicate systems where carbon isotope shifts in carbonate minerals are controlled by decarbonation reactions. The marbles record a peak temperature of 531±30 °C of a Jurassic low-pressure regional metamorphic event above the tremolite isograd. In the schists there is a much wider range of recorded temperatures. However, there is a mode of temperatures at c. 435 °C, which approximately corresponds to the temperatures of the principal decarbonation metamorphic reactions in the schists, suggesting that the carbon exchange was set by loss of calcite and armouring of graphite by newly formed silicate minerals. The armouring may explain the relatively large spread of apparent temperatures. Although the modal temperature also corresponds to the approximate temperature of the Cretaceous retrograde event, retrograde exchange is thought less likely due to very slow exchange rates involving well-crystallized graphite, armouring of graphite by silicates during the earlier event, and because of other barriers to retrograde carbon exchange. Thus, only the calcite–graphite carbon isotope fractionations recorded by the marbles demonstrate the high-temperature conditions of the low-pressure Jurassic metamorphic event that was associated with the emplacement of granitic plutons to the west of the Panamint Mountains.  相似文献   

11.
In-situ ion microprobe measurements of carbon isotopic compositions of graphite were made in seven metasediments and two carbonate rocks from the ca. 3.8 Ga Isua supracrustal belt, West Greenland. The δ13C values of micron-scale graphite globules in the metasediments and the carbonate rocks vary from -18 to +2‰ and from -7 to -3‰, respectively. The maximum δ13C value of graphite globules in the metasediment rises from -14 to -5‰, as the metamorphic grade increases from epidote-amphibolite to upper amphibolite facies. In a single hand specimen, the δ13C values of graphite inclusions in garnet are ∼7‰ lower on average than those outside garnet. Similarly, graphite armored by quartz apparently shows a few permil lower δ13C values than those on grain boundaries between noncarbonate minerals. The fact that early crystallized minerals include relatively 13C-depleted graphite indicates that the regional metamorphism increased the δ13C values of the Isua graphite. This is consistent with the regional trend of 13C-enrichment accompanied by the increase of metamorphic grade. The minimum fractionation between graphite and carbonate is consistent with the equilibrium fractionation at about 400 to 550 °C. These observations indicate that isotopic exchange with isotopically heavy carbonate caused 13C-enrichment of Isua graphite. The δ13C values of graphite reported here (δ13C > -18‰) were produced either as a metamorphic modification of organic carbon with initially much lower δ13C values, or as an abiological reaction such as decomposition of carbonate. If the isotopic exchange between carbonate and graphite during regional metamorphism controlled the 13C-enrichment of Isua graphite, previously reported large 13C-depletion of graphite, especially armored by apatite (Mojzsis et al., 1996) was probably premetamorphic in origin. This supports the existence of life at Isua time (ca. 3.8 Ga).  相似文献   

12.
This study presents calcite–graphite carbon isotope fractionations for 32 samples from marble in the northern Elzevir terrane of the Central Metasedimentary Belt, Grenville Province, southern Ontario, Canada. These results are compared with temperatures calculated by calcite–dolomite thermometry (15 samples), garnet–biotite thermometry (four samples) and garnet–hornblende thermometry (three samples). Δcal‐gr values vary regularly across the area from >6.5‰ in the south to 4.0‰ in the north, which corresponds to temperatures of 525 °C in the south to 650 °C in the north. Previous empirical calibration of the calcite–graphite thermometer agrees very well with calcite–dolomite, garnet–biotite and garnet–hornblende thermometry, whereas, theoretical calibrations compare less well with the independent thermometry. Isograds in marble based on the reactions rutile + calcite + quartz =titanite and tremolite + calcite + quartz = diopside, span temperatures of 525–600 °C and are consistent with calculated temperature–X(CO2) relations. Results of this study compare favourably with large‐scale regional isotherms, however, local variation is greater than that revealed by large‐scale sampling strategies. It remains unclear whether the temperature–Δcal‐gr relationship observed in natural materials below 650 °C represents equilibrium fractionations or not, but the regularity and consistency apparent in this study demonstrate its utility for thermometry in amphibolite facies marble.  相似文献   

13.
The Valentine wollastonite skarn in the north-west Adirondack Mountains, New York, is a seven million ton deposit which resulted from channellized infiltration of H2O-rich, silica-bearing fluids. The wollastonite formed by reaction of these fluids with non-siliceous calcite marble. The skarn formed at the contact of the syenitic Diana Complex and was subsequently overprinted by Grenville-age granulite facies metamorphism and retrograde hydrothermal alteration during uplift. Calcite marbles adjacent to the deposit have generally high δ18O values (c. 21‰), typical of Grenville marbles which have not exchanged extensively with externally derived fluids. Carbon isotopic fractiona-tions between coexisting calcite and graphite in the marbles indicate equilibration at 675d? C, consistent with the conditions of regional metamorphism. Oxygen isotopic ratios from wollastonite skarn are lower than in the marbles and show a 14‰ variation (-1‰ to 13‰). Some isotopic heterogeneity is preserved from skarn formation, and some represents localized exchange with low-δ18O retrograde fluids. Detailed millimetre- to centimetre-scale isotopic profiles taken across skarn/marble contacts reveal steep δ18O gradients in the skarn, with values increasing towards the marble. The gradients reflect isotopic evolution of the fluid as it reacted with high δ18O calcite to form wollastonite. Calcite in the marble preserves high δ18O values to within <5 mm of the skarn contact. The preservation of high δ18O values in marbles at skarn contacts and the disequilibrium fractionation between wollastonite skarn and calcite marble across these contacts indicate that the marbles were not infiltrated with significant quantities of the fluid. Thus, the marbles were relatively impermeable during both the skarn formation and retrograde alteration. Skarn formation may have been episodic and fluid flow was either chaotic or dominantly parallel to lithological contacts. Although these steep isotope gradients resemble fluid infiltration fronts, they actually represent the sides of the major flow system. Because chromatographic infiltration models of mass transport require the assumption of pervasive fluid flow through a permeable rock, such models are not applicable to this hydrothermal system and, by extension, to many other metamorphic systems where low-permeability rocks restrict fluid migration pathways. Minimum time-integrated fluid fluxes have been calculated at the Valentine deposit using oxygen isotopic mass balance, reaction progress of fluid buffering reactions, and silica mass balance. All three approaches show that large volumes of fluid were necessary to produce the skarn, but silica mass balance calculations yield the largest minimum flux and are hence the most realistic.  相似文献   

14.
Granulite facies anorthosites on Holsenøy Island in the Bergen Arcs region of western Norway are transected by shear zones 0.1–100 m wide characterized by eclogite facies assemblages. Eclogite formation is related to influx of fluid along the shears at temperatures of c. 700d?C and pressures in excess of 1.7 GPa. Combined carbon and nitrogen stable isotope, 40Ar/36Ar, trace-element and petrological data have been used to determine the nature and distribution of fluids across the anorthosite-eclogite transition. A metre-wide drilled section traverses the eclogitic centre of the shear into undeformed granulite facies garnet-clinopyroxene anorthosite. Clinozoisite occurs along grain boundaries and microcracks in undeformed anorthosite up to 1 m from the centre of the shear and clinozoisite increases in abundance as the edge of the shear zone is approached. The eclogite-granulite transition, marked by the appearance of sodic pyroxene and loss of albite, occurs within the most highly sheared section of the traverse. The jadeite-in reaction coincides with increased paragonite activity in mica. The separation between paragonite and clinozoisite reaction fronts can be semiquantitatively modelled assuming advective fluid flow perpendicular to the shear zone. The inner section of the traverse (0.25 m wide) is marked by retrogressive replacement of omphacite by plagioclase + paragonite accompanied by veins of quartz-phengite-plagioclase. C-N-Ar characteristics of fluid inclusions in garnet show that fluids associated with precursor granulite, eclogite and retrogressed eclogite are isotopically distinct. The granulite-eclogite transition coincides with a marked change in CO2 abundance and δ13C (<36ppm, δ13C=-2% in the granulite; <180 ppm, δ13C=-10% in the eclogite). The distribution of Ar indicates mixing between influxed fluid (40Ar/36Ar > 25 times 103) and pre-existing Ar in the granulite (40Ar/36Ar < 8 times 103). δ15N values decrease from +6% in the anorthosite to +3% within the eclogite shear. The central zone of retrogressed eclogite post-dates shearing and is characterised by substantial enrichment of Si, K, Ba and Rb. Fluids are CO2-rich (δ13C ~ -5%) with variable N2 and Ar abundances and isotopic compositions. Both Ar and H2O have penetrated the underformed granulite fabric more than 0.5m beyond the granulite/eclogite transition during eclogite formation. Argon isotopes show a mixing profile consistent with diffusion through an interconnecting H2O-rich fluid network. In contrast, a carbon-isotope front coincides with the deformation boundary layer, indicating that the underformed anorthosite was impervious to CO2-rich fluids. This is consistent with the high dihedral angle of carbonic fluids, and may be interpreted in terms of evolving fluid compositions within the shear zone.  相似文献   

15.
《Gondwana Research》2001,4(3):377-386
The Kerala Khondalite belt is a Proterozoic metasupracrustal granulite facies terrain in southern India comprising garnet-biotite gneiss, garnet-sillimanite gneiss and orthopyroxene granulites as major rock types. Calc-silicate rocks and marbles, occurring as minor lithologies in the Kerala Khondalite Belt, show different mineral assemblages and reaction histories of which indicate a metamorphic P-T-fluid history dominated by internal fluid buffering during the peak metamorphism, followed by external fluid influx during decompression. The carbon and oxygen isotopic compositions of calcite from three representative metacarbonate localities show contrasting evolutionary trends. The Ambasamudram marbles exhibit carbon and oxygen isotope ratios (δ13C ∼ 0‰ and δ18O ∼ 20‰) typical of middle to late Proterozoic marine carbonate sediments with minor variation ascribed to the isotopic exchange due to the devolatilization reactions. The δ13C and δ18O values of ∼ −9‰ and 11‰, respectively, for calcite from calc-silicate rocks at Nuliyam are considerably low and heterogeneous. The wollastonite formation here, possibly corresponds to an earlier event of fluid infiltration during prograde to peak metamorphism, which resulted in decarbonation and isotope resetting. Further, petrologic evidence supports a model of late carbonic fluid infiltration that has partially affected the calc-silicate rocks, with subsequent isotope resetting, more towards the contact between calc-silicate rock and charnockite. At Korani, only oxygen isotopes have been significantly lowered (δ18O ∼ 13‰) and the process involved might be a combination of metamorphic devolatilization accompanied by an aqueous fluid influx, supported by petrologic evidence. The stable isotope signatures obtained from the individual localities, thus indicate heterogeneous patterns of fluid evolution history within the same crustal segment.  相似文献   

16.
At Naxos, Greece, a migmatite dome is surrounded by schists and marbles of decreasing metamorphic grade. Sillimanite, kyanite, biotite, chlorite, and glaucophane zones are recognized at successively greater distances from the migmatite dome. Quartz-muscovite and quartz-biotite oxygen isotope and mineralogie temperatures range from 350 to 700°C.The metamorphic complex can be divided into multiple schist-rich (including migmatites) and marblerich zones. The δ18O values of silicate minerals in migmatite and schist units and quartz segregations in the schist-rich zones decrease with increase in metamorphic grades. The calculated δ18OH2O values of the metamorphic fluids in the schist-rich zones decrease from about 15‰ in the lower grades to an average of about 8.5‰ in the migmatite.The δD values of OH-minerals (muscovite, biotite, chlorite, and glaucophane) in the schist-rich zones also decrease with increase in grade. The calculated δDH2O values for the metamorphic fluid decrease from ?5‰ in the glaucophane zone to an average of about ?70‰ in the migmatite. The δD values of water in fluid inclusions in quartz segregations in the higher grade rocks are consistent with this trend.Theδ18O values of silicate minerals and quartz segregations in marble-rich zones are usually very large and were controlled by exchange with the adjacent marbles. The δD values of the OH minerals in some marble-rich zones may reflect the value of water contained in the rocks prior to metamorphism.Detailed data on 20 marble units show systematic variations of δ18O values which depend upon metamorphic grade. Below the 540°C isograd very steep δ18O gradients at the margins and large δ18O values in the interior of the marbles indicate that oxygen isotope exchange with the adjacent schist units was usually limited to the margins of the marbles with more exchange occurring in the stratigraphic bottom than in the top margins. Above the 540°C isograd lower δ18O values occur in the interior of the marble units reflecting a greater degree of recrystallization and the occurrence of Ca-Mg-silicates.Almost all the δ13C values of the marbles are in the range of unaltered marine limestones. Nevertheless, the δ13C values of most marble units show a general correlation with δ18O values.The CO2H2O mole ratio of fluid inclusions in quartz segregations range from 0.01 to 2. Theδ13C values of the CO2 range from ?8.0 to 3.6‰ and indicate that at some localities CO2 in the metamorphic fluid was not in carbon isotopic equilibrium with the marbles.  相似文献   

17.
Amphibolite-grade metasediments from the Mgama Hills region, Kenya, contain conspicuous quantities of graphite, most probably derived from organic progenitor materials. The highest graphite contents (5.1–20.4%) are found in schists whereas calcite marbles intercalated in the sequence contain relatively low amounts (0.1–2.0%). The graphitic constituents are consistently enriched in 13C relative to common sedimentary organic material, with the highest isotopic ratios in graphite from the marbles (δ13C = ?7.3 ± 5.0%.; n = 10). Carbon isotope fractionations between calcite and graphite mostly vary between 3.3 and 7.1‰, which comes close to both empirically recorded and thermodynamically calculated fractionations in the temperature range of the upper amphibolite faciès (550–650°C). However, larger values occasionally encountered in the marbles suggest that complete isotopic equilibrium is not always attained in amphibolite-facies metamorphism.  相似文献   

18.
《International Geology Review》2012,54(15):1864-1875
ABSTRACT

In the mines of the Nacional de Grafite Company around Itapecerica (Minas Gerais), located in the southern Sao Francisco Craton, occurs a supracrustal succession of high-grade metamorphic rocks including quartzite, garnet-biotite gneiss, and graphite schist formed in the Palaeoproterozoic (2.0 Ga). During metamorphic processes, organic matter was progressively transformed into graphite. From four graphite samples of three different mines (two samples from high-grade metamorphic graphite schist and two generated by hydrothermal recrystallization of the graphite schist), the origin and formation temperature of this mineral was obtained by C isotopes, X-ray diffraction (XRD), and Raman spectroscopy. The values of δ13C range between ?21.23 and ?27.89 ‰, indicating that the source of the graphite was a primitive biogenic carbon material. High-grade metamorphic graphites show average temperatures around 729°C, while hydrothermal recrystallizated graphites (vein-graphites) show temperatures around 611°C by XRD, which correspond to granulite- to amphibolite facies conditions. The hydrothermal process with percolation of C-O-H fluids leads to a decrease in the crystal size along stacking direction (Lc(002)) when compared with the previously formed high-grade metamorphism graphites. An update of the current tectonic model about the collisional process during Rhyacian-Orosirian orogeny in the Sao Francisco Craton is proposed to insert the formation of the Itapecerica graphite-rich metasedimentary sequence.  相似文献   

19.
Quartz–garnet oxygen isotope thermometry of quartz‐rich metasedimentary rocks from the southern Adirondack Highlands (Grenville Province, New York) yields metamorphic temperatures of 700–800 °C, consistent with granulite facies mineral assemblages. Samples from the Irving Pond quartzite record Δ18O(Qtz–Grt) = 2.68 ± 0.21‰ (1 s.d. , n = 15), corresponding to peak metamorphic conditions of 734 ± 38 °C. This agrees well with the estimates from garnet–biotite exchange thermometry. Similar temperature estimates are obtained from Swede Pond (682 ± 47 °C, n = 3) and King's Station (c. 700 °C). The Whitehall area records higher temperatures (798 ± 25 °C, n = 3). All of these temperatures are higher than previous regional temperature estimates. The c. 800 °C temperatures near Whitehall are consistent with preservation of pre‐granulite contact temperatures adjacent to anorthosite. The preservation of peak metamorphic temperatures in garnet of all sizes is consistent with slow oxygen diffusion in garnet, and closure temperatures of at least 730 °C. Peak metamorphic fractionations are preserved in rocks with varying quartz:feldspar ratios, indicating that the modal percentage of feldspar does not affect retrograde oxygen exchange in these rocks. The lack of this correlation suggests slow rates of oxygen diffusion in quartz and feldspar, consistent with the results of anhydrous oxygen diffusion experiments.  相似文献   

20.
Oscillatory zoning in low δ18O skarn garnet from the Willsboro wollastonite deposit, NE Adirondack Mts, NY, USA, preserves a record of the temporal evolution of mixing hydrothermal fluids from different sources. Garnet with oscillatory zoning are large (1–3 cm diameter) euhedral crystals that grew in formerly fluid filled cavities. They contain millimetre‐scale oscillatory zoning of varying grossular–andradite composition (XAdr = 0.13–0.36). The δ18O values of the garnet zones vary from 0.80 to 6.26‰ VSMOW and correlate with XAdr. The shape, pattern and number of garnet zones varies from crystal to crystal, as does the magnitude of the correlated chemistry changes, suggesting fluid system variability, temporal and/or spatial, over the time of garnet growth. The zones of correlated Fe content and δ18O indicate that a high Fe3+/Al, high δ18O fluid mixed with a lower Fe3+/Al and δ18O fluid. The high δ18O, Fe enriched fluids were likely magmatic fluids expelled from crystallizing anorthosite. The low δ18O fluids were meteoric in origin. These are the first skarn garnet with oscillatory zoning reported from granulite facies rocks. Geochronologic, stable isotope, petrologic and field evidence indicates that the Adirondacks are a polymetamorphic terrane, where localized contact metamorphism around shallowly intruded anorthosite was followed by a regional granulite facies overprint. The growth of these garnet in equilibrium with meteoric and magmatic fluids indicates an origin in the shallow contact aureole of the anorthosite prior to regional metamorphism. The zoning was preserved due to the slow diffusion of oxygen and cations in the large garnet and protection from deformation and recrystallization in zones of low strain in thick, rigid, garnetite layers. The garnet provide new information about the hydrothermal system adjacent to the shallowly intruded massif anorthosite that predates regional metamorphism in this geologically complex, polymetamorphic terrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号