首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An alternative seismic shaking vulnerability survey method to computational intensive theoretical modelling of site response to earthquake, and time consuming test versus reference site horizontal ratio methods, is described. The methodology is suitable for small to large scale engineering investigations. Relative seismic shaking vulnerability microzonation using an adaptation of the Nakamura horizontal to vertical spectral ratio method provides many advantages over alternative methods including: low cost; rapid field phase (100 km2 can easily be covered by a single operator in 5 days); low and flexible instrumentation requirements (a single seismometer and data logger of almost any type is required); field data can be collected at any time during the day or night (the results are insensitive to ambient social noise); no basement rock reference site is required (thus eliminating trigger synchronisation between reference and multiple test site seismographs); rapid software aided analysis; insensitivity to ground-shaking resonance peaks; ability to compare results obtained from non-contiguous survey fields. The methodology is described in detail, and a practical case study is provided, including mapped results. The resulting microzonation maps indicate the relative seismic shaking vulnerability for built structures of different height categories within adjacent zones, with a resolution of approximately 1 km.  相似文献   

2.
Catastrophic damages reported during an earthquake include building damages, excessive ground shaking, uneven settlements and liquefaction. While most of the seismic hazard studies map the probable level of ground shaking at the bedrock level, their use in assessing the above damages is very limited until the response of the local soil is also taken into account. Determination of the local soil response needs regionally recorded ground motions, dynamic soil properties, in situ geotechnical details, etc., which most of the time are not readily available for the region under study. In the present work, the response of local soil for Nepal has been studied indirectly taking into account the surface level of ground shaking during various past as well as recent EQs observed at various locations. Based on the present analysis, a low value of amplification factor for high peak horizontal acceleration and vice versa is observed in central, western as well as southern parts of Nepal. These observations suggest nonlinear soil behavior and are in accordance with the available literature. Further, the ground motion records during 2015 Nepal EQ show maximum soil response at 0.3 s which is exactly matching with the site class C obtained from in situ data for the above locations. Based on the above observations, various correlations between the high peak horizontal acceleration and the surface spectral acceleration are proposed to obtained site specific surface response spectrum for Nepal.  相似文献   

3.
城市垃圾填埋场的地震响应及稳定性分析   总被引:2,自引:1,他引:1  
邓学晶  孔宪京  刘君 《岩土力学》2007,28(10):2095-2100
对典型构型填埋场的二维地震响应进行了详细计算,目的是考察不同强度地震动作用下填埋场的稳定性,评价影响填埋场稳定性的主要因素,及各因素之间的相对重要性。计算结果显示:(1)覆盖层的稳定性主要依赖于垃圾土的材料属性、填埋场高度、输入地震动的频谱特性、以及场地条件等参数;(2)衬垫层的稳定性取决于输入地震动的加速度峰值、卓越周期和填埋场的基本自振周期。  相似文献   

4.
指数函数剪切模量土层的地震随机反应   总被引:3,自引:0,他引:3  
王春玲  黄义 《岩土力学》2003,24(6):892-895
基于改进的一维剪切梁模型[1],对剪切模量为其深度的某一指数函数的成层非均质土层,推导了确定自振频率、振型函数、参与系数及稳态动力响应的封闭型解析表达式。首次证明了这种土层振型函数的正交性,利用随机振动理论,并基于基岩输入地震加速度的功率谱密度函数:白噪声谱和过滤白噪声谱,研究了该土层对地震的随机动力响应问题。计算表明:(1)在基岩输入地震加速度的功率谱为白噪声谱的情况下,土层的最大期望反应,均有别于过滤白噪声谱时的相应值。(2)平稳输入与输出过高地估计了土层的随机响应。  相似文献   

5.
The influence of local geologic and soil conditions on the intensity of ground shaking is addressed in this study. The amplification of the ground motion due to local site effects resulted in severe damage to dwellings in the Bam area during the 2003 Bam Earthquake. A unique set of strong motion acceleration recordings was obtained at the Bam accelerograph station. Although the highest peak ground acceleration recorded was the vertical component (nearly 1 g), the longitudinal component (fault-parallel motion) clearly had the largest maximum velocity as well as maximum ground displacement. Subsurface geotechnical and geophysical (down-hole) data in two different sites have been obtained and used to estimate the local site condition on earthquake ground motion in the area. The ground response analyses have been conducted considering the nonlinear behavior of the soil deposits using both equivalent linear and nonlinear approaches. The fully nonlinear method embodied in FLAC was used to evaluate the nonlinear soil properties on earthquake wave propagation through the soil layer, and compare with the response from the equivalent linear approach. It is shown that thick alluvium deposits amplified the ground motion and resulted in significant damage in residential buildings in the earthquake stricken region. The comparison of results indicated similar response spectra of the motions for both equivalent and nonlinear analyses, showing peaks in the period range of 0.3–1.5 s. However, the amplification levels of nonlinear analysis were less than the equivalent linear method especially in long periods. The observed response spectra are shown to be above the NEHRP building code design requirements, especially at high frequencies.  相似文献   

6.
Avcılar is the suburb of Istanbul that was most heavily damaged during the August 17, 1999 Mw 7.4 Izmit earthquake. Strong ground motion caused fatalities and damage in Avcılar despite being 90 km from the epicenter. We deployed five portable seismograph stations equipped with Reftek 24-bit recorders and L4C-3D seismometers for 2 months, in order to understand why the local site response was different from elsewhere in Istanbul. A reference station was placed on a hard rock site, and the remaining four stations were placed on other geological units, in areas that had experienced varying levels of damage. We calculated frequency-dependent ground amplification curves by taking the ratios of the spectra at soft and hard rock sites. We obtained similar site response curves for most earthquakes at each site in the frequency range of 0.3–1.6 Hz, and observed no significant site amplification beyond 2.0 Hz at any site. The overall characteristics of the recorded S-waveforms and our modeling of the calculated site amplification curves are consistent with amplification as a result of trapping of seismic energy within a 100–150 m thick, low-velocity subsurface layer. We also review the applicability of microtremor measurements to estimate local site effects at Avcılar. For these data, we used ratios of spectra of horizontal to vertical components to obtain each site response. These results are compared with standard spectral ratios. These microtremor measurements provide consistent estimates of the amplification at most sites at the higher end of the frequency band, namely above 1 Hz. The results from both methods indeed agree well in this part of the frequency band. However, the microtremor method fails to detect amplification at lower frequencies, namely <1.0 Hz.  相似文献   

7.
Early Estimation of Seismic Hazard for Strong Earthquakes in Taiwan   总被引:1,自引:0,他引:1  
A shakemap system providing rapid estimates of strong ground shaking could be useful for emergency response providers in a damaging earthquake. A hybrid procedure, which combines site-dependent ground motion prediction models and the limited observations of the Real-Time Digital stream output system (RTD system operated by Central Weather Bureau, CWB), was set up to provide a high-resolution shakemap in a near-real-time manner after damaging earthquakes in Taiwan. One of the main factors that affect the result of ground motion prediction analysis is the existence of site effects. The purpose of this paper is to investigate the local site effects and their influence in the ground shaking and then establish an early estimation procedure of potential hazard for damaging earthquakes. Based on the attenuation law, the site effects of each TSMIP station are discussed in terms of a bias function that is site and intensity-level dependent function. The standard deviation of the site-dependent ground motion prediction model can be significantly reduced. The nonlinear behavior of ground soil is automatically taken into account in the intensity-level dependent bias function. Both the PGA and the spectral acceleration are studied in this study. Based on the RTD data, event correctors are calculated and applied to precisely estimate the shakemap of damaging earthquakes for emergency response.  相似文献   

8.
The site amplification is estimated at five seismic stations of the Latur region using the horizontal to vertical spectral ratios of 33 aftershocks of the main Killari earthquake of September 29, 1993 (UTC). Spectral amplifications, ranging from a factor of 2–6 are found to vary with frequency at different places. Significant amplification is found at four sites within the Latur region, at Basavakalyan, Kasgi, Killari, and Mudgad Eakoji villages. Our results show a positive correlation between the site amplification and the damage pattern in area. The pattern and the nature of the site amplification estimated in the present study corroborates also with the analytical models and the borehole data indicating alternating layers of unconsolidated sediments and basaltic rocks.  相似文献   

9.
The assessment of local site effects on seismic ground motions is of great importance in earthquake engineering practice. Several destructive earthquakes in the past have demonstrated that the amplification of ground motion and associated damage to structures due to local site conditions is a significant consideration in earthquake hazard analysis. A recent paper published in this journal highlights the hazard posed by earthquakes in the megacity of Kolkata in India due to its seismic and geological settings. The seismic hazard assessment study speculates that the deep alluvial deposit in the city may increase the seismic hazard probably due to the amplification of the seismic energies. This paper focuses on the seismic response studies of the various soil strata (i.e. for local subsurface conditions) obtained from various construction sites in the city for predicted earthquake. It is very well recognized that site response studies (a part of seismic microhazard zonation for urban areas) are the first step towards performance-based foundation design or seismic risk analysis and mitigation strategy. One of the problems for carrying out site-specific study in Kolkata is the lack of recorded strong motion data in the city. Hence, this paper outlines a methodology to carry out site-specific study, where no strong motion data or seismic data are available. The methodology uses wavelet-based spectrum compatibility approach to generate synthetic earthquake motions and equivalent linear method for seismic site response analysis. The Mega City of Kolkata has been considered to explain the methodology. Seismic hazard zonation map by the Bureau of Indian Standards classifies the City of Kolkata as moderate seismic zone (Zone III) with a zone factor 0.16. On the other hand, GSHAP(Global Seismic Hazard Assessment Program) map which is based on 10% probability of exceedance in 50 years specifies a maximum peak ground acceleration (PGA) of 1.6 m/s2 (0.163 g) for this region. In the present study, the seismic response has been carried out based on GSHAP. The results of the analysis indicate the amplification of ground motion in the range of 4.46–4.82 with the fundamental period ranging from 0.81 to 1.17 s. Furthermore, the maximum spectral accelerations vary in the range of 0.78–0.95 g.  相似文献   

10.
The structural response of buildings subjected to seismic loads is affected by local site conditions and the interaction between the structure and the supporting soil media. Seismic centrifuge model tests were conducted on two layered clay soil profiles at 80 g field to investigate soil-structure interaction and dynamic response of foundation. Several earthquake-like shaking events were applied to the models using an electro-hydraulic shaking table to simulate linear and nonlinear soil behavior. Results showed that the foundation input motion was significantly amplified in both models, especially for weak earthquake motions. Seismic soil-structure interaction was found to have an important effect on structure response by increasing the amplification of foundation input motion. A 3D finite difference numerical model was also developed to simulate the response of centrifuge model tests and study the parameters that affect the characteristics of earthquake at the base of the structure. The results indicated that the stiffness and stratification of the soil profiles had a significant effect on modifying the foundation input motion.  相似文献   

11.
高艳平  李恺靖  戴军 《岩土力学》2009,30(Z1):211-214
复合地基在我国土木工程领域应用广泛。这类场地的地震反应如何呢?这对于结构设计的地震动输入是一个重要的问题。本文使用二维有限元分析程序--FLUSH,计算不同输入波和不同置换率情况下的地表加速度峰值和加速度反应谱,并围绕置换率对场地地震反应的影响进行了分析讨论。  相似文献   

12.
This paper highlights the seismic microzonation carried out for a nuclear power plant site. Nuclear power plants are considered to be one of the most important and critical structures designed to withstand all natural disasters. Seismic microzonation is a process of demarcating a region into individual areas having different levels of various seismic hazards. This will help in identifying regions having high seismic hazard which is vital for engineering design and land-use planning. The main objective of this paper is to carry out the seismic microzonation of a nuclear power plant site situated in the east coast of South India, based on the spatial distribution of the hazard index value. The hazard index represents the consolidated effect of all major earthquake hazards and hazard influencing parameters. The present work will provide new directions for assessing the seismic hazards of new power plant sites in the country. Major seismic hazards considered for the evaluation of the hazard index are (1) intensity of ground shaking at bedrock, (2) site amplification, (3) liquefaction potential and (4) the predominant frequency of the earthquake motion at the surface. The intensity of ground shaking in terms of peak horizontal acceleration (PHA) was estimated for the study area using both deterministic and probabilistic approaches with logic tree methodology. The site characterization of the study area has been carried out using the multichannel analysis of surface waves test and available borehole data. One-dimensional ground response analysis was carried out at major locations within the study area for evaluating PHA and spectral accelerations at the ground surface. Based on the standard penetration test data, deterministic as well as probabilistic liquefaction hazard analysis has been carried out for the entire study area. Finally, all the major earthquake hazards estimated above, and other significant parameters representing local geology were integrated using the analytic hierarchy process and hazard index map for the study area was prepared. Maps showing the spatial variation of seismic hazards (intensity of ground shaking, liquefaction potential and predominant frequency) and hazard index are presented in this work.  相似文献   

13.
A previous analysis [Improta, L., G. Di Giulio, and A. Rovelli (2005). Variations of local seismic response in Benevento (Southern Italy) using earthquakes and ambient noise recordings, J. Seism. 9, 191–210.] of small magnitude earthquakes recorded at 12 sites within the city of Benevento has stressed the significant role played by near-surface geology in causing variability of the ground motion. In this paper, we extend the study of the seismic response from 12 sites to the entire urban area. Based on inferences from the comparison at the 12 sites between earthquake and ambient vibration results, we have collected ambient noise at about 100 sites within the city, intensifying measurements across the main shallow geological variations. We use borehole data to interpret ambient noise H/V spectral ratios in terms of near-surface geology comparing H/V curves to theoretical transfer functions of 1D models along five well-constrained profiles.

On the basis of geological, geotechnical, and seismic data, we identify three main typologies of seismic response in the city. Each type of response is associated to zones sharing common soil conditions and similar soil classes according to building codes for seismic design. Moreover, we find that the spatial variation of the seismic response in the ancient town area is consistent with the damage pattern produced by a very destructive, well-documented historical earthquake that struck the city in 1688, causing MCS intensity of IX–X in Benevento.

Finally, we use ground motions recorded during the experiment by Improta et al. [Improta, L., G. Di Giulio, and A. Rovelli (2005). Variations of local seismic response in Benevento (Southern Italy) using earthquakes and ambient noise recordings, J. Seism. 9, 191–210.] to generate synthetic seismograms of moderate to strong (Mw 5.7, Molise 2002 and Ms 6.9, 1980 Irpinia) earthquakes. We calibrate the random summation technique by Ordaz et al. [Ordaz, M., J. Arboleda, and S.K. Singh (1995). A scheme of random summation of an Empirical Green's Function to estimate ground motions for future large earthquakes, Bull. Seism. Soc. Am. 85, 1635–1647.] using recordings of these earthquakes available in Benevento. After a satisfactory fit between observed and synthetic seismograms, we compute response spectra at different sites and speculate on effects of the geology class at large level of shaking, including soil nonlinearity. We find that large discrepancies from design spectra prescribed by seismic codes can occur for a wide sector of Benevento, especially for periods < 0.5 s.  相似文献   


14.
液化自由场地震响应大型振动台模型试验分析   总被引:1,自引:0,他引:1  
许成顺  豆鹏飞  杜修力  陈苏  韩俊艳 《岩土力学》2019,40(10):3767-3777
开展了含上部黏土层、饱和砂土层、密实砂土层的可液化自由场地在水平地震动激励下的大型振动台模型试验研究,分析了地震动激励时饱和砂土液化后场地加速度、位移、孔压比时空响应等动力响应。试验结果表明:在小震激励时,场地动力反应较小,加速度反应自下而上不断放大,各深度处孔压比均较小,模型地基整体处于弹性反应阶段;0.3g汶川地震卧龙台地震记录输入时,孔压积累迅速,可液化土体最上部土层孔压比达到1,饱和土体液化,模型地基表现出明显的非线性反应特征,加速度反应在饱和砂土层中未有明显放大,土体卓越周期对应的反应加速度自下而上有不断增大趋势。该研究是土-群桩-上部结构体系大型振动台系列试验中可液化自由场动力反应部分,可供今后做对比分析和验证数值模拟参考。  相似文献   

15.
Significant insight into the dynamic local site response of a horizontally layered sediment deposit to seismic excitation can be gained from numerical simulations. In this paper we use a nonlinear local site response analysis code SPECTRA to estimate the coseismic sediment deformation at a seismically active site in Lotung, Taiwan. We address some basic issues relevant for interpreting the simulation results, including the impact of noise and baseline offsets present in the input ground motion. We also consider the sensitivity of the predicted deformation responses to statistical variations of sediment constitutive properties. Finally, we apply a suite of hypothetical strong ground motions to the base of the sediment deposit to better understand the pattern of inelastic deformation likely to result from strong seismic shaking.  相似文献   

16.
The evaluation of seismic site response in the urban area of Catania was tackled by selecting test areas having peculiar lithological and structural features, potentially favourable to large local amplifications of ground motion. The two selected areas are located in the historical downtown and in the northern part of Catania where the presence of a fault is evident. Site response was evaluated using spectral ratio technique taking the horizontal- to-vertical component ratio of ambient noise. Inferences from microtremor measurements are compared with results from synthetic accelerograms and response spectra computed at all drillings available for this area. Such method is particularly suitable in urban areas where the nature of the outcropping geological units is masked by city growth and anthropic intervention on the surface geology. The microtremor H/V spectral ratios evaluated at soft sites located within the downtown profile tend to be smaller than that usually reported in the literature for such soils. A tendency for amplifications to peaks near 2 Hz is observed only in some sites located on recent alluvial deposits. Evidences for amplifications of site effects (frequency range 4–8 Hz) were observed in the sampling sites located on the fault, with a rapid decrease of spectral amplitude just a few tenths of metres away from the discontinuity. Numerical simulations evidenced the importance of geolithological features at depth levels even greater than 20–30 m. Besides this, the results strongly confirm the importance of the subsurface geological conditions, in the estimate of seismic hazard at urban scale.  相似文献   

17.
Observations from earthquakes over the past several decades have highlighted the importance of local site conditions on propagated ground motions. Downhole arrays are deployed to measure motions at the ground surface and within the soil profile, and also to record the pore pressure response within the soft soil profiles during excitation. The degradation of soil stiffness as excess pore pressures are generated during earthquake events has also been observed. An inverse analysis framework is developed and demonstrated to directly extract soil material behavior including pore water pressure (PWP) generation from downhole array measurements that can then be readily used in 1D nonlinear site response analysis. The self‐learning simulations (SelfSim) inverse analysis framework, previously developed for total stress site response analysis, is extended to extract PWP generation behavior of the soil in addition to cyclic response during ground shaking. A Neural Network based constitutive model is introduced to represent PWP generation during cyclic loading. A new analysis scheme is introduced that can use data from co‐located piezometer and accelerometer sensors. The successful performance of the proposed framework is demonstrated using four synthetic vertical array recordings. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A study of horizontal-to-vertical (H/V) spectral ratios with the short duration data in different geological formations with varying soil thicknesses were carried out. The study has been implemented by using the ambient seismic noise and hammer impact to determine the fundamental frequency and the corresponding amplification of soils. In addition, the average shear wave velocity (Vs30) was calculated to infer the stiffness of soils. The results are correlating well with the local geology and therefore testify that the short duration data is adequate to estimate the H/V spectral ratio in site characterization and microzonation studies.  相似文献   

19.
远场大地震作用下大尺度深软场地的非线性地震效应分析   总被引:1,自引:0,他引:1  
战吉艳  陈国兴  刘建达  李小军 《岩土力学》2013,34(11):3229-3238
基于ABAQUS软件自行研制的并行计算显式算法集群平台,针对苏州城区典型地层剖面,建立了大尺度深软场地的二维精细化非线性有限元分析模型,对人工地震波和大地震远场地震动作用下深软场地的非线性地震效应进行了比较研究。研究结果表明:(1)与人工地震波作用时深软场地的地表峰值加速度放大效应相比,大地震远场地震波作用时的放大效应尤为显著,由于土介质的横向不均匀性及其非线性,使不同地表的峰值加速度放大效应存在明显的变异性。(2)深软场地对周期小于0.3 s的高频地震波均具有显著的滤波效应;大地震远场地震波作用时,深软场地对周期0.85~1.65 s的长周期地震波的放大效应非常显著,但对2.5~7.0 s的长周期地震波呈现出明显的滤波效应。(3)地震动峰值加速度PGA值沿土层深度和横向的分布形态呈现出明显的高低起伏现象,在不同成因的土层更迭面附近及土介质横向不均匀性显著的区域,地震波的局部聚焦放大和过滤减小现象尤为明显,且大地震远场地震动作用时,20 m以浅土层的PGA值呈现出非常显著的放大效应。(4)地震波的频谱特性、土层的横向不均匀性对深软场地地表加速度反应谱? 谱的谱形有显著影响;给出了描述加速度反应谱沿土层深度变化特征的三维谱形曲线,可以直观地展示出深软场地中细长地下结构地震反应可能存在类共振现象的土层深度。  相似文献   

20.
为研究水平和竖向(双向)耦合地震作用下液化场地群桩基础的动力响应,设计了可液化地基-群桩基础-框筒结构动力相互作用体系振动台模型试验。选取不同类型模拟地震波作为振动台试验激励,通过对比水平地震作用和双向耦合地震作用下土体加速度、超孔隙水压力和群桩应变等试验结果,进而分析双向耦合地震作用对可液化地基和群桩基础动力响应的影响。研究结果表明:双向耦合地震作用下,液化场地土体竖向加速度峰值随土体埋深高度的减小而逐渐增大;饱和砂土的液化效应与双向耦合地震作用和输入地震波的类型有关;相比水平地震作用,不同种类波双向耦合地震作用下群桩基础桩身中部和底部的应变峰值增大,桩顶应变峰值变化略有不同;双向耦合地震作用加剧了建筑结构群桩体系的摇摆和倾斜。研究结果对可液化地基上群桩基础的抗震设计和防灾减灾具有十分重要的研究意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号