首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water wave interaction with a floating porous cylinder   总被引:1,自引:0,他引:1  
The interaction of water waves with a freely floating circular cylinder possessing a side-wall that is porous over a portion of its draft is investigated theoretically. The porous side-wall region is bounded top and bottom by impermeable end caps thereby resulting in an enclosed fluid region within the structure. The problem is formulated based on potential flow and linear wave theory and assuming small-amplitude structural oscillations. An eigenfunction expansion approach is then used to obtain semi-analytical expressions for the hydrodynamic excitation and reaction loads on the structure. Numerical results are presented which illustrate the effects of the various wave and structural parameters on these quantities. It is found that the permeability, size and location of the porous region may have a significant influence on the horizontal components of the hydrodynamic excitation and reaction loads, while its influence on the vertical components in most cases is relatively minor.  相似文献   

2.
    
The interaction of water waves with arrays of bottom-mounted, surface-piercing circular cylinders is investigated theoretically. The sidewall of each cylinder is porous and thin. Under the assumptions of potential flow and linear wave theory, a semi-analytical solution is obtained by an eigenfunction expansion approach first proposed for impermeable cylinders by Spring and Monkmeyer (1974), and later simplified by Linton and Evans (1990). Analytical expressions are developed for the wave motion in the exterior and all interior fluid regions. Numerical results are presented which illustrate the effects of various wave and structural parameters on the hydrodynamic loads and the diffracted wave field. It is found that the porosity of the structures may result in a significant reduction in both the hydrodynamic loads experienced by the cylinders and the associated wave runup.  相似文献   

3.
    
Acoustic plane-wave scattering from a rough surface overlying a fluid half-space with a sound-speed distribution subject to a small random variation is considered. Under the assumption that the surface roughness and medium randomness are statistically independent, the scattered field may be derived by first solving for the mean field in the medium, and then incorporating with boundary-perturbation method to obtain the total mean field and the power spectral density of the scattered field. The employed algorithm is compatible to the analysis available in the existing literature so that the formulations are conveniently integrated. The results for the power spectral density have shown that the effects of medium inhomogeneities on the rough surface scattering are limited in a spectral regime where the scattered components have shallow grazing angles. The distribution of the power spectral density over the space is primarily governed by the power spectrum and correlation lengths of the rough surface.  相似文献   

4.
    
A coupled numerical model considering nonlinear sloshing flows and the linear ship motions has been developed based on a boundary element method. Hydrodynamic performances of a tank containing internal fluid under regular wave excitations in sway are investigated by the present time-domain simulation model and comparative model tests. The numerical model features well the hydrodynamic performance of a tank and its internal sloshing flows obtained from the experiments. In particular, the numerical simulations of the strong nonlinear sloshing flows at the natural frequency have been validated. The influence of the excitation wave height and wave frequency on ship motions and internal sloshing has been investigated. The magnitude of the internal sloshing increases nonlinearly as the wave excitation increases. It is observed that the asymmetry of the internal sloshing relative to still water surface becomes more pronounced at higher wave excitation. The internal sloshing-induced wave elevation is found to be amplitude-modulated. The frequency of the amplitude modulation envelope is determined by the difference between the incident wave frequency and the natural frequency of the internal sloshing. Furthermore, the coupling mechanism between ship motions and internal sloshing is discussed.  相似文献   

5.
    
The main characteristic of the bubble dynamics near a rigid wall is the development of a high speed liquid jet, generating highly localized pressure on the wall. In present study, the bubble dynamic behaviors and the pressure impulses are investigated through experimental and numerical methods. In the experiment, the dynamics of a spark-generated bubble near a steel plate are captured by a high-speed camera with up to 650,000 frames per second. Numerical studies are conducted using a boundary integral method with incompressible assumption, and the vortex ring model is introduced to handle the discontinued potential of the toroidal bubble. Meanwhile, the pressure on the rigid wall is calculated by an auxiliary function. Calculated results with two different stand-off parameters show excellent agreement with experimental observations. A double-peaked or multiple-peaked structure occurs in the pressure profile during the collapse and rebounding phase. Generally, the pressure at the wall center reaches the first peak soon after the jet impact, and the second peak is caused by the rapid migration of the bubble toward the wall, and the subsequent peaks may be caused by the splashing effect and the rebounding of the toroidal bubble. At last, both agreements and differences are found in the comparison between the present model and a hybrid incompressible–compressible method in Hsiao et al. (2014). The differences show that the compressibility of the flow is another influence factor of the jet impact. However, the main features of the jet impact could be simulated using the present model.  相似文献   

6.
    
H. T. Teo 《Ocean Engineering》2003,30(16):2157-2166
Non-linear wave pressure induced by short-crested waves on a vertical wall is an important factor to be considered in the design of coastal structures. The existing models to estimate the wave pressure in engineering design are limited to the third-order solution ([Hsu et al., 1979]). In this paper, an analytical solution up to the fifth-order is derived through perturbation approximation. This analytical closed-form solution is used to investigate the contributions of the higher-order components in short-crested waves. It is found that fifth-order components significantly affect the change of pressure, especially in shallow water and larger waves.  相似文献   

7.
Computation of solitary waves during propagation and runup on a slope   总被引:1,自引:0,他引:1  
A numerical time-simulation algorithm for analysing highly nonlinear solitary waves interacting with plane gentle and steep slopes is described by employing a mixed Eulerian–Lagrangian method. The full nonlinear free surface conditions are considered here in a Lagrangian frame of reference without any analytical approximations, and thus the method is valid for very steep waves including overturning. It is found that the runup height is crucially dependent on the wave steepness and the slope of the plane. Pressures and forces exerted on impermeable walls of different inclinations (slopes) by progressive shallow water solitary waves are studied. Strong nonlinear features in the form of pronounced double peaks are visible in the time history of pressure and force signals with increasing heights of the oncoming solitary waves. The effect of nonlinearity is less pronounced as the inclination of the wall decreases with respect to the bottom surface.  相似文献   

8.
    
The hydrodynamic performance of the oscillating water column type shoreline-mounted wave-power device is numerically studied within linear wave theory by using a boundary element method based on the Wehausen and Laitone 3D shallow water Green's function. In order to verify the numerical model, a 1:12 physical model with different bottom slopes was constructed and tested in a wave basin under regular wave conditions. The effects of the bottom slope on the hydrodynamic performance are investigated by both analytical and experimental methods.  相似文献   

9.
    
In this paper, the principle of mirror image is used to transform the problem of wave diffraction from a circular cylinder in front of orthogonal vertical walls into the problem of diffraction of four symmetric incident waves from four symmetrically arranged circular cylinders, and then the eigenfunction expansion of velocity potential and Grafs addition theorem are used to give the analytical solution to the wave diffraction problem. The relation of the total wave force on cylinder to the distance between the cylinder and orthogonal vertical walls and the incidence angle of wave is also studied by numerical computation.  相似文献   

10.
In the present paper, Miles' (1981) theory is implemented to derive formulae for describing the Bragg scattering of water waves for doubly composite artificial bars with different shapes, spacings, relative bar heights, relative bar footprint and the number of bars. The theory has clear advantage in estimating Bragg reflection coefficient for practical applications concerning coastal problems. Experiments of Bragg reflections over doubly composite rectangular artificial bars have also been performed in a wave flume. Key parameters that may lead to the optimal selection of a doubly composite artificial bar are studied. Theoretical solutions are seen to compare fairly well with the numerical computations and the laboratory experiments. Our simulated results reveal that the Bragg resonance for doubly composite artificial bars effectively increases the bandwidth of the reflection coefficient.  相似文献   

11.
    
This paper proposes a new wave absorber made of flexible net structures. To test the efficiency of the proposed water absorber, experiments were done on wave absorbers of various lengths of and the thicknesses of the wave absorber. To perform a numerical modeling of the proposed wave absorber, damping terms were introduced in linearized free-surface boundary conditions. The length and the thickness of the wave absorber were modeled by the length and the coefficient of the damping zones. The boundary element method was adopted to solve the system. Series of experiments were performed to obtain the data for the coefficients of the damping term needed in numerical calculations. The predicted wave heights agreed very closely with those of experiments when the lengths of the incoming waves were within the order of the length of the wave absorber.  相似文献   

12.
The effect of water depth on the performance of a small surging wave energy converter (WEC) is investigated analytically, numerically and experimentally. It is shown that although the average annual incident wave power is significantly reduced by water depth, a large proportion of this reduction is due to the dissipation of highly energetic, but largely unexploitable seas. It is also shown that the power capture is related more closely to incident wave force than incident wave power. Experimental results demonstrate that both the surge wave force and power capture of a flap-type WEC increase in shallow water.  相似文献   

13.
This paper presents a potential based boundary element method for solving a nonlinear free surface flow problem for a ship moving with a uniform speed in finite depth of water. The free surface boundary condition is linearized by the systematic method of perturbation in terms of a small parameter up to third order. The surfaces are discretized into flat quadrilateral elements and the influence coefficients are calculated by Morino's analytical formula. Dawson's upstream finite difference operator is used in order to satisfy the radiation condition. The second order solution gives better result than the first or third order solution. So the present method with the second order solution can be adopted as a powerful tool for the hydrodynamic analysis of the thin ship in finite depth of water.  相似文献   

14.
A numerical solution is developed to investigate the generation and propagation of small-amplitude water waves in a semi-infinite rectangular wave basin. The three-dimensional wave field is produced by the prescribed “snake-like” motion of an array of segmented wave generators located along the wall at one end of the tank. The solution technique is based on the boundary element approach and uses an appropriate three-dimensional Green function which explicitly satisfies the tank-wall boundary conditions. The Green function and its derivatives which appear in the integral equation formulation can be shown to be slowly convergent when the source and field points are in close proximity. Therefore, when computing the velocity potentials on the wave generators, the source points are chosen outside the fluid domain, thereby ensuring the rapid convergence of these functions and rendering the integral equations non-singular. Numerical results are shown which illustrate the influence of the various wavemaker and basin parameters on the generated wave field. Finally, the complete wave field produced by the diffraction of oblique waves by a vertical circular cylinder in a basin is presented.  相似文献   

15.
本文就波浪与结构物相互作用问题,提出了一个适用于高阶边界元应用的新的积分方程,并利用修改积分区域的方法得了适用于本积分方程的不规则频率消除方法。最后,通过数值计算对附加区域的选择、单元的离散做了研究  相似文献   

16.
    
B. Teng  S. Kato 《Ocean Engineering》2002,29(7):815-843
The third order triple-frequency wave load on fixed axisymmetric bodies by monochromatic waves is considered within the frame of potential theory. Waves are assumed to be weak non-linearity and a perturbation method is used to expand velocity potentials and wave loadings into series according to a wave steepness of kA. Integral equation method is used to compute velocity potentials up to second order in wave steepness. The third order triple-frequency wave loads are computed by an indirect method and an efficient method is applied to form the third order forcing term on the free surface quickly. The method can be used to compute third order triple-frequency surge force, heave force and pitch moment on any revolution bodies with vertical axes. The comparison with Malenica and Molin's results is made on surge force on a uniform cylinder, and comparison with experimental results is made on third order surge force, heave force and pitch moment on a truncated cylinder. More numerical computations are carried out for third order forces and moments on a uniform cylinder, truncated cylinders and a hemisphere.  相似文献   

17.
    
An energy-controlling technique to actively manage the reflective property of waves from solid boundary is presented. As linear waves propagate through an energy-controlling area, a reduction in wave heights occurs due to energy dissipation, which can be placed under direct control through the imaginary part of the wavenumber and phase velocity. Based on this relationship, the present study investigates a new method to control reflected waves with desired heights in the mild slope equation model. The method is validated through numerical tests for various reflection coefficients and the results confirm the promising use of energy-controlling boundary condition for partial wave reflections.  相似文献   

18.
    
Breaking waves on coastal structures cause high magnitude impact pressures which may be important for the structural stability. In estimating the impact pressure distribution on the wall, there have been a lot of theoretical and experimental work. The present study is concerned with a theoretical approach which is based on the pressure impulse, to find the impact pressures on vertical wall. The numerical solution of the governing equation is carried out using the boundary element method. The theoretical impact pressures are determined using the experimental values of impact pressure rising time. The computational results of the impact pressures from the pressure impulse model are found to agree well with the experimental data of an earlier study.  相似文献   

19.
An effective boundary element method (BEM) is presented for the interaction between oblique waves and long prismatic structures in water of finite depth. The Green's function used here is the basic Green's function that does not satisfy any boundary condition. Therefore, the discretized elements for the computation must be placed on all the boundaries. To improve the computational efficiency and accuracy, a modified method for treatment of the open boundary conditions and a direct analytical approach for the singularity integrals in the boundary integral equation are adopted. The present BEM method is applied to the calculation of hydrodynamic coefficients and wave exciting forces for long horizontal rectangular and circular structures. The performance of the present method is demonstrated by comparisons of results with those generated by other analytical and numerical methods.  相似文献   

20.
张福然  陈汉宝 《海洋学报》1998,20(1):130-133
首次将单源点法应用于水深有陡变的人工港域内波高分布的数值计算,结果与一维理论解符合极好,并与工程实例的物理模型试验结果符合也很好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号