首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
In the present study, the P - and S -velocity structure of the crust and uppermost mantle in the area of central Macedonia (northern Greece) is presented, as derived from the inversion of traveltimes of local events. An appropriate preconditioning of the final linearized system is used in order to reduce ray density effects on the results. The study focuses mainly on the structure of the broader area of the Serbomacedonian Massif. Interesting features and details of the crustal structure can be recognized in the final tomographic images. The crustal thickness shows strong variations. Under the Serbomacedonian and western Rhodope massifs the crust has a thickness that exceeds 30  km. On the other hand, the North Aegean Trough exhibits a fairly thin crust (25–27  km). Moreover, the Serbomacedonian Massif is bounded by two regions that trend parallel to the Axios river–Thermaikos gulf and the Strymon river–Orfanou gulf, respectively, which show significant crustal thinning (25–28  km). The observed match between the direction of this crustal thinning and the basins' axes indicates that they have been generated by the same extensional deformation episode.  相似文献   

6.
7.
8.
We present velocity constraints for the upper-mantle transition zones beneath Central Siberia based on observations of the 1982 RIFT Deep Seismic Sounding (DSS) profile. The data consist of seismic recordings of a nuclear explosion in north-western Siberia along a 2600 km long seismic profile extending from the Yamal Peninsula to Lake Baikal. We invert seismic data from the mantle transition zones using a non-linear inversion scheme using a genetic algorithm for optimization and the WKBJ method to compute the synthetic seismograms. A statistical error analysis using a graph-binning technique was performed to provide uncertainty values in the velocity models.
Our best model for the upper-mantle velocity discontinuity near 410 km depth has a two-stage velocity-gradient structure, with velocities increasing from 8.70–9.25 km s−1 over a depth range of 400–415 km, a gradient of 0.0433 s−1, and from 9.25–9.60 km s−1 over a depth range of 415–435 km, a gradient of 0.0175 s−1. This derived model is consistent with other seismological observations and mineral-physics models. The model for the velocity discontinuity near 660 km depth is simple, sharp and includes velocities increasing from 10.15 km s−1 at 655 km depth to 10.70 km s−1 at 660 km depth, a gradient of 0.055 s−1.  相似文献   

9.
10.
11.
12.
13.
14.
15.
We investigate large-amplitude phases arriving in the P -wave coda of broad-band seismograms from teleseisms recorded by the Gräfenberg array, the German Regional Seismic Network and the Global Seismic Network. The data set consists of all events m b≤ 5.6 from the Aleutian arc between 1977 and 1992. Earthquakes with large-amplitude coda waves correlate with the presence of oceanic crust in the source region. The amplitudes sometimes approach those of the P wave, much larger than predicted by theory. Modelling indicates that phases in the P -wave coda cannot be P -wave multiples beneath the source and receiver, or underside reflections, which precede PP , from upper-mantle discontinuities. Among the events, seismograms are very similar, where the arrival times of the unusual phases agree approximately with the predicted times of S -to- P conversions from the upper-mantle discontinuities under the source. Because the large-amplitude phases in the P -wave coda have little, if any, dependence on event depth and have predominantly an SV -wave radiation pattern towards the receiver, we suggest that they originate as SV and/or Rayleigh waves and are enhanced by lateral heterogeneity and multipathing from the subducting Aleutian slab.  相似文献   

16.
17.
Surface wave tomography of the Barents Sea and surrounding regions   总被引:1,自引:0,他引:1  
The goal of this study is to refine knowledge of the structure and tectonic history of the European Arctic using the combination of all available seismological surface wave data, including historical data that were not used before for this purpose. We demonstrate how the improved data coverage leads to better depth and spatial resolution of the seismological model and discovery of intriguing features of upper-mantle structure. To improve the surface wave data set in the European Arctic, we extensively searched for broad-band data from stations in the area from the beginning of the 1970s until 2005. We were able to retrieve surface wave observations from regional data archives in Norway, Finland, Denmark and Russia in addition to data from the data centres of IRIS and GEOFON. Rayleigh and Love wave group velocity measurements between 10 and 150 s period were combined with existing data provided by the University of Colorado at Boulder. This new data set was inverted for maps showing the 2-D group-velocity distribution of Love and Rayleigh waves for specific periods. Using Monte Carlo inversion, we constructed a new 3-D shear velocity model of the crust and upper mantle beneath the European Arctic which provides higher resolution and accuracy than previous models. A new crustal model of the Barents Sea and surrounding areas, published recently by a collaboration between the University of Oslo, NORSAR and the USGS, constrains the 3-D inversion of the surface wave data in the shallow lithosphere. The new 3-D model, BARMOD, reveals substantial variations in shear wave speeds in the upper mantle across the region with a nominal resolution of 1°× 1°. Of particular note are clarified images of the mantle expression of the continent-ocean transition in the Norwegian Sea and a deep, high wave speed lithospheric root beneath the Eastern Barents Sea, which presumably is the remnant of several Palaeozoic collisions.  相似文献   

18.
19.
We image the Hikurangi subduction zone using receiver functions derived from teleseismic earthquakes. Migrated receiver functions show a northwest dipping low shear wave feature down to 60 km depth, which we associate with the crust of the subducted Pacific Plate. Receiver functions (RF) at several stations also show a pair of negative and positive polarity phases with associated conversion depths of ∼20–26 km, where the subducted Pacific Plate is at a depth of ∼40–50 km beneath the overlying Australian Plate. RF inversion solutions model these phases with a thin low S -wave velocity zone less than 4 km thick, and an S -wave velocity contrast of more than ∼0.5 km s−1 with the overlying crust. We interpret this phase pair as representing fluids near the base of the lower crust of the Australian Plate, directly overlying the forearc mantle wedge.  相似文献   

20.
We compare 3-D upper mantle anisotropic structures beneath the North American continent obtained using standard and improved crustal corrections in the framework of Non-linear Asymptotic Coupling Theory (NACT) applied to long period three component fundamental and higher mode surface waveform data. Our improved approach to correct for crustal structure in high-resolution regional waveform tomographic models goes beyond the linear perturbation approximation, and is therefore more accurate in accounting for large variations in Moho topography within short distances as observed, for instance, at ocean–continent margins. This improved methodology decomposes the shallow-layer correction into a linear and non-linear part and makes use of 1-D sensitivity kernels defined according to local tectonic structure, both for the forward computation and for the computation of sensitivity kernels for inversion. The comparison of the 3-D upper mantle anisotropic structures derived using the standard and improved crustal correction approaches shows that the model norm is not strongly affected. However, significant variations are observed in the retrieved 3-D perturbations. The largest differences in the velocity models are present below 250 km depth and not in the uppermost mantle, as would be expected. We suggest that inaccurate crustal corrections preferentially map into the least constrained part of the model and therefore accurate corrections for shallow-layer structure are essential to improve our knowledge of parts of the upper mantle where our data have the smallest sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号