首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
介绍全日面太阳光学和磁场望远镜的自动跟踪与导行方法。本系统采用光栅钢带码盘作位置检测元件,实时计算太阳站心位置,构成高精度的位置环跟踪系统,并用视频CCD和胡氏导行光路进行太阳导行,提高了系统的长时间跟踪精度。最后经实测,分析得出该跟踪导行系统完全达到预期指标。  相似文献   

2.
A magnetograph is an instrument which makes measurement of solar magnetic field by measuring Zeeman induced polarization in solar spectral lines. In a typical filter based magnetograph there are three main modules namely, polarimeter, narrow-band spectrometer (filter), and imager(CCD camera). For a successful operation of magnetograph it is essential that these modules work in synchronization with each other. Here, we describe the design of instrument control system implemented for the Solar Vector Magnetograph under development at Udaipur Solar Observatory. The control software is written in Visual Basic and exploits the Component Object Model (COM) components for a fast and flexible application development. The user can interact with the instrument modules through a Graphical User Interface (GUI) and can program the sequence of magnetograph operations. The integration of Interactive Data Language (IDL) ActiveX components in the interface provides a powerful tool for online visualization, analysis and processing of images.  相似文献   

3.
Chae  Jongchul 《Solar physics》2004,221(1):15-21
I present a method to correct solar magnetograms for a non-uniform detector pattern that depends on the sense of light polarization. The application to Big Bear Solar Observatory magnetograph observations demonstrates that the determination of a flat pattern can be done at an accuracy imposed by the photon noise in the raw magnetograms.  相似文献   

4.
The 1.6 m clear aperture solar telescope in Big Bear is operational and with its adaptive optics (AO) system it provides diffraction limited solar imaging and polarimetry in the near-infrared (NIR). While the AO system is being upgraded to provide diffraction limited imaging at bluer wavelengths, the instrumentation and observations are concentrated in the NIR. The New Solar Telescope (NST) operates in campaigns, making it the ideal ground-based telescope to provide complementary/supplementary data to SDO and Hinode. The NST makes photometric observations in Hα (656.3 nm) and TiO (705.6 nm) among other lines. As well, the NST collects vector magnetograms in the 1565 nm lines and is beginning such observations in 1083.0 nm. Here we discuss the relevant NST instruments, including AO, and present some results that are germane to NASA solar missions.  相似文献   

5.
The RESIK instrument on the CORONAS-F spacecraft obtained solar flare and active-region X-ray spectra in four channels covering the wavelength range 3.8?–?6.1 Å in its operational period between 2001 and 2003. Several highly ionized silicon lines were observed within the range of the long-wavelength channel (5.00?–?6.05 Å). The fluxes of the Si?xiv Ly-β line (5.217 Å) and the Si?xiii 1s 2?–?1s3p line (5.688 Å) during 21 flares with optimized pulse-height analyzer settings on RESIK have been analyzed to obtain the silicon abundance relative to hydrogen in flare plasmas. As in previous work, the emitting plasma for each spectrum is assumed to be characterized by a single temperature and emission measure given by the ratio of emission in the two channels of GOES. The silicon abundance is determined to be A(Si)=7.93±.21 (Si?xiv) and 7.89±.13 (Si?xiii) on a logarithmic scale with H=12. These values, which vary by only very small amounts from flare to flare and times within flares, are 2.6±1.3 and 2.4±0.7 times the photospheric abundance, and are about a factor of three higher than RESIK measurements during a period of very low activity. There is a suggestion that the Si/S abundance ratio increases from active regions to flares.  相似文献   

6.
Zhang  Hongqi 《Solar physics》2000,197(2):235-251
In this paper, we analyse Stokes parameters I,Q,U of the Fei 5324.19Å line, calculated with radiative transfer equations in a solar model atmosphere with a magnetic field, and the influence of magneto-optical effects on the measurement of transverse magnetic field. It is found that the measurement of azimuthal angles of the transverse field is obviously disturbed by the magneto-optical effects. We compare with the observational Stokes images Q and U at different wavelengths from the center to the wing of the Fei 5324.19Å line obtained at Huairou Solar Observing Station of Beijing Astronomical Observatory to confirm azimuthal angles of the transverse field, because the insignificant influence of magneto-optical effects in the far wing of the line was found by the theoretical analysis. The accuracy of azimuthal angles of the transverse field measured near the Fei 5324.19Å line center has been estimated.  相似文献   

7.
8.
The current fleet of space-based solar observatories offers us a wealth of opportunities to study solar flares over a range of wavelengths. Significant advances in our understanding of flare physics often come from coordinated observations between multiple instruments. Consequently, considerable efforts have been, and continue to be, made to coordinate observations among instruments (e.g. through the Max Millennium Program of Solar Flare Research). However, there has been no study to date that quantifies how many flares have been observed by combinations of various instruments. Here we describe a technique that retrospectively searches archival databases for flares jointly observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), Solar Dynamics Observatory (SDO)/EUV Variability Experiment (EVE – Multiple EUV Grating Spectrograph (MEGS)-A and -B, Hinode/(EUV Imaging Spectrometer, Solar Optical Telescope, and X-Ray Telescope), and Interface Region Imaging Spectrograph (IRIS). Out of the 6953 flares of GOES magnitude C1 or greater that we consider over the 6.5 years after the launch of SDO, 40 have been observed by 6 or more instruments simultaneously. Using each instrument’s individual rate of success in observing flares, we show that the numbers of flares co-observed by 3 or more instruments are higher than the number expected under the assumption that the instruments operated independently of one another. In particular, the number of flares observed by larger numbers of instruments is much higher than expected. Our study illustrates that these missions often acted in cooperation, or at least had aligned goals. We also provide details on an interactive widget (Solar Flare Finder), now available in SSWIDL, which allows a user to search for flaring events that have been observed by a chosen set of instruments. This provides access to a broader range of events in order to answer specific science questions. The difficulty in scheduling coordinated observations for solar-flare research is discussed with respect to instruments projected to begin operations during Solar Cycle 25, such as the Daniel K. Inouye Solar Telescope, Solar Orbiter, and Parker Solar Probe.  相似文献   

9.
Yuanyong  Deng  Guoxiang  Ai  Jingshan  Wang  Guofeng  Song  Bin  Zhang  Xiangming  Ye 《Solar physics》1997,173(2):207-221
In this paper, we have made a report on the test observations with a Multi-Channel Solar Telescope (MCST), which consists of 60 cm Nine-Channel Solar Telescope (NCST), 35 cm Solar Magnetic Field Telescope (SMFT), 8 cm Full Disc Telescope (FDT), 10 cm Full Disc Magnetic Field Telescope (FDMFT) and 14 cm H telescope. These observations demonstrate that the MCST has the following advantages: (a) It can work at more than nine visible spectral lines simultaneously. In this way, different solar layers of the photosphere and chromosphere can be observed at the same time; (b) every channel of the NCST is entirely equivalent to a videomagnetograph, by means of which the vector magnetic fields and line-of-sight velocity fields can be measured; (c) real-time monochromatic images of the photosphere and chromosphere can be obtained with the FDT, FDMFT, and H Telescope; (d) high-temporal-resolution full-disk magnetic fields can be measured with the FDMFT; (e) spectral profiles over a large field of view can be scanned with the NCST.  相似文献   

10.
D.L. Mickey 《Solar physics》2004,220(1):21-27
I describe a method for quickly and accurately determining the plate parallelism in a tunable Fabry-Pérot interferometer. The method takes advantage of the fact that our Fabry-Pérot is installed in a spectropolarimeter: we measure profiles of solar or telluric absorption lines in three differently polarized telescope subapertures and use the residual polarization profiles to determine the plate parallelism error. An example of the error as a function of time during the observing day is also shown; it changes in a consistent way with telescope hour angle but the drift is enough to require frequent adjustment.  相似文献   

11.
Hong  Zhenxiang  Li  Dong  Zhang  Minghui  Tan  Chengming  Ma  Suli  Ji  Haisheng 《Solar physics》2021,296(11):1-28

We have performed a search for flares and quasi-periodic pulsations (QPPs) from low-mass M-dwarf stars using Transient Exoplanet Survey Satellite (TESS) two-minute cadence data. We find seven stars that show evidence of QPPs. Using Fourier and empirical mode decomposition techniques, we confirm the presence of 11 QPPs in these seven stars with a period between 10.2 and 71.9 minutes, including an oscillation with strong drift in the period and a double-mode oscillation. The fraction of flares that showed QPPs (7%) is higher than other studies of stellar flares, but it is very similar to the fraction of solar C-class flares. Based on the stellar parameters taken from the TESS Input Catalog, we determine the lengths and magnetic-field strengths of the flare coronal loops using the period of the QPPs and various assumptions about the origin of the QPPs. We also use a scaling relationship based on flares from the Sun and solar-type stars and the observed energy, plus the duration of the flares, finding that the different approaches predict loop lengths that are consistent to within a factor of about two. We also discuss the flare frequency of the seven stars determining whether this could result in ozone depletion or abiogenesis in any orbiting exoplanet. Three of our stars have a sufficiently high rate of energetic flares, which are likely to cause abiogenesis. However, two of these stars are also in the range where ozone depletion is likely to occur. We speculate on the implications of the flare rates, loop lengths, and QPPs for life on potential exoplanets orbiting in their host star’s habitable zone.

  相似文献   

12.
STEREO/EUVI observed 185 flare events (detected above the GOES class C1 level or at >?25 keV with RHESSI) during the first two years of the mission (December 2006?–?November 2008), while coronal mass ejections (CMEs) were reported in about a third of these events. We compile a comprehensive catalog of these EUVI-observed events, containing the peak fluxes in soft X rays, hard X rays, and EUV, as well as a classification and statistics of prominent EUV features: 79% show impulsive EUV emission (coincident with hard X rays), 73% show delayed EUV emission from postflare loops and arcades, 24% represent occulted flares, 17% exhibit EUV dimming, 5% show loop oscillations or propagating waves, and at least 3% show erupting filaments. We analyze an example of each EUV feature by stereoscopic modeling of its 3D geometry. We find that EUV emission can be dominated by impulsive emission from a heated, highly sheared, noneruptive filament, in addition to the more common impulsive EUV emission from flare ribbons or the delayed postflare EUV emission that results from cooling of the soft-X-ray-emitting flare loops. Occulted flares allow us to determine CME-related coronal dimming uncontaminated from flare-related EUV emission. From modeling the time evolution of EUV dimming we can accurately quantify the initial expansion of CMEs and determine their masses. Further, we find evidence that coronal loop oscillations are excited by the rapid initial expansion of CMEs. These examples demonstrate that stereoscopic EUV data provide powerful new methods to model the 3D aspects in the hydrodynamics of flares and kinematics of CMEs.  相似文献   

13.
Ground level enhancements (GLEs) of cosmic-ray intensity occur, on average, once a year. Because they are rare, studying the solar sources of GLEs is especially important to approach understanding their origin. The SOL2001-12-26 eruptive-flare event responsible for GLE63 seems to be challenging in some aspects. Deficient observations limited our understanding of it. Analysis of additional observations found for this event provided new results that shed light on the flare configuration and evolution. This article addresses the observations of this flare with the Siberian Solar Radio Telescope (SSRT). Taking advantage of its instrumental characteristics, we analyze the detailed SSRT observations of a major long-duration flare at 5.7 GHz without cleaning the images. The analysis confirms that the source of GLE63 was associated with an event in active region 9742 that comprised two flares. The first flare (04:30?–?05:03 UT) reached a GOES importance of about M1.6. Two microwave sources were observed, whose brightness temperatures at 5.7 GHz exceeded 10 MK. The main flare, up to an importance of M7.1, started at 05:04 UT and occurred in strong magnetic fields. The observed microwave sources reached a brightness temperature of about 250 MK. They were not static. After appearing on the weaker-field periphery of the active region, the microwave sources moved toward each other nearly along the magnetic neutral line, approaching the stronger-field core of the active region, and then moved away from the neutral line like expanding ribbons. These motions rule out an association of the non-thermal microwave sources with a single flaring loop.  相似文献   

14.
The Multi-Application Solar Telescope (MAST) is a 50 cm off-axis Gregorian telescope that has recently become operational at the Udaipur Solar Observatory (USO). An imaging spectropolarimeter is being developed as one of the back-end instruments of MAST to gain a better understanding of the evolution and dynamics of solar magnetic and velocity fields. This system consists of a narrow-band filter and a polarimeter. The polarimeter includes a linear polarizer and two sets of liquid crystal variable retarders (LCVRs). The instrument is intended for simultaneous observations in the spectral lines 6173 Å and 8542 Å, which are formed in the photosphere and chromosphere, respectively. In this article, we present results from the characterization of the LCVRs for the spectral lines of interest and the response matrix of the polarimeter. We also present preliminary observations of an active region obtained using the spectropolarimeter. For verification purposes, we compare the Stokes observations of the active region obtained from the Helioseismic Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) with that of MAST observations in the spectral line 6173 Å. We find good agreement between the two observations, considering the fact that MAST observations are limited by seeing.  相似文献   

15.
In this paper we present the results of inversion of Stokes polarization profiles of a sunspot, to recover the vector magnetic field parameters of the spectral-line-forming region, using the Fei 5324.19 Å line and a nonlinear least-squares fitting. Observations of the simple sunspot were obtained using the Video Vector Magnetograph at the Huairou Solar Observing Station (HSOS) of the National Astronomical Observatories of China, over the wavelength interval of 150 mÅ redward of line center of Fei 5324.19 Å to 150 mÅ to the blue, in steps of 10 mÅ. The curves of the observed variation of azimuth with wavelength are also compared with model calculations of the azimuth at each wavelength, as derived from the inverse Zeeman effect modified by Faraday rotation. The results show that the rotation of azimuth is less significant in the observations taken near the center of the Fei 5324.19 Å line than those taken near the center of the Fei 5250.22 Å line.  相似文献   

16.
A new solar telescope system is described, which has been operating at Huairou Solar Observing Station (HSOS), National Astronomical Observatories, Chinese Academy of Sciences (CAS), since the end of 2005. This instrument, the Solar Magnetism and Activity Telescope (SMAT), comprises two telescopes which respectively make measurements of full solar disk vector magnetic field and Hα observation. The core of the full solar disk video vector magnetograph is a birefringent filter with 0.1  bandpass, installed in the tele-centric optical system of the telescope. We present some preliminary observational results of the full solar disk vector magnetograms and Hα filtergrams obtained with this telescope system.  相似文献   

17.
耀斑Υ射线研究近年来有了飞速的发展,这主要是得益于康普顿Υ射线天文台、GRANAT卫星和阳光卫星的新观测,以及对GRS/SMM资料的详细分析。简要概括了耀斑Υ射线观测和研究近年来获得的主要进展,其中包括:超长时间Υ射线暴、边缘强2.223MeV事件、大于10MeV耀斑日面分布、Υ射线谱和连续谱、粒子的加速机制等,并展望未来的发展趋势。  相似文献   

18.
The Multi-Application Solar Telescope is a 50 cm off-axis Gregorian telescope recently installed at the Udaipur Solar Observatory, India. In order to obtain near-simultaneous observations at photospheric and chromospheric heights, an imager optimized for two or more wavelengths is being integrated with the telescope. Two voltage-tuneable lithium-niobate Fabry–Perot etalons along with a set of interference blocking filters have been used for developing the imager. Both of the etalons are used in tandem for photospheric observations in Fe i 6173 Å and chromospheric observation in H\(\alpha\) 6563 Å spectral lines, whereas only one of the etalons is used for the chromospheric Ca II line at 8542 Å. The imager is also being used for spectropolarimetric observations. We discuss the characterization of the etalons at the above wavelengths, detail the integration of the imager with the telescope, and present a few sets of observations taken with the imager set-up.  相似文献   

19.
A method combining the support vector machine (SVM) the K-Nearest Neighbors (KNN), labelled the SVM-KNN method, is used to construct a solar flare forecasting model. Based on a proven relationship between SVM and KNN, the SVM-KNN method improves the SVM algorithm of classification by taking advantage of the KNN algorithm according to the distribution of test samples in a feature space. In our flare forecast study, sunspots and 10cm radio flux data observed during Solar Cycle 23 are taken as predictors, and whether an M class flare will occur for each active region within two days will be predicted. The SVM- KNN method is compared with the SVM and Neural networks-based method. The test results indicate that the rate of correct predictions from the SVM-KNN method is higher than that from the other two methods. This method shows promise as a practicable future forecasting model.  相似文献   

20.
苏杨 《天文学报》2012,53(2):181-182
本文主要讨论对不同电离度分布厚靶模型的改进以及在耀斑X射线观测中推导非热电子、电离度和靶密度分布的应用.首先改进了太阳物理软件包(Solar SoftWare)中集成的厚靶和薄靶模型通用计算程序.新版程序调整了两个积分的顺序,使其中一个不再需要通过数值积分求解,同时将积分空间由能量调整到其对数空间,从而将运行速度提高了至少10~100倍,且计算精度也有所提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号