首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
A rare outburst of the Aurigid meteor shower was predicted to occur on 2007 September 1 at 11:36 ± 20 min  ut due to Earth's encounter with the one-revolution dust trail of long-period comet C/1911 N1 (Kiess). The outburst was predicted to last ∼1.5 h with peak zenithal hourly rate of ∼200 h−1, which is ∼20 times higher than the annual Aurigid shower. Three members of Armagh Observatory observed this outburst from the general area of San Francisco, CA, USA, where the shower was anticipated to be best seen. Observed radiant, velocity and activity peak time were consistent with the predictions, whereas the zenithal hourly rate was about half of the predicted value. Five Aurigids were observed by two stations simultaneously, enabling their spatial trajectory to be worked out. The orbits of these double station meteors are in good agreement with that of their parent comet Kiess. The outburst was abundant in bright (−2 to +1 mag) meteors. The first high-altitude Aurigid, with a beginning height of 137.1 km, was recorded.  相似文献   

2.
The comet Hale-Bopp (C/1995 O1) has been observed in the infrared (1–2.5 μm) with the Nordic Optical Telescope (NOT) equipped with the Arcetri NICMOS3 camera (ARNICA). Two observational campaigns, each one lasting about one week, were made when the comet heliocentric distance was about 3 AU. The first campaign was at the end of August and the second at the end of September 1996. During both runs two major outbursts were observed, the more intense of them started the day before the beginning of the second run. In the images recorded during the first three nights (24.8–26.8 Sept.) of the second run a dust shell expanding in the northern quadrant with a projected velocity of 0.14–0.28 km/s is clearly evident. The dust production rate increased by at least a factor ≈3 at the time of the outburst. Also evident on the first night is a change in the IR color that is well correlated with the dust shell. This is an indication that the material released by the outburst has a different composition and/or size distribution than that in the “quiescent” dust coma. In this paper we present preliminary results about the evolution and the photometric characteristics of the dust shell. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
We calculate the position of dust trails from comet 8P/Tuttle, in an effort to explain unusual Ursid meteor shower outbursts that were seen when the comet was near aphelion. Comet 8P/Tuttle is a Halley-type comet in a 13.6-year orbit, passing just outside of Earth's orbit. We find that the meteoroids tend to be trapped in the 12:14 mean motion resonance with Jupiter, while the comet librates in a slightly shorter period orbit around the 13:15 resonance. It takes 6 centuries to decrease the perihelion of the meteoroid orbits enough to intersect Earth's orbit, during which time the meteoroids and comet separate in mean anomaly by 6 years, thus explaining the 6-year lag between the comet's return and Ursid outbursts. The resonances also prevent dispersion along the comet orbit and limit viewing to only one year in each return. We identified past dust trail encounters with dust trails from 1392 (Dec. 1945) and 1378 (Dec. 1986) and predicted another outburst on 2000 December 22 at around 7:29 and 8:35 UT, respectively, from dust trails dating to the 1405 and 1392 returns. This event was observed from California using video and photographic techniques. At the same time, five Global-MS-Net stations in Finland, Japan, and Belgium counted meteors using forward meteor scatter. The outburst peaked at 8:06±07 UT, December 22, at zenith hourly rate ∼90 per hour, and the Ursid rates were above half peak intensity during 4.2 h. We find that most Ursid orbits do scatter around the anticipated positions, confirming the link with comet 8P/Tuttle and the epoch of ejection. The 1405 and 1392 dust trails appear to have contributed similar amounts to the activity profile. Some orbits provide a hint of much older debris being present as well. This work is the strongest evidence yet for the relevance of mean motion resonances in Halley-type comet dust trail evolution.  相似文献   

4.
In 2006, Earth encountered a trail of dust left by Comet 55P/Tempel-Tuttle two revolutions ago, in A.D. 1932. The resulting Leonid shower outburst was observed by low light level cameras from locations in Spain. The outburst peaked on 2006 Nov. 19d 04h39m ± 3m UT (predicted: 19d 04h50m ± 15m UT), with a FWHM of 43 ± 10 min (predicted: 38 min), at a peak rate of ZHR=80±10/h (predicted: 50-200 per hour). A low level background of older and brighter Filament Leonids (χ∼2.1) was also present, which dominated rates for Leonids brighter than magnitude +4. The 1932-dust outburst was detected among Leonids of +0 magnitude and brighter. These outburst Leonids were much brighter than expected, with a magnitude distribution index χ=2.60±0.15 (predicted: χ=3.47 and up). Trajectories and orbits of 24 meteors were calculated, most of which are part of the Filament component. Those that were identified as 1932-dust grains penetrated just as deep as Leonids in past encounters. We conclude that larger meteoroids than expected were present in the tail of the 1932-dust trail and meteoroids did not end up there because of low density. We also find that the radiant position of meteors in the Filament component scatter in a circle with radius 0.39°, which is wider than in 1998, when the diameter was 0.09°. This supports the hypothesis that the Filament component consists of meteoroids in mean-motion resonances.  相似文献   

5.
Owing to sublimation of ice, comet nuclei eject dust particles when they are near to the sun. Those particles assume velocities and then vary their orbits to ones similar to that of the comet. The most notable difference between the orbit of the parent comet and those of the particles is their semi-major axes. This difference (Δ a ) has been widely used in modern meteor shower predictions. Observational evidence of the distribution showed that it is a function of Δ a , and the age of the dust trail. However, the relation is not well known. In this paper, a simplified relation between Δ a , the mass index ( s ) and the age of the dust trail is presented, taking the instance of a recent Leonid meteor shower.  相似文献   

6.
The nucleus of the Comet 73P/Schwassmann–Wachmann had been split into many fragments at least past two returns. Since the related dense dust trail has been detected in the space infrared observation, the strong activity of the meteor shower is highly expected in the future. We applied the so-called dust-trail theory to this interesting object, and obtained several results on the future encounter with the dust trail. In this paper we introduce our results on the forecasts.  相似文献   

7.
We deal with theoretical meteoroid streams the parent bodies of which are two Halley-type comets in orbits situated at a relatively large distance from the orbit of Earth: 126P/1996 P1 and 161P/2004 V2. For two perihelion passages of each comet in the far past, we model the theoretical stream and follow its dynamical evolution until the present. We predict the characteristics of potential meteor showers according to the dynamical properties of theoretical particles currently approaching the orbit of the Earth. Our dynamical study reveals that the comet 161P/2004 V2 could have an associated Earth-observable meteor shower, although no significant number of theoretical particles are identified with real, photographic, video, or radar meteors. However, the mean radiant of the shower is predicted on the southern sky (its declination is about −23°) where a relatively low number of real meteors has been detected and, therefore, recorded in the databases used. The shower of 161P has a compact radiant area and a relatively large geocentric velocity of ∼53 km s−1. A significant fraction of particles assumed to be released from comet 126P also cross the Earth’s orbit and, eventually, could be observed as meteors. However, their radiant area is largely dispersed (declination of radiants spans from about +60° to the south pole) and, therefore, mixed with the sporadic meteor background. An identification with real meteors is practically impossible.  相似文献   

8.
Lisse  C. M.  Fernández  Y. R.  A'hearn  M. F.  Kostiuk  T.  Livengood  T. A.  Käufl  H. U.  Hoffmann  W. F.  Dayal  A.  Ressler  M. E.  Hanner  M. S.  Fazio  G. G.  Hora  J. L.  Peschke  S. B.  Grün  E.  Deutsch  L. K. 《Earth, Moon, and Planets》1997,78(1-3):251-257
We present infrared imaging and photometry of the bright, giant comet C/1995 O1 (Hale-Bopp). The comet was observed in an extended infrared and optical observing campaign in 1996–1997. The infrared morphology of the comet was observed to change from the 6 to 8 jet “porcupine” structure in 1996 to the “pinwheel” structure seen in 1997; this has implications for the position of the rotational angular momentum vector. Long term light curves taken at 11.3 μm indicate a dust production rate that varies with heliocentric distance as ∶ r−1.4. Short term light curves taken at perihelion indicate a rotational periodicity of 11.3 hours and a projected dust outflow speed of ∶ 0.4 km s−1. The spectral energy distribution of the dust on October 31, 1996 is well modeled by a mixture of 70% silicaceous and 30% carbonaceous non-porous grains, with a small particle dominated size distribution like that seen for comet P/Halley (McDonnell et al., 1991), an overall dust production rate of 2 × 105 kg s−1, a dust-to-gas ratio of ∶5, and an albedo of 39%. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
We present 1- to 5-μm broadband and CVF images of comet Hale-Bopp taken 1997 February 10.5 UT, 50 days before perihelion. All the images exhibit a nonspherical coma with a bright “ridge” in the direction of the dust tail approximately 10″ from the coma. Synthetic aperture spectrophotometry implies that the optically important grains are of a radius ≤0.4 μm; smallest radius for any comet seen to date. The variation of the integrated surface brightness with radial distance from the coma (ρ) in all the images closely follows the “steady state” ρ−1 model for comet dust ablation (Gehrz and Ney, 1992). The near-infrared colors taken along the dust tail are not constant implying the dust grain properties vary with coma distance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
One minute counts obtained during the meteor outburst of α-Monocerotids on November 22, 1995, are analyzed in order to examine the possibility of filamentary structure in the stream profile. None is found. It is argued that far-comet type outbursts are due to the Earth's passage through the dust trail of a long period comet, thus offering a direct means of studying such comet dust trails. Hence, the meteor stream activity curve is the first accurate cross section of dust densities through a comet dust trail.  相似文献   

11.
Comet outburst activity and the structure of solar wind streams were compared on the basis of Pioneer 10, 11, Vela 3 and IMP 7, 8 measurements at the heliocentric distance r ≈ 1–6 AU. It is shown that the solar wind velocity waves which are evolving into corotating shock waves beyond the Earth orbit may be responsible for comet outburst activity. The correlation between variations of comet outburst activity with heliocentric distance and the behavior of the solar wind velocity waves is established. The closeness of the characteristic times for the velocity waves and comet outburst activity (7–8 days at r = 1 AU) as well as the simultaneous growth of both the characteristic times with r are noted. The observed distribution of the comet outburst activity parameters during the 11-year cycle is also in good agreement with the phase distributions during the 11-year cycle of variations of the coronal hole areas and the rate of change of the sunspot area δS p.  相似文献   

12.
During the 2011 outburst of the Draconid meteor shower, members of the Video Meteor Network of the International Meteor Organization provided, for the first time, fully automated flux density measurements in the optical domain. The data set revealed a primary maximum at 20:09 UT ± 5 min on 8 October 2011 (195.036° solar longitude) with an equivalent meteoroid flux density of (118 ± 10) × 10?3/km2/h at a meteor limiting magnitude of +6.5, which is thought to be caused by the 1900 dust trail. We also find that the outburst had a full width at half maximum of 80 min, a mean radiant position of α = 262.2°, δ = +56.2° (±1.3°) and geocentric velocity of vgeo = 17.4 km/s (±0.5 km/s). Finally, our data set appears to be consistent with a small sub-maximum at 19:34 UT ±7 min (195.036° solar longitude) which has earlier been reported by radio observations and may be attributed to the 1907 dust trail. We plan to implement automated real-time flux density measurements for all known meteor showers on a regular basis soon.  相似文献   

13.
Kidger  M. R.  Hurst  G.  James  N. 《Earth, Moon, and Planets》1997,78(1-3):169-177
We present a light curve of C/1995 O1 (Hale-Bopp) compiledfrom more than 3000 visual observations of the comet made by members of the The Astronomer Group world-wide. These observations cover the period from discovery through to the end of 1997. The light curve shows that the rate of brightening of the comet varied widely at different times, with rapid rates of brightening at high heliocentric distance pre-perhelion and a comparably rapid post-perihelion fade. There is no evidence that the comet was suffering a large photometric outburst when first discovered, although a small outburst can be identified at perihelion. At least five difficult brightening regimes can be identified in the light curve between discovery and perihelion. From 2.5 AU to perihelion the rate of brightening with decreasing heliocentric distance was typical for “fairly” new comets(n ∼ 3.5, where “n” is the power law exponent of the heliocentric distance), although this was preceded by a period of very slow brightening with n ∼ 1 from r ∼ 4.0 AU to r ∼ 2.8 AU and followed by an initially more rapid brightening which appears to be related to the on-set of rapid water sublimation activity. We derive the light curve parameters at different stages of the comet's apparition. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The activity of a meteor shower is thought to be proportional to the activities through time of the parent comet. Recent applications of the dust trail theory provide us not only with a new method to forecast the occurrences and intensities of shower activities, but it is also offers a new approach to explore the history of past activities of the parent comet by retro-tracking its associated meteor showers. We introduce the result of an effort for relating meteor shower activities to the parent comet activities for which we chose the October Draconids and comet 21P/Giacobini-Zinner in this paper.  相似文献   

15.
Sekanina  S.  Boehnhardt  H. 《Earth, Moon, and Planets》1997,78(1-3):313-319
A Monte Carlo image simulation code for dust features in comets is applied to comet Hale-Bopp in order to model the object's persistent porcupine-like appearance on high-resolution images taken between May 11 and Nov. 2, 1996. A self-consistent fan model is proposed, with six isolated sources of dust emission assumed at various locations on the surface of the rotating nucleus and with the spin axis undergoing a complex motion in an inertial coordinate system. In the framework of this model, jet pairs represent boundaries of fan-shaped formations described by dust ejected from isolated sources during periods of time when the Sun is above the local horizon. The spin axis is found to have traveled through a field of 10° by 20° during the examined period of nearly six months. Still more successful is a fan model with large diurnal dust-emission fluctuations, which is consistent with an inertially fixed position of the spin axis and requires only three discrete sources. In this scenario, the dust-emission profile is dominated by several brief flare-ups, or “puffs”, in the production of dust from one of the sources. The results are insensitive to the spin rate, but the observed dust coma appearance is more typical of a rapidly rotating comet. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Persistent jet and shell structures from comet Hale-Bopp showing gradual changes in the shapes and orientations with aspect angle and solar illumination geometry indicate long lived active sources. A model to simulate the dust features has been applied to the series of observations from September 1996 to May 1997. Most of the structures can be explained as arising due to ejections from persistent active regions at comet-o-centric latitudes near +65°, +55°, −5° to −15°, −35° and −65°. The best fitting pole positions vary between 255° ±10° and 275° ± 10° in right ascension and −45° ± 10° to −75° ± 10° in declination. Lower limits on the dust and gas production rates at various epochs are presented. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
18.
Qian  Bochen  Tao  Jun  Gu  Minfeng 《Earth, Moon, and Planets》2000,88(2):61-74
We report the observation of an outburst of comet Hale–Bopp (C/1995 O1) happened on September 10–11, 1996, carried by the 1.56 m telescope of Shanghai Astronomical Observatory. Two ejecta were found in CCD images during the outburst. According to the positions of ejecta, we discuss the motion of the ejecta considering dust particles are subjected to the gravity and the Solar radiation pressure, and conclude that the mean radii of dust grains in the ejecta were about submicron-sized. So the observed X-ray emission are most likely produced by small size particles scattering the Solar X-ray. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The asteroid 3200 Phaethon is suggested as a candidate for direct impact research. The object is considered to be an extinct comet and the parent of the Geminid meteor shower. One could say that this provides a possible argument for a space mission. Based on such a mission, this paper proposes to investigate the nature of the extinct comet and the additional interesting possibility of artificially generated meteor showers.
Dust trail theory can calculate the distribution of a bundle of trails and be used to show in which years artificial meteors would be expected. Results indicate that meteor showers will be seen on Earth about 200 yr after the event, on 2022 April 12.  相似文献   

20.
Jupiter and Saturn produce important gravitational impulses on meteoroids released by comet 109P/Swift-Tuttle. The meteoroids from this comet once released follow retrograde orbits that during their periodic approaches to these planets (within 1.6 and 0.9 A.U., respectively) are impulsed gaining orbital energy. This perturbation effect is translated into a net inward shift in the node of the perturbed meteoroids. Such geometry with Jupiter occurred in 2004 over a meteoroid trail ejected by this comet during the 1862 A.D. return of the comet to perihelion. In order to study the predicted outburst produced by one-revolution meteoroids, the Spanish Photographic Meteor Network (SPMN) performed an extensive campaign. As a part of this observational effort here are presented 10 accurate meteoroid orbits. We discuss their origin by comparing them with the theoretical orbital elements of the dust trails intercepting the Earth during the 2004 Perseid return.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号