首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The southern Jiangxi Province is a major part of the Nanling W–Sn metallogenic province of southern China, where all W–Sn ore deposits are temporally and spatially related to Mesozoic granitic intrusions. The Tianmenshan–Hongtaoling orefield is a recently explored territory endowed by several styles of W–Sn mineralization. The orefield comprises three composite granitic plutons: Tianmenshan, Hongtaoling and Zhangtiantang associated with several tens of W–Sn-polymetallic ore deposits (Maoping, Baxiannao, Niuling, Zhangdou, Yaolanzhai and others) along their contacts. In this study, four new SHRIMP zircon U–Pb ages were determined for three composite granitic plutons, and 33 molybdenite samples from five W–Sn deposits were analysed by ICP-MS Re–Os isotopic method. SHRIMP zircon U–Pb ages for both medium to coarse-gained biotite granite and porphyritic biotite monzogranite from the Tianmenshan composite pluton are 157.2 ± 2.2 Ma and 151.8 ± 2.9 Ma, respectively. Molybdenite Re–Os isochron ages for the related Baxiannao fracture-controlled tungsten deposits are 157.9 ± 1.5 Ma. Maoping greisens-type tungsten deposits were emplaced at 155.3 ± 2.8 Ma and the Maoping wolframite–quartz veins at 150.2 ± 2.8 Ma, respectively. The SHRIMP U–Pb age of zircons from the Hongtaoling biotite granite is 151.4 ± 3.1 Ma whereas the molybdenite Re–Os isochron ages of the genetically related Niuling endocontact tungsten quartz veins and Zhangdou exocontact tungsten quartz veins are 154.9 ± 4.1 to 154.6 ± 9.7 Ma and 149.1 ± 7.1 Ma, respectively. The SHRIMP zircon U–Pb age of the Zhangtiantang fine-grained muscovite granite is 156.9 ± 1.7 Ma, whereas the molybdenite Re–Os isochron age for the related Yaolanzhai greisens-type tungsten deposit is 155.8 ± 2.8 Ma. These new age data, combined with those available from the literature, indicate that the ages of W–Sn ores and related granites are Late Jurassic with a peak at 150 to 160 Ma, which corresponds to the widespread Mesozoic metallogenic event in southern China. Molybdenites from this group of tungsten deposits have quite low Re contents (29.1 to 2608 ppb), suggesting continental crustal provenance of the ore metals.  相似文献   

2.
长江中下游地区是我国一条重要的铜多金属成矿带,成矿与燕山期岩浆活动密切相关,矿床类型主要有斑岩型和矽卡岩型。在长江中下游成矿带西段的鄂东南和九瑞地区产有该带中几个十分重要的大型铜多金属矿床,如铜绿山、鸡冠嘴、铜山口、城门山、武山等。通过对该区岩体的系统对比研究表明,成矿岩体和不成矿岩体的矿物组成,主微量元素成分及成岩年龄上并无明显差异。总体而言,九瑞地区岩浆岩的形成年龄集中在141~148Ma之间,略早于鄂东南地区与铜矿相关的岩浆岩(集中在137~140Ma)。对岩浆岩全岩的Sr-Nd同位素和锆石Hf同位素研究表明,一些成矿岩体具有比不成矿岩体更高比例的幔源物质贡献。对岩浆岩中主要造岩矿物,如角闪石和黑云母的详细研究,可以区分它们的不同结晶历史,从而揭示岩浆从早至晚演化过程中,相容元素和不相容元素、成矿元素和挥发份元素的变化规律,判别岩浆分离结晶过程、流体出溶过程,指示成矿与否。通过对角闪石和黑云母温压计的应用,估测了九瑞和鄂东南地区成矿岩体与不成矿岩体的侵位压力和深度,发现成矿岩体一般具有较低的压力(4kbar)和较浅的侵位深度。九瑞和鄂东南地区成矿岩体均具有较高的氧逸度。成矿岩体演化到晚期,氧逸度显示升高的趋势,岩浆中的挥发分/成矿金属含量较高。而不成矿岩体就位前岩浆贫化Cu、S、Cl等元素,不能分异出含足够成矿元素的成矿热液。因此,通过详细的矿物学、特别是造岩矿物角闪石和黑云母以及副矿物锆石和磷灰石的主微量元素和同位素组成的研究,以及由其计算出的温度、压力、氧逸度、流体成分等参数,可以区分成矿与不成矿岩体,从而为长江中下游成矿带乃至其他类似地区的深部找矿工作提供理论指导。  相似文献   

3.
The Dabaoshan polymetallic deposit in northern Guangdong Province contains iron, copper, lead, zinc, molybdenum, tungsten and sulfur mineral resources. Porphyry-type Mo(W) and skarn-type Mo-W mineralization occurs along the internal and external contact zones of the granodioritic porphyry, respectively. LA-ICP-MS U–Pb dating of zircons from two granodioritic porphyry samples yielded a weighted mean 206Pb/238U age of 175.8 ± 1.5 Ma (MSWD = 0.037) and 175.0 ± 1.7 Ma (MSWD = 0.41). They can be pooled together to yield a combined weighted age of 175.4 ± 1.6 Ma (MSWD = 0.26), which is interpreted as the emplacement age of the granodioritic porphyry. Re–Os dating of three molybdenite samples from porphyry and skarn ores yielded consistent model ages of 163.2 ± 2.3 Ma to 165.2 ± 2.4 Ma, with a weighted mean of 163.9 ± 1.3 Ma (MSWD = 0.81), which is the age of Mo–W mineralization. These ages are consistent with the molybdenite Re–Os model age (164.7 ± 3 Ma) measured by Mao et al. (2004a) for the stratiform Cu–Pb–Zn orebody, and they can yield a weighted mean of 164.0 ± 2.5 Ma (MSWD = 0.16). This implies that Mo–W and Cu–Pb–Zn mineralization in the Dabaoshan polymetallic deposit are the products of one mineralization event. The mineralization in the deposit coincides closely with that of Mo-polymetallic mineralization (164–149 Ma) elsewhere in the Nanling region, comprising an important polymetallic metallogenic belt of south China, and corresponds to the second episode of Mesozoic metallogenesis in South China. Combined with previous studies, we suggest that the Dabaoshan polymetallic deposit is related to post-collisional lithosphere extension in the Nanling region of South China. Geological data and Pb isotopic evolution diagrams, together with stable isotopic data of fluid inclusions (δ18O = − 3.75–7.0‰, δD = − 50.7 to − 56.1‰) and ore sulfides (δ34S = − 2–3‰), suggest a genetic relationship between the Dabaoshan polymetallic deposit, the granodioritic porphyry and the dacitic porphyry. These data, combined with the Re content (64.7 to 102.4 ppm) of molybdenite, indicate that the ore-forming components were derived from mixed crustal and mantle sources.  相似文献   

4.
Summary The Cu–Fe–Au–Mo (W) deposits in southeastern Hubei are an important component of the Middle–Lower Yangtze River metallogenic belt. Molybdenite from the Fengshandong Cu- (Mo), Ruanjiawan W–Cu- (Mo), Qianjiawan Cu–Au, Tongshankou Cu–Mo and Tonglüshan Cu- (Fe) deposits yielded Re–Os ages of 144.0 ± 2.1 Ma, 143.6 ± 1.7 Ma, 137.7 ± 1.7 Ma, 142.3 ± 1.8–143.7 ± 1.8 Ma and 137.8 ± 1.7–138.1 ± 1.8 Ma, respectively. Phlogopite from the Tieshan Fe- (Cu) deposit yielded an Ar–Ar age of 140.9 ± 1.2 Ma. These data and other published isotopic ages (Re–Os molybdenite and Ar–Ar mica ages) for the Cu–Fe–Au–Mo (W) deposits in the Middle–Lower Yangtze River metallogenic belt show that Cu–Fe–Au–Mo (W) mineralisation in the Tongling, Anqing, Jiurui and Edong ore districts developed in a narrow time span between 135.5 and 144.9 Ma, reflecting an important regional metallogenic event. An integrated study of available petrological and geochronological data, together with relationships to magmatism and the regional geodynamic framework, indicate that the Cu–Fe–Au–Mo (W) mineralisation in the Middle–Lower Yangtze River belt occurred during a regime of lithospheric extension. This extension is probably related to Late Mesozoic processes of lower crustal delamination and lithospheric thinning in East China.  相似文献   

5.
The Middle–Lower Yangtze River Valley metallogenic belt (YRB), situated along the northern margin of the Yangtze craton, is characterized by porphyry–skarn–stratabound Cu–Au–Mo–Fe deposits in the areas of uplift and magnetite–apatite deposits in Cretaceous fault basins. Following detailed field investigations and a review of published data, we recognize two episodes of magmatism and mineralization in the YRB: 1) 156–137 Ma high-K calc-alkaline granitoids associated with 148–135 Ma porphyry–skarn–stratabound Cu–Au–Mo–Fe deposits and 2) 135–123 Ma shoshonitic series, associated with 134.9–122.9 Ma magnetite–apatite deposits. A-type granitoids and associated alkaline volcanic have a small age range from 126.5 to 124.8 Ma and are temporally, spatially and genetically associated with the second episode. The geodynamic history of the YRB did not experience the Paleozoic to Mesozoic lithospheric thickening that took place in the North China craton. This process is inferred to be linked to partial melting of the delaminated lower crust at high pressures, resulting in the development of C-type adakitic rocks. The petrochemical and Sr/Nd isotopic data show that both the shoshonitic series and A-type granitoids are quite different from adakites, with only some of the K-calc-alkaline granitoids having adakitic signatures. Previous ore genesis models were established based on an assumed relationship with adakites and a continuous tectono-thermal evolution from 150 to 100 Ma.All data obtained for the Middle–Lower Yangtze River region consistently show that the Tan–Lu regional strike-slip fault zone, initiated at 233 ± 6 to 225 ± 6 Ma from the collision between the North China and Yangtze cratons and was reactivated at ca. 160 Ma. The Tan–Lu fault was caused by the oblique subduction of the Izanagi plate, which along the YRB the low-angle subducted slab and the overlying crust was disrupted or broken due to the disharmonious movement of the two blocks. The high-K calc-alkaline granitoids magmas were derived from melting of the subducted slab, with some input of crustal material. These magmas were emplaced at the intersections between NE- and EW-trending faults and formed porphyry–skarn–stratabound Cu–Au–Mo–Fe deposits between 156 and 137 Ma. After 135 Ma the subducted plate changed its direction of motion to northeast, now running parallel to the Eurasian continental margin, and leading to large-scale continental extension. The shoshonitic series and subsequent A-type granitoids magmatism and the development of magnetite–apatite ores in the YRB, took place in both fault basins and NE-trending rifts between 135 and 124 Ma.  相似文献   

6.
Host rocks to the Aitik Cu–Au–Ag deposit in northern Sweden are strongly altered and deformed Early Proterozoic mica(-amphibole) schists and gneisses. The deposit is characterised by numerous mineralisation styles, vein and alteration types. Four samples were selected for Re–Os molybdenite dating and 12 samples for U–Pb titanite dating in order to elucidate the magmatic/hydrothermal and metamorphic history following primary ore deposition in the Aitik Cu–Au–Ag deposit. Samples represent dyke, vein and alteration assemblages from the ore zone, hanging wall and footwall to the deposit. Re–Os dating of molybdenite from deformed barite and quartz veins yielded ages of 1,876±10 Ma and 1,848±8 Ma, respectively. A deformed pegmatite dyke yielded a Re–Os age of 1,848±6 Ma, and an undeformed pegmatite dyke an age of 1,728±7 Ma. U–Pb dating of titanite from a diversity of alteration mineral associations defines a range in ages between 1,750 and 1,805 Ma with a peak at ca. 1,780 Ma. The ages obtained, together with previous data, bracket a 160-Ma (1,890–1,730 Ma) time span encompassing several generations of magmatism, prograde to peak metamorphism, and post-peak cooling; events resulting in the redistribution and addition of metals to the deposit. This multi-stage evolution of the Aitik ore body suggests that the deposit was affected by several thermal events that ultimately produced a complex ore body. The Re–Os and U–Pb ages correlate well with published regional Re–Os and U–Pb age clusters, which have been tied to major magmatic, hydrothermal, and metamorphic events. Primary ore deposition at ca. 1,890 Ma in connection with intrusion of Haparanda granitoids was followed by at least four subsequent episodes of metamorphism and magmatism. Early metamorphism at 1,888–1,872 Ma overlapping with Haparanda (1,890–1,880 Ma) and Perthite-monzonite (1,880–1,870 Ma) magmatism clearly affected the Aitik area, as well as late metamorphism and Lina magmatism at 1,810–1,774 Ma and TIB1 magmatism at 1,800 Ma. The 1,848 Ma Re–Os ages obtained from molybdenite in a quartz vein and pegmatite dyke suggests that the 1,850 Ma magmatism recorded in parts of northern Norrbotten also affected the Aitik area.  相似文献   

7.
We report single grain and grain-domain U–Pb zircon ages for the Tojottamanselkä tonalitic gneiss previously investigated by the whole-rock Rb–Sr, Pb–Pb and Sm–Nd methods, by conventional U–Pb zircon density/size fraction analysis and by Hf-isotopes (Kröner et al. 1981; Patchett et al. 1981; Jahn et al. 1984) and established as one of the oldest known rocks of the Baltic shield. Our data confirm the intrusive age as 3115±29 Ma (standard error), but we also found slightly older xenocrystic zircon cores with 207Pb/206Pb ages between 3161±19 and 3248±10 Ma that may either be derived from earlier phases of the tonalite melt or from pre-tonalite sialic crust. New magmatic zircon growth, probably during a metamorphic event that led to migmatization, is recorded by an age of 2836±30 Ma and may be coeval with widespread tonalite emplacement elsewhere in the northern Baltic shield at about this time.  相似文献   

8.
Many hydrothermal Cu–Mo–Au deposits related to granitoid intrusives were recently discovered in the West Qinling Orogenic Belt (WQOB). These deposits were mainly formed during the late Indosinian epoch (ca. 214 Ma), and the regional geological setting of Cu–Mo ore formation in WQOB during this epoch is poorly understood until now. This paper describes the geochronology and geochemistry of the Wenquan ore-bearing pluton, a composite granite body, to study the geologic background of magmatic emplacement and ore formation. The Mo mineralisation occurs at the contact between a fine-grained biotite monzogranite and a medium- to fine-grained porphyritic monzogranite. Zircon 206Pb/238U ages of 223 ± 3 Ma (biotite monzogranite) and 225 ± 3 Ma (porphyritic monzogranite) were obtained. Geochemical analyses show that the Wenquan pluton is a high-K calc-alkaline to shoshonite series rock with relatively high LREE and low HREE and a moderate to weak negative Eu anomaly. Relatively negative anomalies of Ba, Ti, P, Nb, Ta also exist. These results imply that the Wenquan pluton was emplaced during a transitional process (from collision to extension) between the Yangtze Craton and North China Craton. During the later Indosinian epoch, the East Qinling Orogenic Belt (EQOB) and WQOB had similar tectonic settings, and intensive magmatic activity and Mo mineralisation occurred. The EQOB was then involved in the Mesozoic subduction of the Pacific plate, and its subsequent tectonic evolution was different from that of the WQOB.  相似文献   

9.
We report seven high precision U–Pb age determinations for mafic dykes from a number of major Precambrian swarms located in the Dharwar craton, south India. These new age results define two previously unrecognized widespread Paleoproterozoic dyking events at 2221–2209 and 2181–2177 Ma, and confirm a third at 2369–2365 Ma. Three parallel E–W trending mafic dykes from the petrographically and geochemically variable Bangalore dyke swarm, the most prominent swarm in the Dharwar craton, yield indistinguishable U–Pb baddeleyite ages of 2365.4 ± 1.0, 2365.9 ± 1.5 and 2368.6 ± 1.3 Ma, indicating rapid emplacement in less than five million years. A compilation of Paleoproterozoic U–Pb ages for mafic magmatic events worldwide indicates that the 2369–2365 Ma Bangalore dyke swarm represents a previously unrecognized pulse of mafic magmatism on Earth.  相似文献   

10.
The Archaean block of southern Greenland constitutes the core of the North Atlantic craton (NAC) and is host to a large number of Precambrian mafic intrusions and dyke swarms, many of which are regionally extensive but poorly dated. For southern West Greenland, we present a U–Pb zircon age of 2990 ± 13 Ma for the Amikoq mafic–ultramafic layered intrusion (Fiskefjord area) and four baddeleyite U–Pb ages of Precambrian dolerite dykes. Specifically, a dyke located SE of Ameralik Fjord is dated at 2499 ± 2 Ma, similar to a previously reported 40Ar/39Ar age of a dyke in the Kangâmiut area. For these and related intrusions of ca. 2.5 Ga age in southern West Greenland, we propose the name Kilaarsarfik dykes. Three WNW-trending dykes of the MD3 swarm yield ages of 2050 ± 2 Ma, 2041 ± 3 Ma and 2029 ± 3 Ma. A similar U–Pb baddeleyite age of 2045 ± 2 Ma is also presented for a SE-trending dolerite (Iglusuataliksuak dyke) in the Nain Province, the rifted western block of the NAC in Labrador. We speculate that the MD3 dykes and age-equivalent NNE-trending Kangâmiut dykes of southern West Greenland, together with the Iglusuataliksuak dyke (after closure of the Labrador Sea) represent components of a single, areally extensive, radiating swarm that signaled the arrival of a mantle plume centred on what is presently the western margin of the North Atlantic craton. Comparison of the magmatic ‘barcodes’ from the Nain and Greenland portions of the North Atlantic craton with the established record from the north-eastern Superior craton shows matches at 2500 Ma, 2214 Ma, 2050–2030 Ma and 1960–1950 Ma. We use these new age constraints, together with orientations of the dyke swarms, to offer a preliminary reconstruction of the North Atlantic craton near the north-eastern margin of the Superior craton during the latest Archaean and early Palaeoproterozoic, possibly with the Core Zone craton of eastern Canada intervening.  相似文献   

11.
The magnetite-series (I-type) calc-alkaline granitoid suit, ranging from pyroxene monzodiorite to granodiorite, is associated with the porphyry and skarn gold–copper deposits at the Shizishan orefield in Tongling district, Anhui Province. In-situ U–Pb dating and Hf isotope analysis of magmatic and inherited zircons are combined with whole rock Sr–Nd–Pb isotopic data and mineral thermobarometry to interpret the petrogenesis. The magmatic zircons from the quartz monzodiorites yield weighted average 206Pb/238U ages of ca. 139 Ma and mean εHf(t) value of −19.8 ± 3.9 (1σ), while those from the pyroxene monzodiorite show a similar mean age but notably higher mean εHf(t) value (−8.5 ± 1.4). The inherited zircons from the quartz monzodiorite yield ages of 0.8, 2.0 and 2.4 Ga with mean εHf(t) value of −2.9 ± 1.4, while those from the pyroxene monzodiorite show younger ages (165 to 245 Ma) but similar mean εHf(t) value (−5.6 ± 4.5). Whole rock Sr–Nd–Pb isotope data indicate that crustal material significantly contributed to the magma. Mineral thermobarometry results reveal that the depths of the discrete magma chambers were about 23 km, and 10 to 2 km deep.The data above combined with previous studies suggest that: 1) The magma emplacement and crystallization (typically for zircons) mainly occurred at about 139 Ma, consistent with the age of mineralization; 2) The primary pyroxene monzodioritic magma might have mixed with the magma produced by partial melting of the Yangtze lower crust, and accumulated in the magma chamber at ca. 23 km deep in the lower crust level; 3) AFC and magma mixing were the dominate processes for the magmatic evolutions at shallow level (2 to 10 km), where the circumstances were favorable for mineralization.  相似文献   

12.
The Hongqiling (HQL) magmatic Ni–Cu sulfide deposits (Jilin Province, NE China) are located at the southern margin of the eastern Xing'an–Mongolian Orogenic Belt (XMOB) of the eastern Central Asian orogenic belt (CAOB), situated between the Siberian Craton (SC) and the North China Craton (NCC). The HQL ore-bearing mafic–ultramafic intrusions intrude into the metamorphic rocks of the lowermost Huangyingtun Formation of the Hulan Group (HLG), whose lithology is herein identified as a hornblende–zoisite gneiss. SHRIMP zircon U–Pb dating for the HLG, country rock of the HQL deposits, indicated a maximum deposition age of 272.2 ± 4.3 Ma (95% confidence level, MSWD = 2.6, n = 14).Six pyrrhotite samples separated from massive Ni–Cu sulfide ores of the Fujia (No. 7) deposit yielded a Re–Os isotopic isochron age of 208 ± 21 Ma (95% confidence level, MSWD = 2.4, n = 6), indicating that the ore-formation age was Late Triassic. Re–Os isotope analyses showed an initial 187Os/188Os ratio of 0.315 ± 0.050. The γOs values ranged from + 137 to + 161 with an average of + 151, indicating that its ore-forming materials were mainly derived from mantle with possibly < 30% crustal Os contamination. Large scale magmatic Ni–Cu mineralization in eastern Jilin occurred in post-collisional tectonic setting in the Late Triassic.Our new results suggest that the ages of the Ni–Cu sulfide deposits in the CAOB within China tended to become younger from west to east, as manifested by the Late Caledonian (~ 440 Ma), through the Late Hercynian (300–265 Ma) to the Late Indosinian (225–200 Ma). Such variation could reflect the gradual closure and post-collisional orogeny between the SC and the NCC from west to east.  相似文献   

13.
ELA-ICP-MS U–Pb zircon geochronology has been used to show that the porphyritic intrusions related to the formation of the Bajo de la Alumbrera porphyry Cu–Au deposit, NW Argentina, are cogenetic with stratigraphically well-constrained volcanic and volcaniclastic rocks of the Late Miocene Farallón Negro Volcanic Complex. Zircon geochronology for intrusions in this deposit and the host volcanic sequence show that multiple mineralized porphyries were emplaced in a volcanic complex that developed over 1.5 million years. Volcanism occurred in a multi-vent volcanic complex in a siliciclastic intermontane basin. The complex evolved from early mafic-intermediate effusive phases to a later silicic explosive phase associated with mafic intrusions. Zircons from the basal mafic-intermediate lavas have ages that range from 8.46±0.14 to 7.94±0.27 Ma. Regionally extensive silicic explosive volcanism occurred at ~8.0 Ma (8.05±0.13 and 7.96±0.11 Ma), which is co-temporal with intrusion of the earliest mineralized porphyries at Bajo de la Alumbrera (8.02±0.14 and 7.98±0.14 Ma). Regional uplift and erosion followed during which the magmatic-hydrothermal system was probably unroofed. Shortly thereafter, dacitic lava domes were extruded (7.95±0.17 Ma) and rhyolitic diatremes (7.79±0.13 Ma) deposited thick tuff blankets across the region. Emplacement of large intermediate composition stocks occurred at 7.37±0.22 Ma, shortly before renewed magmatism occurred at Bajo de la Alumbrera (7.10±0.07 Ma). The latest porphyry intrusive event is temporally associated with new ore-bearing magmatic-hydrothermal fluids. Other dacitic intrusions are associated with subeconomic deposits that formed synchronously with the mineralized porphyries at Bajo de la Alumbrera. However, their emplacement continued (from 7.10± 0.06 to 6.93±0.07 Ma) after the final intrusion at Bajo de al Alumbrera. Regional volcanism had ceased by 6.8 Ma (6.92±0.07 Ma). The brief history of the volcanic complex hosting the Bajo de la Alumbrera Cu–Au deposit differs from that of other Andean provinces hosting porphyry deposits. For example, at the El Salvador porphyry copper district in Chile, magmatism related to Cu mineralization was episodic in regional igneous activity that occurred over tens of millions of years. Bajo de la Alumbrera resulted from the superposition of multiple porphyry-related hydrothermal systems, temporally separated by a million years. It appears that the metal budget in porphyry ore deposits is not simply a function of their longevity and/or the superposition of multiple porphyry systems. Nor is it a function of the duration of the associated cycle of magmatism. Instead, the timing of processes operating in the parental magma body is the controlling factor in the formation of a fertile porphyry-related ore system.Electronic Supplementary Material Electronic supplementary material to this paper can be obtained by using the Springer Link server located at Editorial handling: N. White  相似文献   

14.
U–Pb zircon geochronology of two Permo-Triassic granites (samples OT-52 and OT-272 with ages of 229 ± 8 Ma and 256 ± 2 Ma, respectively) in the Unazuki area, Hida Metamorphic Belt, southwest Japan, revealed the presence of Eoarchean to Paleoproterozoic inheritance. Inheritance is consistent with both samples showing low zircon saturation temperatures for their bulk compositions. In OT-52, dark in CL, low Th/U zircon domains have a mean 207Pb/206Pb age of 1940 ± 17 Ma, which is consistent with an age of 1937 ± 6 Ma for anatexis in the Precambrian Busan gneiss complex in Korea. Eoarchaean inherited zircons with 207Pb/206Pb ages from ca. 3750 to 3550 Ma are common in OT-272 but are few in OT-52, suggesting a source from rocks with affinities to those in the Anshan area in the northeast China part of the North China Craton. On the other hand, a Hida Metamorphic Belt metasedimentary gneiss into which the granites were intruded contains ca. 1840, 1130, 580, 360, 285 and 250 Ma zircons (Sano et al., 2000). These ages suggest that the Unazuki Mesozoic granites did not originate from proximal Hida Metamorphic Complex rocks, but instead from unrelated rocks obscured at depth. The predominance of Eoarchean to Paleoproterozoic age components, and the marked lack of 900–700 Ma components suggest that the source was the (extended?) fringe of the North China Craton, rather than from Yangtze Craton crust. The Mesozoic evolution of Japan and its linkages to northeast Asia are discussed in the context of these results.  相似文献   

15.
Mineralogical, geochemical and zircon U–Pb dating studies were carried out to identify the sources of arsenic in the shallow aquifers of Datong Basin in northern China. A sediment sample from 18 m depth containing 10.3 mg/kg arsenic showed a Zircon U–Pb concordant age of 2528 ± 20 to 271 ± 4 Ma that can be divided into two groups (2528 ± 20 to 1628 ± 21 Ma and 327 ± 4 to 271 ± 4 Ma) and is comparable to that of the sedimentary rocks of Taiyuan (upper Carboniferous) and Shanxi Formation (lower Permian) outcropping to the west of Datong Basin. In contrast, a sediment sample from 22.5 m depth containing 5.7 mg/kg arsenic displayed a Zircon U–Pb concordant age ranging from 2561 ± 21 to 1824 ± 26 Ma that is comparable to that of the Hengshan Complex (Ne-Archaean Precambrian) outcropping to the east of .  相似文献   

16.
We present new Re–Os molybdenite age data on three porphyry Cu–Mo–Au deposits (Yulong, Machangqing, and Xifanping). These deposits are associated with the Himalayan adakitic magmatism that occurred in a continental collision environment, controlled by large-scale Cenozoic strike-slip faults in the eastern Indo–Asian collision zone. Three distinct episodes of Cu–Mo–Au mineralization are recognized. At Yulong, Re–Os isotopic data of four molybdenite samples from sulfide-quartz veins in the quartz–sericite alteration zone yield an isochron with an age of 40.1±1.8 Ma (2σ), coincident to a zircon sensitive high-mass resolution ion microprobe (SHRIMP) age of 40.9±0.1 Ma for the host monzogranite. The molybdenite Re–Os dates, together with K–Ar, Rb–Sr, U–Pb, and 40Ar/39Ar dates on the pre- and intra-ore porphyries, suggest that Cu–Mo–Au mineralization formed during the late stage (∼40 Ma) of regional porphyry magmatism, but hydrothermal activity probably lasted to at least ∼36 Ma. At Machangqing, molybdenite Re–Os data from the K–silicate and quartz–sericite alteration zones yield an isochron with an age of 35.8±1.6 Ma (2σ), which is identical to the zircon SHRIMP and bulk-rock Rb–Sr ages (35∼36 Ma) of the host granite, but older than bulk-rock K–Ar dates (31∼32 Ma) for associated Au-bearing quartz syenite with advanced argillic alteration. At Xifanping, five molybdenite samples from the K–silicate alteration zone yield the youngest Re–Os isochron age in the area, at 32.1±1.6 Ma (2σ). The Re–Os molybdenite dates here are younger than K–Ar ages (33.5∼34.6) for hydrothermal biotite and actinolite. There is a positive correlation between the absolute age of the deposits and their Cu and Au reserves in the eastern Indo–Asian collisional zone. Episodic stress relaxation probably caused multiple magmatic intrusions, which most likely resulted in three episodes of Cu–Mo–Au mineralization in the eastern Indo–Asian collision zone.  相似文献   

17.
The Furong deposit, located in southern Hunan Province, China, is a newly-discovered giant tin deposit spatially associated with the A-type Qitianling granite. The petrogenetic link between the giant Furong tin deposit and the Qitianling granite batholith remains controversial because of the lack of precise dating for the tin–polymetallic mineralization. Here we report for the first time in-situ U–Pb data on cassiterite obtained by LA-MC-ICP-MS and the results are compared to ID-TIMS data. The in-situ LA-MC-ICP-MS analyses of the cassiterites provide a reliable age constraint for tin–polymetallic mineralization in the Furong deposit, yielding an isochron age of 159.9 ± 1.9 Ma (at 95% confidence level, MSWD = 18), which is indistinguishable from the ID-TIMS 206Pb/238U weighted mean age of 158.2 ± 0.4 Ma. The in situ U–Pb ages corroborate the Ar–Ar dates published for the Furong tin deposit, which indicate that the mineralization is coeval with the emplacement of the Qitianling granite batholith. These results provide further evidence of a close temporal link between the pluton's emplacement and tin mineralization in the Furong area. The data obtained clearly demonstrate that in-situ LA-MC-ICP-MS U–Pb dating of cassiterite is a robust geochronometer for direct dating of tin–polymetallic mineralization.  相似文献   

18.
This study presents sensitive high-resolution ion microprobe (SHRIMP) U–Pb zircon ages, and whole-rock chemical and isotopic (Sr-Nd) compositions of representative Triassic plutons from South Korea. The plutons from the Gyeonggi massif (Hongseong, Namyang, Yangpyeong and Odesan), the central Okcheon belt (Baeknok and Yongsan), and the Yeongnam massif (Sangju, Gimcheon, Hamyang and Macheon) yield zircon U–Pb ages of ca. 232–226 Ma, 227–226 Ma, and 240–228 Ma, respectively. Among the Triassic plutonic suite in South Korea, those within the Gyeonggi massif are dominated by granite, syenite, monzonite, monzodiorite and gabbro. Plutons within the Okcheon belt are mainly by granite to quartz monzodiorite. The Yeongnam massif mainly incorporates granite to granodiorite and minor monzodiorite intrusions. The geochemical signatures of the Triassic plutons are characterized by Ta–Nb troughs, depletion of P and Ti, and enrichment of LILE. Most plutons except Macheon monzodioritic pluton show high initial 87Sr/86Sr ratios (0.708248–0.714678) and strongly negative εNd(T) (− 20.3 to − 7.7) values, suggesting contribution from middle to upper crust. In contrast, the Macheon monzodioritic pluton in the Yeongnam massif shows relatively low initial 87Sr/86Sr ratios (0.706547-0.706629) and negative εNd(T) (− 4.43 to − 3.62) values. The Middle Triassic syenite–monzonite–granite–gabbro series in and around the Gyeonggi massif possess high-K calc-alkaline and shoshonitic affinity suggesting a post-collisional magmatic event following the Permo–Triassic collision between the North and South China blocks. The Triassic plutons in the Yeongnam massif and the Okcheon belt, together with a Permian Yeongdeok pluton in the Gyeongsang basin, show features typical of high- to medium-K calc-alkaline magmatism with LREE and LILE enrichments. This together with a depletion of Y and HREE suggests their formation in a subduction setting. Our results provide robust evidence to consider the Gyeonggi massif as an extension of the Qinling–Dabie–Sulu belt between the North and South China blocks in central China. The Okcheon belt and Yeongnam massif in South Korea, together with the continental margin of South China, are marked by a common Permian to Triassic magmatic episode, probably related to the paleo-Pacific slab subduction.  相似文献   

19.
U–Pb sensitive high resolution ion microprobe mass spectrometer (SHRIMP) ages of zircon, monazite and xenotime crystals from felsic intrusive rocks from the Rio Itapicuru greenstone belt show two development stages between 2,152 and 2,130 Ma, and between 2,130 and 2,080 Ma. The older intrusions yielded ages of 2,152±6 Ma in monazite crystals and 2,155±9 Ma in zircon crystals derived from the Trilhado granodiorite, and ages of 2,130±7 Ma and 2,128±8 Ma in zircon crystals derived from the Teofilândia tonalite. The emplacement age of the syntectonic Ambrósio dome as indicated by a 2,080±2-Ma xenotime age for a granite dyke probably marks the end of the felsic magmatism. This age shows good agreement with the Ar–Ar plateau age of 2,080±5 Ma obtained in hornblendes from an amphibolite and with a U–Pb SHRIMP age of 2,076±10 Ma in detrital zircon crystals from a quartzite, interpreted as the age of the peak of the metamorphism. The predominance of inherited zircons in the syntectonic Ambrósio dome suggests that the basement of the supracrustal rocks was composed of Archaean continental crust with components of 2,937±16, 3,111±13 and 3,162±13 Ma. Ar–Ar plateau ages of 2,050±4 Ma and 2,054±2 Ma on hydrothermal muscovite samples from the Fazenda Brasileiro gold deposit are interpreted as minimum ages for gold mineralisation and close to the true age of gold deposition. The Ar–Ar data indicate that the mineralisation must have occurred less than 30 million years after the peak of the metamorphism, or episodically between 2,080 Ma and 2,050 Ma, during uplift and exhumation of the orogen.Electronic supplementary material Supplementary material is available for this article at  相似文献   

20.
The Itacaiúnas Belt of the highly mineralised Carajás Mineral Province comprises ca. 2.75 Ga volcanic rocks overlain by sedimentary sequences of ca. 2.68 Ga age, that represent an intracratonic basin rather than a greenstone belt. Rocks are generally at low strain and low metamorphic grade, but are often highly deformed and at amphibolite facies grade adjacent to the Cinzento Strike Slip System. The Province has been long recognised for its giant enriched iron and manganese deposits, but over the past 20 years has been increasingly acknowledged as one of the most important Cu–Au and Au–PGE provinces globally, with deposits extending along an approximately 150 km long WNW-trending zone about 60 km wide centred on the Carajás Fault. The larger deposits (approx. 200–1000 Mt @ 0.95–1.4% Cu and 0.3–0.85 g/t Au) are classic Fe-oxide Cu–Au deposits that include Salobo, Igarapé Bahia–Alemão, Cristalino and Sossego. They are largely hosted in the lower volcanic sequences and basement gneisses as pipe- or ring-like mineralised, generally breccia bodies that are strongly Fe- and LREE-enriched, commonly with anomalous Co and U, and quartz- and sulfur-deficient. Iron oxides and Fe-rich carbonates and/or silicates are invariably present. Rhenium–Os dating of molybdenite at Salobo and SHRIMP Pb–Pb dating of hydrothermal monazite at Igarapé-Bahia indicate ages of ca. 2.57 Ga for mineralisation, indistinguishable from ages of poorly-exposed Archean alkalic and A-type intrusions in the Itacaiúnas Belt, strongly implicating a deep magmatic connection.A group of smaller, commonly supergene-enriched Cu–Au deposits (generally < 50 Mt @ < 2% Cu and < 1 g/t Au in hypogene ore), with enrichment in granitophile elements such as W, Sn and Bi, spatially overlap the Archean Fe-oxide Cu–Au deposits. These include the Breves, Águas Claras, Gameleira and Estrela deposits which are largely hosted by the upper sedimentary sequence as greisen-to ring-like or stockwork bodies. They generally lack abundant Fe-oxides, are quartz-bearing and contain more S-rich Cu–Fe sulfides than the Fe-oxide Cu–Au deposits, although Cento e Dezoito (118) appears to be a transitional type of deposit. Precise Pb–Pb in hydrothermal phosphate dating of the Breves and Cento e Dezoito deposits indicate ages of 1872 ± 7 Ma and 1868 ± 7 Ma, respectively, indistinguishable from Pb–Pb ages of zircons from adjacent A-type granites and associated dykes which range from 1874 ± 2 Ma to 1883 ± 2 Ma, with 1878 ± 8 Ma the age of intrusions at Breves. An unpublished Ar/Ar age for hydrothermal biotite at Estrela is indistinguishable, and a Sm–Nd isochron age for Gameleira is also similar, although somewhat younger. The geochronological data, combined with geological constraints and ore-element associations, strongly implicate a magmatic connection for these deposits.The highly anomalous, hydrothermal Serra Pelada Au–PGE deposit lies at the north-eastern edge of the Province within the same fault corridor as the Archean and Paleoproterozoic Cu–Au deposits, and like the Cu–Au deposits is LREE enriched. It appears to have formed from highly oxidising ore fluids that were neutralised by dolomites and reduced by carbonaceous shales in the upper sedimentary succession within the hinge of a reclined synform. The imprecise Pb–Pb in hydrothermal phosphate age of 1861 ± 45 Ma, combined with an Ar/Ar age of hydrothermal biotite of 1882 ± 3 Ma, are indistinguishable from a Pb–Pb in zircon age of 1883 ± 2 Ma for the adjacent Cigano A-type granite and indistinguishable from the age of the Paleoproterozoic Cu–Au deposits. Again a magmatic connection is indicated, particularly as there is no other credible heat or fluid source at that time.Finally, there is minor Au–(Cu) mineralisation associated with the Formiga Granite whose age is probably ca. 600 Ma, although there is little new zircon growth during crystallisation of the granite. This granite is probably related to the adjacent Neoproterozoic (900–600 Ma) Araguaia Fold Belt, formed as part of the Brasiliano Orogeny.Thus, there are two major and one minor period of Cu–Au mineralisation in the Carajás Mineral Province. The two major events display strong REE enrichment and strongly enhanced LREE. There is a trend from strongly Fe-rich, low-SiO2 and low-S deposits to quartz-bearing and more S-rich systems with time. There cannot be significant connate or basinal fluid (commonly invoked in the genesis of Fe-oxide Cu–Au deposits) involved as all host rocks were metamorphosed well before mineralisation: some host rocks are at mid- to high-amphibolite facies. The two major periods of mineralisation correspond to two periods of alkalic to A-type magmatism at ca. 2.57 Ga and ca. 1.88 Ga, and a magmatic association is compelling.The giant to world-class late Archean Fe-oxide Cu–Au deposits show the least obvious association with deep-seated alkaline bodies as shown at Palabora, South Africa, and implied at Olympic Dam, South Australia. The smaller Paleoproterozoic Cu–Au–W–Sn–Bi deposits and Au–PGE deposit show a more obvious relationship to more fractionated A-type granites, and the Neoproterozoic Au–(Cu) deposit to crustally-derived magmas. The available data suggest that magmas and ore fluids were derived from long-lived metasomatised lithosphere and lower crust beneath the eastern margin of the Amazon Craton in a tectonic setting similar to that of other large Precambrian Fe-oxide Cu–Au deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号