首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
体积分方程法模拟电偶源三维电磁响应   总被引:14,自引:12,他引:2       下载免费PDF全文
利用体积分方程法模拟电偶源激发时均匀导电半空间频率域三维电磁响应.讨论了张量格林函数的计算,对于需要计算三重积分的张量格林函数电荷项一次部分,应用一种差分近似的方法求解,这种方法在保证计算精度的同时更加便于计算机实现;采用二次剖分的算法解决了计算张量格林函数时的奇异值问题;计算含有贝塞尔函数的积分项时,利用一种结合连分式展开的高斯求积代替常规的快速汉克尔变换方法,在确保正确计算的同时提高了计算精度.  相似文献   

2.
The Fourier p-element method is an improvement to the finite element method, and is particularly suitable for vibration analysis due to the well-behaved Fourier series. In this paper, an iteration procedure is presented for solving the resulting nonlinear eigenvalue problem. Three types of Fourier version shape functions are constructed for analyzing the circular shaft torsional vibration, the plate in-plane vibration and annular plate flexural vibration modes, respectively.The numerical results show that this method can achieve higher accuracy and converge much faster than the FEM based on polynomial interpolation, especially for higher mode analysis.  相似文献   

3.
We present a new method of transforming borehole gravity meter data into vertical density logs. This new method is based on the regularized spectral domain deconvolution of density functions. It is a novel alternative to the “classical” approach, which is very sensitive to noise, especially for high‐definition surveys with relatively small sampling steps. The proposed approach responds well to vertical changes of density described by linear and polynomial functions. The model used is a vertical cylinder with large outer radius (flat circular plate) crossed by a synthetic vertical borehole profile. The task is formulated as a minimization problem, and the result is a low‐pass filter (controlled by a regularization parameter) in the spectral domain. This regularized approach is tested on synthetic datasets with noise and gives much more stable solutions than the classical approach based on the infinite Bouguer slab approximation. Next, the tests on real‐world datasets are presented. The properties and presented results make our proposed approach a viable alternative to the other processing methods of borehole gravity meter data based on horizontally layered formations.  相似文献   

4.
本文将小波有限元法引入到流体饱和多孔隙介质二维波动方程的正演模拟中,以二维Daubechies小波的尺度函数代替多项式函数作为插值函数,构造二维张量积小波单元.引入一类特征函数解决了Daubechies小波没有显式解析表达式所带来的基函数积分值计算问题,并推导出计算分数节点上Daubechies小波函数值的递推公式,从而构造出由小波系数空间到波场位移空间的快速小波变换.数值模拟结果表明该方法是有效的.  相似文献   

5.
The discontinuous spectral Galerkin method uses a finite-element discretization of the groundwater flow domain with basis functions of arbitrary order in each element. The independent choice of the basis functions in each element permits discontinuities in transmissivity in the flow domain. This formulation is shown to be of high order accuracy and particularly suitable for accurately calculating the flow field in porous media. Simulations are presented in terms of streamlines in a bidimensional aquifer, and compared with the solution calculated with a standard finite-element method and a mixed finite-element method. Numerical simulations show that the discontinuous spectral Galerkin approximation is more efficient than the standard finite-element method (in computing fluxes and streamlines/pathlines) for a given accuracy, and it is more accurate on a given grid. On the other hand the mixed finite-element method ensures the continuity of the fluxes at the cell boundaries and it is particular efficient in representing complicated flow fields with few mesh points. Simulations show that the mixed finite-element method is superior to the discontinuous spectral Galerkin method producing accurate streamlines even if few computational nodes are used. The application of the discontinuous Galerkin method is thus of interest in groundwater problems only when high order and extremely accurate solutions are needed.  相似文献   

6.
在前人工作的基础上,本文推导了电导率任意各向异性介质的海洋可控源电磁三维谱元法正演方程.采用一次场/二次场分离算法结合混合阶矢量基函数,可以有效避免源点的奇异性的影响,从而提高数值解的精度.采用任意六面体单元离散研究区域,有利于模拟复杂地形和地电结构.利用不完全LU分解的Induced Dimension Reduction(IDR(s))迭代算法求解线性方程组,有效地提高了求解的效率.设计典型的地电模型进行正演计算,并将计算结果与有限元解进行对比,对比结果表明本文提出的基于混合阶矢量基函数的海洋可控源电磁三维谱元数值模拟算法是正确的、有效的.本文算法具有良好的通用性,可推广用于电导率呈任意各向异性的陆地电磁、井中电磁等数值模拟研究.  相似文献   

7.
目前,有关伴随状态法初至波走时层析成像方法的文献,基本上都是基于面积分来定义目标函数,由此得到的伴随方程也都依赖于地表的法向量.这样,一方面会因为伴随变量计算的不准确而造成梯度的不合理,另一方面也无法合理地处理井中观测问题.本文从理论或数值试验角度指出了这些问题,并提出了不依赖地表法向量的改进的伴随状态法走时层析成像方法.主要改进包括:(1)采用体积分定义目标函数,避免了传统方法不能较好处理井中观测数据的缺陷,可以适应任意地表或井中观测系统.(2)采用摄动法得到了新的伴随方程,克服了传统方法中伴随场计算需要依赖于地表法向量的缺陷,使得检波点处的走时残差可以正确地反传播至地下,进而得到更加合理的速度修正方向,提高了速度反演的精度.  相似文献   

8.
为了实现交错沉积等复杂环境中的电磁场数值模拟,本文在常规横向同性模型的基础上引入了电导率主轴坐标系相对地层坐标系的层理方位角和倾角,建立了交错地层模型.并利用传播矩阵法建立了一维层状交错地层模型中的多分量感应测井仪器响应的正演模拟算法.首先将频率-波数域中的电磁场分解为上行和下行模式波,给出了任意朝向的磁偶极子在无限大地层中模式波的解析解.进一步通过引入地层界面上的透射、局部反射以及广义反射系数矩阵,推导了一维层状地层中的模式波表达式.在此基础上,利用二维Gauss-Legendre积分实现了Fourier逆变换,得到了可用于多分量感应测井模拟的频率-空间域磁场并矢格林函数.最后,通过多个数值模拟结果考察了井眼倾角、层理方位角和倾角变化对多分量感应测井响应的影响.  相似文献   

9.

A diagonal or lumped mass matrix is of great value for time-domain analysis of structural dynamic and wave propagation problems, as the computational efforts can be greatly reduced in the process of mass matrix inversion. In this study, the nodal quadrature method is employed to construct a lumped mass matrix for the Chebyshev spectral element method (CSEM). A Gauss-Lobatto type quadrature, based on Gauss-Lobatto-Chebyshev points with a weighting function of unity, is thus derived. With the aid of this quadrature, the CSEM can take advantage of explicit time-marching schemes and provide an efficient new tool for solving structural dynamic problems. Several types of lumped mass Chebyshev spectral elements are designed, including rod, beam and plate elements. The performance of the developed method is examined via some numerical examples of natural vibration and elastic wave propagation, accompanied by their comparison to that of traditional consistent-mass CSEM or the classical finite element method (FEM). Numerical results indicate that the proposed method displays comparable accuracy as its consistent-mass counterpart, and is more accurate than classical FEM. For the simulation of elastic wave propagation in structures induced by high-frequency loading, this method achieves satisfactory performance in accuracy and efficiency.

  相似文献   

10.
This paper describes a Galerkin-type finite element solution of the two-dimensional saturated-unsaturated flow equation. The numerical solution uses an incomplete (reduced) set of Hermitian cubic basis functions and is formulated in terms of normal and tangential coordinates. The formulation leads to continuous pressure gradients across interelement boundaries for a number of well-defined element configurations, such as for rectangular and circular elements. Other elements generally lead to discontinuous gradients; however, the gradients remain uniquely defined at the nodes. The method avoids calculation of second-order derivatives, yet retains many of the advantages associated with Hermitian elements. A nine-point Lobatto-type integration scheme is used to evaluate all local element integrals. This alternative scheme produces about the same accuracy as the usual 9- or 16-point Gaussian quadrature schemes, but is computationally more efficient.  相似文献   

11.
A finite-difference approach of aP-SV modeling scheme is applied to compute seismic wave propagation in heterogeneous isotropic media, including fluid-filled boreholes. The discrete formulation of the equation of motion requires the definition of the material parameters at the grid points of the numerical mesh. The grid spacing is chosen as coarse as possible with respect to the accurate representation of the shortest wavelength. If we assume frequencies lower than 250 Hz then the grid spacing is usually chosen in the range of a few meters. One encounters difficulties because of the large-scale difference between the grid spacing and the size of the borehole, usually several centimeters.These difficulties can be overcome by a grid refinement technique. This technique provides the construction of grids with varying grid spacing. The grid spacing in the vicinity of the borehole is chosen such that the borehole is properly represented. An example demonstrates the accuracy of this technique by comparisons with other methods. Unlike many analytical methods, the FD method can handle complex subsurface geometries. Further numerical examples of walk-awayVSP configurations show tube wave propagation within fluid-filled boreholes of realistic diameters.  相似文献   

12.
数值模拟对井中雷达数据的解释有重要意义.通常采用的时域有限差分法(FDTD)在网格足够细的情况下能够精确地模拟井中雷达,但对于相对较大的模型,要得到较好的精度其所需要的时间和计算机内存都非常大.我们尝试用伪谱法来模拟三维井中雷达,其在平缓介质中达到与FDTD相同精度每个波长所需的网格要少数倍,因此在保证精度的情况下使模拟范围大大增加.常规网格伪谱法常伴有Gibbs现象,本研究通过在一个方向以两点为源和采用交错网格的方法有效解决了上述问题.对于Debye频散介质,我们应用二阶显式Runge-Kutta方法求解时间步,该法较中心差分方法更直观、更简便,且在我们考虑的介质范围内是稳定的.  相似文献   

13.
反射波场分离是井孔地震资料处理中极其重要的一个环节,波场分离的质量直接影响成像结果的精度.不管是VSP还是井间地震资料,其反射波时距曲线都近似直线型,根据这一特征,本文提出一种改进的线性Radon变换方法来进行井孔资料的反射波上下行波场分离.该方法基于频率域线性Radon变换,通过引入一个新的变量λ来消除变换算子对频率的依赖性,避免了求取每一频率分量对应的不同变换算子,显著降低了计算成本;文中在求解该方法对应的最小二乘问题时,引入了发展较为成熟的高分辨率Radon变换技术来进一步提高波场分离的精度.采用本文方法进行井孔地震资料的上下行波场分离可以在保证分离精度的前提下有效地提高计算效率.根据上下行波在λ-f域内分布的特殊性,设计简单的滤波算子就可实现上下行波场的分离.最后通过合成数据试算以及实际资料处理(VSP数据和井间地震数据)验证了该方法的可行性和有效性.  相似文献   

14.
This paper introduces two new types of precise integration methods based on Chebyshev polynomial of the first kind for dynamic response analysis of structures, namely the integral formula method (IFM) and the homogenized initial system method (HISM). In both methods, nonlinear variable loadings within time intervals are simulated using Chebyshev polynomials of the first kind before a direct integration is performed. Developed on the basis of the integral formula, the recurrence relationship of the integral computation suggested in this paper is combined with the Crout decomposed method to solve linear algebraic equations. In this way, the IFM based on Chebyshev polynomial of the first kind is constructed. Transforming the non-homogenous initial system to the homogeneous dynamic system, and developing a special scheme without dimensional expansion, the HISM based on Chebyshev polynomial of the first kind is able to avoid the matrix inversion operation. The accuracy of the time integration schemes is examined and compared with other commonly used schemes, and it is shown that a greater accuracy as well as less time consuming can be achieved. Two numerical examples are presented to demonstrate the applicability of these new methods.  相似文献   

15.
The Karhunen-Loeve (KL) decomposition and the polynomial chaos (PC) expansion are elegant and efficient tools for uncertainty propagation in porous media. Over recent years, KL/PC-based frameworks have successfully been applied in several contributions for the flow problem in the subsurface context. It was also shown, however, that the accurate solution of the transport problem with KL/PC techniques is more challenging. We propose a framework that utilizes KL/PC in combination with sparse Smolyak quadrature for the flow problem only. In a subsequent step, a Lagrangian sampling technique is used for transport. The flow field samples are calculated based on a PC expansion derived from the solutions at relatively few quadrature points. To increase the computational efficiency of the PC-based flow field sampling, a new reduction method is applied. For advection dominated transport scenarios, where a Lagrangian approach is applicable, the proposed PC/Monte Carlo method (PCMCM) is very efficient and avoids accuracy problems that arise when applying KL/PC techniques to both flow and transport. The applicability of PCMCM is demonstrated for transport simulations in multivariate Gaussian log-conductivity fields that are unconditional and conditional on conductivity measurements.  相似文献   

16.
提高现代舰艇磁隐身能力的前提是准确地了解和掌握舰艇空间磁场分布,和舰艇所处地区的地磁场分布情况.针对目前磁场插值或拟合中存在的精度不够高,需要网格化等问题,本文提出了一种基于正交多项式的平面磁场拟合方法.不同于一维正交多项式的拟合方法,此方法首先从一般的完备二维多项式族出发,然后用Gram-Schmidt正交化过程将此完备二维多项式族正交化,得到数值正交基底,然后以此正交基进行平面磁场拟合.为了解决分块拟合问题,又提出了紧支的概念,通过与拉格朗日二维插值的船模试验及仿真比较,发现此方法拟合精度比较高,能够较准确的反映平面磁场的分布,有一定的工程实用价值.  相似文献   

17.
在定向井中,双侧向测井数据由于受井眼、围岩、井斜、径向侵入等环境因素的影响,难以准确地估算储层的电阻率和更准确地识别储层流体.本文拟提出图版法和反演法相结合的思路来研究地层视电阻率的校正问题.首先,针对研究区的测井环境和钻井液电阻率,计算了不同尺寸井眼的双侧向测井响应,绘制了井眼校正图版;然后,针对斜度井地层模型,采用三维有限元方法计算了不同井斜、不同厚度地层的测井响应,构建了井斜-围岩/层厚图版,利用该图版实现了井眼校正和井斜-围岩/层厚的电阻率快速校正.最后,针对钻井液侵入的影响,采用反演方法计算了侵入半径和地层真电阻率,最终实现了双侧向测井的环境校正.利用上述理论与方法对海洋中定向井的双侧向测井资料进行了环境校正,提高了储层流体定性识别和定量评价的精度.  相似文献   

18.
The precise time step integration method proposed for linear time-invariant homogeneous dynamic systems can provide precise numerical results that approach an exact solution at the integration points. However, difficulty arises when the algorithm is used for non-homogeneous dynamic systems, due to the inverse matrix calculation and the simulation accuracy of the applied loading. By combining the Gaussian quadrature method and state space theory with the calculation technique of matrix exponential function in the precise time step integration method, a new modified precise time step integration method (e.g., an algorithm with an arbitrary order of accuracy) is proposed. In the new method, no inverse matrix calculation or simulation of the applied loading is needed, and the computing efficiency is improved. In particular, the proposed method is independent of the quality of the matrix H. If the matrix H is singular or nearly singular, the advantage of the method is remarkable. The numerical stability of the proposed algorithm is discussed and a numerical example is given to demonstrate the validity and efficiency of the algorithm.  相似文献   

19.
Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine scale permeability variations through the calculation of specialized coarse scale basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. This can be accomplished using global fine scale simulations, but this may be computationally expensive. In this paper an adaptive local–global technique, originally developed within the context of upscaling, is applied for the computation of multiscale basis functions. The procedure enables the efficient incorporation of approximate global information, determined via coarse scale simulations, into the multiscale basis functions. The resulting procedure is formulated as a finite volume element method and is applied for a number of single- and two-phase flow simulations of channelized two-dimensional systems. Both conforming and nonconforming procedures are considered. The level of accuracy of the resulting method is shown to be consistently higher than that of the standard finite volume element multiscale technique based on localized basis functions determined using linear pressure boundary conditions.  相似文献   

20.
利用邱泽华等给出的观测数据和回归分析方法,计算钻孔应变仪四分量元件的相对标定系数,并根据偏差计算自检内精度等指标,对观测数据进行质量评价。选取2017年四川四分量钻孔应变观测台网记录资料,结合四分量钻孔应变仪观测特点,计算并分析应变观测仪相对标定自检内精度,客观评价观测数据精度,结果发现,2017年仁和台四分量钻孔应变数据各月及全年相对标定系数K_i最大,偏差s最小,自检内精度数值最小,表明该台钻孔应变观测数据精度最高。分析认为,相对标定自检内精度可如实反映台站记录资料的可信度,可以更好、更客观地评价台站四分量钻孔应变观测资料质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号