首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Attempts to quantify the numbers of migrants generated by changes in climate have commonly been calculated by projecting physical climate changes on an exposed population. These studies generally make simplistic assumptions about the response of an individual to variations in climate. However, empirical evidence of environmentally induced migration does not support such a structural approach and recognises that migration decisions are usually both multi-causal and shaped through individual agency. As such, agent-based modelling offers a robust method to simulate the autonomous decision making process relating to environmental migration. The Theory of Planned Behaviour provides a basis that can be used to effectively break down the reasoning process relating to the development of a behavioural intention. By developing an agent-based model of environmental migration for Burkina Faso from the basis of a combination of such theoretical developments and data analysis we further investigate the role of the environment in the decision to migrate using scenarios of future demographic, economic, social, political, and climate change in a dryland context. We find that in terms of climate change, it can be seen that that change to a drier environment produces the largest total and international migration fluxes when combined with changes to inclusive and connected social and political governance. While the lowest international migration flows are produced under a wetter climate with exclusive and diverse governance scenarios. In summary this paper illustrates how agent-based models incorporating the Theory of Planned Behaviour can be used to project evidence based future changes in migration in response to future demographic, economic social and climate change.  相似文献   

2.
Different ways of framing the nexus between climate change and migration have been advanced in academic, advocacy and policy circles. Some understand it as a state-security issue, some take a protection (or human security) approach and yet others portray migration as an adaptation or climate risk management strategy. Yet we have little insight into how these different understandings of the ‘problem’ of climate change-related migration are beginning to shape the emergence of global governance in the climate regime. Through a focus on the UNFCCC Task Force on Displacement we argue that these different framings of climate change migration shape how actors understand the appropriate role of the TFD, including the substantive scope of its mandate; its operational priorities; the nature of its outputs and where it should be situated in the institutional architecture. We show that understanding the different framings of the nexus between climate change and migration – and how these framings are contested within the UNFCCC – can help to account for institutional development in this area of climate governance.  相似文献   

3.
The streetlight effect is the tendency for researchers to focus on particular questions, cases and variables for reasons of convenience or data availability rather than broader relevance, policy import, or construct validity. To what extent does the streetlight effect condition the state of knowledge about climate change in Africa? Analysis of Google Scholar search results, both general and within leading climate change-related journals, reveals that two proxies for objective need, population and land mass, are associated with a higher volume of scholarly attention. Countries with greater exposure to the negative effects of climate change and countries with less adaptive capacity do not receive more scholarly attention. Rather, I find evidence that factors like British colonial history, strong civil liberties, and to a lesser extent political stability − factors not directly related to risks from climate change − affect scholarly attention. The streetlight effect is evident in climate change research on Africa.  相似文献   

4.
Increasing rates of climate migration may be of economic and national concern to sending and destination countries. It has been argued that social networks—the ties connecting an origin and destination—may operate as “migration corridors” with the potential to strongly facilitate climate change-related migration. This study investigates whether social networks at the household and community levels amplify or suppress the impact of climate change on international migration from rural Mexico. A novel set of 15 climate change indices was generated based on daily temperature and precipitation data for 214 weather stations across Mexico. Employing geostatistical interpolation techniques, the climate change values were linked to 68 rural municipalities for which sociodemographic data and detailed migration histories were available from the Mexican Migration Project. Multi-level discrete-time event-history models were used to investigate the effect of climate change on international migration between 1986 and 1999. At the household level, the effect of social networks was approximated by comparing the first to the last move, assuming that through the first move a household establishes internal social capital. At the community level, the impact of social capital was explored through interactions with a measure of the proportion of adults with migration experience. The results show that rather than amplifying, social capital may suppress the sensitivity of migration to climate triggers, suggesting that social networks could facilitate climate change adaptation in place.  相似文献   

5.
A global perspective on African climate   总被引:4,自引:1,他引:3  
We describe the global climate system context in which to interpret African environmental change to support planning and implementation of policymaking action at national, regional and continental scales, and to inform the debate between proponents of mitigation v. adaptation strategies in the face of climate change. We review recent advances and current challenges in African climate research and exploit our physical understanding of variability and trends to shape our outlook on future climate change. We classify the various mechanisms that have been proposed as relevant for understanding variations in African rainfall, emphasizing a “tropospheric stabilization” mechanism that is of importance on interannual time scales as well as for the future response to warming oceans. Two patterns stand out in our analysis of twentieth century rainfall variability: a drying of the monsoon regions, related to warming of the tropical oceans, and variability related to the El Niño–Southern Oscillation. The latest generation of climate models partly captures this recent continent-wide drying trend, attributing it to the combination of anthropogenic emissions of aerosols and greenhouse gases, the relative contribution of which is difficult to quantify with the existing model archive. The same climate models fail to reach a robust agreement regarding the twenty-first century outlook for African rainfall, in a future with increasing greenhouse gases and decreasing aerosol loadings. Such uncertainty underscores current limitations in our understanding of the global climate system that it is necessary to overcome if science is to support Africa in meeting its development goals.  相似文献   

6.
The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydrology and water resources which usually consist of three steps: (1) use of general circulation models (GCMs) to provide future global climate scenarios under the effect of increasing greenhouse gases, (2) use of downscaling techniques (both nested regional climate models, RCMs, and statistical methods) for "downscaling" the GCM output to the scales compatible with hydrological models, and (3) use of hydrologic models to simulate the effects of climate change on hydrological regimes at various scales. Great progress has been achieved in all three steps during the past few years, however, large uncertainties still exist in every stage of such study. This paper first reviews the present achievements in this field and then discusses the challenges for future studies of the hydrological impacts of climate change.  相似文献   

7.
Major transformation of the global energy system is required for climate change mitigation. However, energy demand patterns and supply systems are themselves subject to climate change impacts. These impacts will variously help and hinder mitigation and adaptation efforts, so it is vital they are well understood and incorporated into models used to study energy system decarbonisation pathways. To assess the current state of understanding of this topic and identify research priorities, this paper critically reviews the literature on the impacts of climate change on the energy supply system, summarising the regional coverage of studies, trends in their results and sources of disagreement. We then examine the ways in which these impacts have been represented in integrated assessment models of the electricity or energy system.Studies tend to agree broadly on impacts for wind, solar and thermal power stations. Projections for impacts on hydropower and bioenergy resources are more varied. Key uncertainties and gaps remain due to the variation between climate projections, modelling limitations and the regional bias of research interests. Priorities for future research include the following: further regional impact studies for developing countries; studies examining impacts of the changing variability of renewable resources, extreme weather events and combined hazards; inclusion of multiple climate feedback mechanisms in IAMs, accounting for adaptation options and climate model uncertainty.  相似文献   

8.
Accelerated climatic change will alter species’ distributions substantially by the end of the 21st Century and studies modeling distribution change using Climatic Envelope Modeling (CEM) are increasingly crucial for understanding long-term biotic implications of climate change. However, most CEM studies generate either all-species means, which are of limited practical use, or copious species-specific predictions that make it hard to draw general conclusions about those groups most vulnerable. Intermediate analyses that are half way between these two extremes are necessary to establish the relative vulnerability of species to change based on factors that can be related directly to policy and practice, including habitat associations and ecological traits such as endemism and migration status. Here we use species-specific CEM data to analyse changes in geographical distribution, range size, and overlap between current and potential ranges, for all 431 bird species breeding regularly in Europe. Future range sizes are predicted to be 80 % of current range sizes, with an average overlap of 39 %. However, we show that change varies significantly according to habitat, current range size, and endemism status, with no differences according to migration status. Coastal, wetland and upland birds will be significantly worse off under CEM scenarios than birds associated with woodland, farmland and heathland, while urban birds and those using multiple habitats doing best. Birds with small ranges show more severe, and spatially more complex, distribution shifts. The identification of species groups most vulnerable to climate change means that CEM predictions can now be used to inform policy and management, especially where initiatives are based on species grouped according to such variables or where habitat-specific policies are in place.  相似文献   

9.
Climate change poses serious threats to the protection and preservation of cultural heritage and resources. Despite a high level of scholarly interest in climate change impacts on natural and socio-economic systems, a comprehensive understanding of the impacts of climate change on cultural heritage and resources across various continents and disciplines is noticeably absent from the literature. To address this gap, we conducted a systematic literature review methodology to identify and characterize the state of knowledge and how the cultural heritage and resources at risk from climate change are being explored globally. Results from 124 reviewed publications show that scholarly interest in the topic is increasing, employs a wide range of research methods, and represents diverse natural and social science disciplines. Despite such increasing and diverse interest in climate change and cultural heritage and resources, the geographic scope of research is limited (predominantly European focused). Additionally, we identified the need for future studies that not only focuses on efficient, sustainable adaptation planning options but also documents if, and how, the implementation of cultural heritage and resources adaptation or preservation is taking place. This systematic literature review can help direct scholarly research in climate change and cultural heritage and resource area. Ultimately, we hope these new directions can influence policy-making for preservation and adaptation of cultural heritage and cultural resources globally.  相似文献   

10.
This paper examines global demographic change as a driver of migration within the context of anticipated climate change. It begins by briefly considering some theoretical formulations which relate demographic change and migration. It then considers evolving global demographic trends and discusses some of their potential impacts upon migration. It is shown that there is a close spatial coincidence between demographic and climate change “hotspots” that will influence migration in complex ways. It then turns to the complex interaction between demographic change, environmental change and migration, both in the past and potential developments in the future. It concludes with a discussion of the potential impacts of future trends and their policy implications.  相似文献   

11.
This paper investigates the uncertainty in the impact of climate change on flood frequency in England, through the use of continuous simulation of river flows. Six different sources of uncertainty are discussed: future greenhouse gas emissions; Global Climate Model (GCM) structure; downscaling from GCMs (including Regional Climate Model structure); hydrological model structure; hydrological model parameters and the internal variability of the climate system (sampled by applying different GCM initial conditions). These sources of uncertainty are demonstrated (separately) for two example catchments in England, by propagation through to flood frequency impact. The results suggest that uncertainty from GCM structure is by far the largest source of uncertainty. However, this is due to the extremely large increases in winter rainfall predicted by one of the five GCMs used. Other sources of uncertainty become more significant if the results from this GCM are omitted, although uncertainty from sources relating to modelling of the future climate is generally still larger than that relating to emissions or hydrological modelling. It is also shown that understanding current and future natural variability is critical in assessing the importance of climate change impacts on hydrology.  相似文献   

12.
Models used for climate change impact projections are typically not tested for simulation beyond current climate conditions. Since we have no data truly reflecting future conditions, a key challenge in this respect is to rigorously test models using proxies of future conditions. This paper presents a validation framework and guiding principles applicable across earth science disciplines for testing the capability of models to project future climate change and its impacts. Model test schemes comprising split-sample tests, differential split-sample tests and proxy site tests are discussed in relation to their application for projections by use of single models, ensemble modelling and space-time-substitution and in relation to use of different data from historical time series, paleo data and controlled experiments. We recommend that differential-split sample tests should be performed with best available proxy data in order to build further confidence in model projections.  相似文献   

13.
Climate is an important driver of dissolved organic carbon (DOC) dynamics in boreal catchments characterized by networks of streams within forest-wetland landscape mosaics. In this paper, we assess how climate change may affect stream DOC concentrations ([DOC]) and export from boreal forest streams with a multi-model ensemble approach. First, we apply an ensemble of regional climate models (RCMs) to project soil temperatures and stream-flows. These data are then used to drive two biogeochemical models of surface water DOC: (1) The Integrated Catchment model for Carbon (INCA-C), a detailed process-based model of DOC operating at the catchment scale, and (2) The Riparian Integration Model (RIM), a simple dynamic hillslope scale model of stream [DOC]. All RCMs project a consistent increase in temperature and precipitation as well as a shift in spring runoff peaks from May to April. However, they present a considerable range of possible future runoff conditions with an ensemble median increase of 31 % between current and future (2061–2090) conditions. Both biogeochemical models perform well in describing the dynamics of present-day stream [DOC] and fluxes, but disagree in their future projections. Here, we assess possible futures in three boreal catchments representative of forest, mire and mixed landscape elements. INCA-C projects a wider range of stream [DOC] due to its temperature sensitivity, whereas RIM gives consistently larger inter-annual variation and a wider range of exports due to its sensitivity to hydrological variations. The uncertainties associated with modeling complex processes that control future DOC dynamics in boreal and temperate catchments are still the main limitation to our understanding of DOC mechanisms under changing climate conditions. Novel, currently overlooked or unknown drivers may appear that will present new challenges to modelling DOC in the future.  相似文献   

14.
刘永强 《大气科学》2016,40(1):142-156
历史干旱事件的观测和数值研究表明,植被可通过地—气水分、能量和其他通量交换影响和反馈干旱.本研究旨在了解气候变化情形下植被对干旱趋势的影响和机制.应用美国大陆七个动力气候降尺度区域气候变化情景,计算和分析了现在和未来的干旱指数、空间分布和季节变化.通过比较同一气候区两种植被类型区域干旱强度和频率理解植被的影响.集成分析结果表明,未来美国干旱很可能增加,其中大平原中部所有季节都很显著,而东南和西南地区夏秋更为显著.植被对干旱趋势的影响和气候区有关.在温暖和潮湿/干燥气候区,林地(草地)未来干旱强度和频率的增幅大于对应的农田(荒漠)区域,因此植被可以放大未来干旱的风险.相反,在寒冷和潮湿气候区,林地(草地)区域未来干旱强度和频率增幅较小,表明植被放大未来干旱的作用可能只在某些气候情形下出现.这种植被对未来干旱影响的复杂性和对气候区的依赖性对气候模式提供可靠的干旱模拟和预测及森林管理部门制定适应和减缓气候变化的策略提出了新的挑战.  相似文献   

15.
Policy makers and stakeholders are increasingly demanding impact assessments which produce policy-relevant guidance on the local impacts of global climate change. The ‘Regional Climate Change Impact and Response Studies in East Anglia and North West England’ (RegIS) study developed a methodology for stakeholder-led, regional climate change impact assessment that explicitly evaluated local and regional (sub-national) scale impacts and adaptation options, and cross-sectoral interactions between four major sectors driving landscape change (agriculture, biodiversity, coasts and floodplains and water resources). The ‘Drivers-Pressure-State-Impact-Response’ (DPSIR) approach provided a structure for linking the modelling and scenario techniques. A 5 × 5 km grid was chosen for numerical modelling input (climate and socio-economic scenarios) and output, as a compromise between the climate scenario resolution (10 × 10 km) and the detailed spatial resolution output desired by stakeholders. Fundamental methodological issues have been raised by RegIS which reflect the difficulty of multi-sectoral modelling studies at local scales. In particular, the role of scenarios, error propagation in linked models, model validity, transparency and transportability as well as the use of integrated assessment to evaluate adaptation options to climate change are examined. Integrated assessments will provide new insights which will compliment those derived by more detailed sectoral assessments.  相似文献   

16.
Summary The current resolution of operational weather forecast model is not sufficient in general to explicitly resolve even the major cities of the World. As a consequence, urban areas have traditionally been neglected in such models. The introduction of tiled land surface models has enabled sub-gridscale landuse to be modelled, and hence has provided the opportunity to model cities within weather forecast models. However, to date there has been little effort made within the operational weather forecast community. At present there is only one operational centre that explicitly resolves urban areas. This centre includes a simple urban scheme within its mesoscale and global models, which has been shown to have a positive impact on the forecast. However, with the recent developments within urban meteorology there are now a variety of urban schemes, which vary in their complexity and parameter requirements, that would be suitable for operational weather forecast models. So it is likely that more operational models, and in particular mesoscale models, will include urban areas in the near future. With the majority of the World‘s population living in cities, the resilience of these cities to the impacts of climate change is also becoming of increasing interest. This means that urban areas will have to be included within climate change simulations, as well as weather forecast simulations, in the future. At present, only one climate change model has included a parametrisation for urban areas. However, this is likely to increase if work in this area grows rapidly.  相似文献   

17.
Adaptation to climate change is about planning for the future while responding to current pressures and challenges. Adaptation scientists are increasingly using future visioning exercises embedded in co-production and co-development techniques to assist stakeholders in imagining futures in a changing climate. Even if these exercises are growing in popularity, surprisingly little scrutiny has been placed on understanding the fundamental assumptions and choices in scenario approaches, timeframes, scales, or methods, and whether they result in meaningful changes in how adaptation is being thought about. Here, we unpack key insights and experiences across 62 case studies that specifically report on using future visioning exercises to engage stakeholders in climate change adaptation. We focus on three key areas: 1) Stakeholder diversity and scales; 2) Tools, methods, and data, and 3) Practical constraints, enablers, and outcomes. Our results show that most studies focus on the regional scale (n = 32; 52%), involve mainly formal decision makers and employ vast array of different methods, tools, and data. Interestingly, most exercises adopt either predictive (what will happen) and explorative (what could happen) scenarios while only a fraction use the more normative (what should happen) scenarios that could enable more transformative thinking. Reported positive outcomes include demonstrated increases in climate change literacy and support for climate change adaptation planning. Unintended and unexpected outcomes include increased anxiety in cases where introduced timeframes go beyond an individual’s expected life span and decreased perceived necessity for undertaking adaptation at all. Key agreed factors that underpin co-production and equal representation, such as gender, age, and diversity, are not well reported, and most case studies do not use reflective processes to harness participant feedback that could enable more robust methodology development. This is a missed opportunity in developing a more fundamental understanding of how these exercises can effectively shift individual and collective mindsets and advance the inclusion of different viewpoints as a pathway for more equitable and just climate adaptation.  相似文献   

18.
2021年8月9日,IPCC发布了第六次评估报告(AR6)第一工作组报告,报告第三章“人类活动对气候系统的影响”定量评估了人类活动对气候系统的影响程度以及气候模式对观测到的平均气候、气候变化和气候变率的模拟性能。报告基于气候系统的多个圈层变量的综合评估明确指出,毋庸置疑的是,自工业化以来人为影响已经使大气、海洋和陆地升温;支撑本次评估的国际耦合模式比较计划第六阶段(CMIP6)气候模式模拟的大多数大尺度气候指标的近期平均气候,相比前一次评估报告(AR5)中的CMIP5模式结果有所改进。报告在更广泛的领域和区域提供了更多证据表明气候系统中的人类活动影响,但受制于观测、模式与过程认知的不足,在大气、海洋、冰冻圈、生物圈及气候变率模态的多个指标变化中人为影响的贡献方面仍然存在不确定性甚至缺少研究。  相似文献   

19.
Summary This paper describes progress made in the scale modeling of urban climate. The studies reviewed are mainly indoor and outdoor experiments that use an array of urban-like flow obstacles or roughness elements such as cubes, blocks, and cylinders. Except for several important and unique studies, the many experiments that use a single obstacle, or those that use an array of elements to create a vegetation-like roughness are excluded from this review. Topics considered include turbulent flow, scalar dispersion, local transfer coefficient, radiative transfer, and the surface energy balance. More than 40 relevant studies are cited, and both significant developments and remaining problems are described. The future application of scale models to obtain a comprehensive understanding of urban climate is also examined, with the focus mainly upon the possibility of outdoor experiments.  相似文献   

20.
Climate volatility could change in the future, with important implications for agricultural productivity. For Tanzania, where food production and prices are sensitive to climate, changes in climate volatility could have severe implications for poverty. This study uses climate model projections, statistical crop models, and general equilibrium economic simulations to determine how the vulnerability of Tanzania's population to impoverishment by climate variability could change between the late 20th Century and the early 21st Century. Under current climate volatility, there is potential for a range of possible poverty outcomes, although in the most extreme of circumstances, poverty could increase by as many as 650,000 people due to an extreme interannual decline in grain yield. However, scenarios of future climate from multiple climate models indicate no consensus on future changes in temperature or rainfall volatility, so that either an increase or decrease is plausible. Scenarios with the largest increases in climate volatility are projected to render Tanzanians increasingly vulnerable to poverty through impacts on staple grains production in agriculture, with as many as 90,000 additional people entering poverty on average. Under the scenario where precipitation volatility decreases, poverty vulnerability decreases, highlighting the possibility of climate changes that oppose the ensemble mean, leading to poverty impacts of opposite sign. The results suggest that evaluating potential changes in volatility and not just the mean climate state may be important for analyzing the poverty implications of climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号