首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Results are reported from a detailed study of central Kamchatka seismicity for the period 1962–1997 based on a modification of the traditional approach. The approach involves (a) a detailed structure of the seismic region that recognizes the Kronotskii and Shipunskii geoblocks and two further blocks, the continental slope, and the offshore portion, (b) a study of variations in the rate of M = 3.0–7.2 earthquakes and the amount of seismic energy released at depths of 0–50 and 51–100 km, (c) a study of seismicity variability, and (d) separate estimates of the recurrence of crust-mantle earthquakes (depths 0–50 km) and mantle events (51–100 km). As a result, apart from corroborating the fact of a quiescence preceding the December 5, 1997 Kronotskii earthquake (M 7.9), we also found that a relationship exists between its beginning and the position of the earthquake-generating region relative to the mainshock epicenter. The quiescence dominates the seismic process during the pre-mainshock period and is characterized by a decreased rate of earthquakes (the first feature) and a decreased amount of seismic energy release (the second feature). Based on the first feature, we found that the quiescence started in 1987 throughout the entire depth range (0–100 km) in both parts of the Kronotskii geoblock close to the rupture zone of the eponymous earthquake. As to the Shipunskii geoblock, which is farther from the rupture zone, the quiescence began in the mantle of the inner area first (1988) and somewhat later at depths of 0–50 km within the continental slope (1989). By the second feature, the quiescence began at shallower depths in the inner area of the Kronotskii geoblock at the same time and later on (a year later) in the mantle (1988). Under the continental slope of the trench in the Shipunskii geoblock the shallower quiescence also began in 1987, while it was 3 years late in the inner zone (1990) and involved the earthquake-generating earth volume at depths of 0–100 km. These data are identical with or sufficiently close to the estimate for the beginning of this quiescence using a circular area of radius 150 km that combines the Kronotskii and Shipunskii geoblocks by the RTL method (1990).  相似文献   

2.
The complete records of geoelectric resistivity before two earthquakes were analyzed, including 16 stations within 240 km around the Tangshan earthquake and 2 stations within 50–60 km from theM6.1 Datong earthquake. By eliminating various disturbances in the records and realizing the precursory anomalies to be reliable, the authors studied the distribution of the geoelectric precursor field, which proves to be physically related to the earthquake source stress field. Comparision of the sign distribution of coseismic resistivity changes with the solution of earthquake source mechanism indicates that, the coseismic resistivity changes are of opposite sign but similar spatial distribution with respect to the corresponding resistivity precursor changes. Therefore, from the resistivity observations we are of the opinion that the Tangshan earthquake is an elastic rebound process. A virtual dislocation model of geoelectric precursor for the Tangshan earthquake is proposed, in which the geoelectric precursors are supposed to be caused by the strain accumulation due to a virtual dislocation, which is opposite in sign to the actual slip taking place at the earthquake occurrence. Taking into account of the non-linear characteristics of the amplification factorK=(Δρ/ρ)/ɛ in a range of 10−7–10−5 strain changes, the theoretical distribution of geoelectric precursors for the Tangshan earthquake was calculated based on the theory of fracture mechanics and reasonably selected dislocation parameters. The results show that the semi-quantitative theoretical values are in good agreement with the observed, suggesting that the virtual dislocation model of the geoelectric precursor is appropriate to the Tangshan earthquake. Contribution No. 96A0023, Institute of Geophysics, SSB, China. This work was supported by the National Natural Science Foundation of China and the Science and Technology Department of SSB.  相似文献   

3.
I review recent investigations on the electrical conductivity of the lithosphere and asthenosphere in Europe. The principal method in the reviewed studies is the magnetotelluric method, but in many cases other electromagnetic methods (e.g., magnetovariational profilings and geomagnetic depth soundings) have provided additional information on subsurface conductivity or have been the primary method. The review shows that the magnetotelluric method has been used, and is being used, in all kinds of environments and for many different processes shaping the crust and lithosphere. The crust is very heterogeneous, both with respect to the scale of conductive/resistive features and interpretations: research targets vary from Archaean palaeostructures to ongoing processes. The European database of the depth to the lithosphere-asthenosphere boundary (LAB) in Europe is updated, and a new map showing lateral variations of the depth of LAB is provided. The compilation shows that (1) the Phanerozoic European lithosphere, with considerable variations (45–150 km), is much thinner than the Precambrian European lithosphere, (2) the Trans-European Suture Zone is a major electrical border in Europe separating electrically (as well as geophysically and geologically in general) two quite different settings, (3) the thinnest lithosphere is found under the extensional Pannonian Basin (45–90 km), (4) in most of the East European Craton there are no indications of a high conductivity zone in upper mantle. In many regions there is no information at all on upper mantle conductivity, which calls for pan-European projects to operate arrays of simultaneously recording instruments with long recording periods (2–8 months) and dense spatial sampling (20–50 km).  相似文献   

4.
Seismotectonic regionalization of the Kamchatka subduction zone was carried out by retrospective analysis of the temporal sequence and locations of earthquake occurrence and an examination of relationships between the earthquake hypocenters and morphostructures in the continental slope of eastern Kamchatka. Ten segments separated with earthquake-generating strike-slip faults have been identified in the overthrusting (overhanging) margin of the Sea-of-Okhotsk plate in the zone where the Pacific and the Sea-of-Okhotsk plates interact orthogonally. Two to three earthquake-generating thrust blocks have been identified within these segments. This type of subduction is consistent with the keyboard-block model of L.I. Lobkovskii and B.V. Baranov. We put forward a model involving segmentation and generation of thrust blocks due to nonuniform coupling between the subducted Pacific plate and the overhanging Sea-of-Okhotsk plate. According to this model, both segmentation and the formation of thrust blocks are caused by nonuniform plate coupling due to unevenness in the relief of the plunging plate. The thrusts have relief expression as underwater highs and terraces, which indicate that a tsunami-generating earthquake can occur at this location. The highest rate of occurrence for magnitude 7 or greater earthquakes is found at the sharp bend of the Pacific plate, where the subduction angle is 10°–12° instead of 50°–51°, corresponding to a frontal (tectonic) arc, which can be traced by a positive free-air gravity anomaly and by an isostatic anomaly.  相似文献   

5.
We describe results from the ongoing 2008–2010 work on long-term earthquake prediction for the Kuril-Kamchatka arc based on the patterns of seismic gaps and the seismic cycle. We provide a forecast for the next 5 years, September 2010 to August 2015, specified for all segments of the earthquake-generating Kuril-Kamchatka arc zone. For 20 segments we predict the phases of the seismic cycle, the normalized rate of small earthquakes (A10), the magnitudes of moderate earthquakes to be expected with probabilities of 0.8, 0.5, and 0.15, the maximum possible magnitudes, and the probabilities of great (M ≥ 7.7) earthquakes. It is shown that the forecast given for the previous 5 years, from September 2005 to September 2010, was found to be accurate. We report the measures that were taken for seismic safety and retrofitting based on these forecasts.  相似文献   

6.
We present the results of a tomographic study performed in the framework of the 3F-Corinth project. The aim of this work is to better understand the rifting process by imaging the crustal structure of the western Gulf of Corinth. Forty-nine stations were deployed for a period of six months, allowing us to monitor the microseismicity. Delayed P and S first-arrival times have been simultaneously inverted for both hypocenter locations and 3-D velocity distributions. We use an improved linearized tomography method based on an accurate finite-difference travel-time computation to invert the data set. The obtained Vp and Vs models confirm the presence of a two-layer vertical structure characterized by a sharp velocity gradient lying at 5–7 km depth, which may be interpreted as a lithological contrast. The shallower part of the crust (down to 5 km depth) is controlled by the N-S extension and lacks seismicity. The deeper part (7–13 km depth) matches the seismogenic zone and is characterized by faster and more heterogeneous anomalies. In this zone, the background seismicity reveals a low-angle active surface dipping about 20° toward the north and striking WNW-ESE. The position of this active structure is consistent with both high Vp/Vs and low Vp.Vs anomalies identified at 8–12 km depth and suggesting a highly fracturated and fluid-saturated zone. Both the geometry of the active structure beneath the gulf and the presence of fluids at 8–12 km depth are in accordance with a low-angle detachment model for the western part of the Gulf of Corinth. S. Gautier and D. Latorre formerly at Géosciences Azur  相似文献   

7.
We consider the results from the ongoing 2010–2011 work on long-term earthquake prediction for the Kuril-Kamchatka arc based on the pattern of seismic gaps and the seismic cycle. We develop a forecast for the next 5 years, from September 2011 to August 2016, for all segments of the Kuril-Kamchatka arc earthquake-generating zone. For 20 segments we predict the appropriate phases of the seismic cycle, the normalized rate of small earthquakes (A10), the magnitudes of moderate earthquakes to be expected with probability 0.8, 0.5, and 0.15, and the maximum possible magnitudes and probability of occurrence for great (M ≥ 7.7) earthquakes. This study serves as another confirmation that it is entirely necessary to continue the work in seismic retrofitting in the area of Petropavlovsk-Kamchatskii.  相似文献   

8.
We report results from a detailed study of seismicity in central Kamchatka for the period from 1960 to 1997 using a modified traditional approach. The basic elements of this approach include (a) segmentation of the seismic region concerned (the Kronotskii and Shipunskii geoblocks, the continental slope and offshore blocks), (b) studying the variation in the rate of M = 4.5–7.0 earthquakes and in the amount of seismic energy release over time, (c) studying the seismicity variations, (d) separate estimates of earthquake recurrence for depths of 0–50 and 50–100 km. As a result, besides corroborating the fact that a quiescence occurred before the December 5, 1997, M = 7.9 Kronotskii earthquake, we also found a relationship between the start of the quiescence and the position of the seismic zone with respect to the rupture initiation. The earliest date of the quiescence (decreasing seismicity rate and seismic energy release) was due to the M = 4.5–7.0 earthquakes at depths of 0–100 km in the Kronotskii geoblock (8–9 years prior to the earthquake). The intermediate start of the quiescence was due to distant seismic zones of the Shipunskii geoblock and the circular zone using the RTL method, combining the Shipunskii and Kronotskii geoblocks (6 years). Based on the low magnitude seismicity (M≥2.6) at depths of 0–70 km in the southwestern part of the epicentral zone (50–100 km from the mainshock epicenter), the quiescence was inferred to have occurred a little over 3 years (40 months) before the mainshock time and a little over 2 years (25 months) in the immediate vicinity of the epicenter (0–50 km). These results enable a more reliable identification of other types of geophysical precursors during seismic quiescences before disastrous earthquakes.  相似文献   

9.
In order to investigate the velocity structure of the southern part of the Korean peninsula, seismic refraction profiles were obtained along a 294-km WNW-ESE line and a 335-km NNW-SSE line in 2002 and 2004, respectively. Seismic waves were generated by detonating 500–1000 kg explosives in drill holes at depths of 80–150 m. The seismic signals were recorded by portable seismometers at nominal intervals of 1.5–1.7 km. Separate velocity tomograms were derived from first arrival times using a series expansion method of travel-time inversion. The raypaths indicate several mid-crust interfaces including those at approximate depths of 2–3, 15–17, and 22 km. The Moho discontinuity with refraction velocity of 7.8 to 8.4 km/s has a maximum depth of 37–39 km under the southern central portion of the peninsula. The Moho becomes shallower as the Yellow Sea and the East Sea are approached on the west and east coasts of the peninsula, respectively. The depth of the 7.6 km/s velocity contour varies from 29.4 km to 36.5 km. The discrepancy in depth between the seismological Moho and the interpreted critically refracting interface may result from the presence of a gradual transition between the crust and mantle. The velocity tomograms show particular crustal structures including (1) the existence of an over 70-km wide low-velocity zone centered at 6–7 km depth under the Okchon fold belt and Ryeongnam massif, (2) existence of high-velocity materials under the Gyeongsang basin, and (3) the downward extension of the Yeongdong fault to depths greater than 10 km.  相似文献   

10.
Data on present-day heat flow, subsidence history, and paleotemperature for the Sacramento Delta region, California, have been employed to constrain a numerical model of tectonic subsidence and thermal evolution of forearc basins. The model assumes an oceanic basement with an initial thermal profile dependent on its age subjected to refrigeration caused by a subducting slab. Subsidence in the Sacramento Delta region appears to be close to that expected for a forearc basin underlain by normal oceanic lithosphere of age 150 Ma, demonstrating that effects from both the initial thermal profile and the subduction process are necessary and sufficient. Subsidence at the eastern and northern borders of the Sacramento Valley is considerably less, approximating subsidence expected from the dynamics of the subduction zone alone. These results, together with other geophysical data, show that Sacramento Delta lithosphere, being thinner and having undergone deeper subsidence, must differ from lithosphere of the transitional type under other parts of the Sacramento Valley. Thermal modeling allows evaluation of the rheological properties of the lithosphere. Strength diagrams based on our thermal model show that, even under relatively slow deformation (10−17 s−1), the upper part of the delta crystalline crust (down to 20–22 km) can fail in brittle fashion, which is in agreement with deeper earthquake occurrence. Hypocentral depths of earthquakes under the Sacramento Delta region extend to nearly 20 km, whereas, in the Coast Ranges to the west, depths are typically less than 12–15 km. The greater width of the seismogenic zone in this area raises the possibility that, for fault segments of comparable length, earthquakes of somewhat greater magnitude might occur than in the Coast Ranges to the west. The text was submitted by the authors in English.  相似文献   

11.
A broadband seismic array of 7 stations was set up in the western Dabie Mountains (31°20′-31°50′N, 114°30′-115°E). Teleseismic events from May 2001 to November 2001 were collected and analyzed by radial receiver function to determine the S-wave velocity structure of the crust and uppermost mantle. The crustal thickness is 32-38 km beneath the array. The crust-mantle boundary appears as a gently north-dipping velocity discontinuity, but turns to be a velocity gradient beneath a station near the Qiliping shea...  相似文献   

12.
 A study of the geoelectrical structure of the central part of Piton de la Fournaise volcano (Réunion, Indian Ocean) was made using direct current electrical (DC) and transient electromagnetic soundings (TEM). Piton de la Fournaise is a highly active oceanic basaltic shield and has been active for more than half a million years. Joint interpretation of the DC and TEM data allows us to obtain reliable 1D models of the resistivity distribution. The depth of investigation is of the order of 1.5 km but varies with the resistivity pattern encountered at each sounding. Two-dimensional resistivity cross sections were constructed by interpolation between the soundings of the 1D interpreted models. Conductors with resistivities less than 100 ohm-m are present at depth beneath all of the soundings and are located high in the volcanic edifice at elevations between 2000 and 1200 m. The deepest conductor has a resistivity less than 20 ohm-m for soundings located inside the Enclos and less than 60–100 ohm-m for soundings outside the Enclos. From the resistivity distributions, two zones are distinguished: (a) the central zone of the Enclos; and (b) the outer zone beyond the Enclos. Beneath the highly active summit area, the conductor rises to within a few hundred meters of the surface. This bulge coincides with a 2000-mV self-potential anomaly. Low-resistivity zones are inferred to show the presence of a hydrothermal system where alteration by steam and hot water has lowered the resistivity of the rocks. Farther from the summit, but inside the Enclos, the depth to the conductive layers increases to approximately 1 km and is inferred to be a deepening of the hydrothermally altered zone. Outside of the Enclos, the nature of the deep, conductive layers is not established. The observed resistivities suggest the presence of hydrated minerals, which could be found in landslide breccias, in hydrothermally altered zones, or in thick pyroclastic layers. Such formations often create perched water tables. The known occurrence of large eastward-moving landslides in the evolution of Piton de la Fournaise strongly suggests that large volumes of breccias should exist in the interior of the volcano; however, extensive breccia deposits are not observed at the bottom of the deep valleys that incise the volcano to elevations lower than those determined for the top of the conductors. The presence of the center of Piton de la Fournaise beneath the Plaine des Sables area during earlier volcanic stages (ca. 0.5 to 0.150 Ma) may have resulted in broad hydrothermal alteration of this zone. However, this interpretation cannot account for the low resistivities in peripheral zones. It is not presently possible to discriminate between these general interpretations. In addition, the nature of the deep conductors may be different in each zone. Whatever the geologic nature of these conductive layers, their presence indicates a major change of lithology at depth, unexpected for a shield volcano such as Piton de la Fournaise. Received: 3 November 1999 / Accepted: 15 September 1999  相似文献   

13.
We consider the methods and results of magnetotelluric sounding in the AMTS and MTS modifications. Audiomagnetotelluric sounding (AMTS) was carried out for the first time in the area of a recent Tolbachik eruption. The results from our analysis of the magnetotelluric parameters show that the geoelectric medium involving a regional fault can be fitted by a 2D inhomogeneous model. The longitudinal and transverse sounding curves were assumed as the leading elements for interpretation. A joint analysis of these curves and of pseudo-sections of impedance phases provides evidence of a geoelectric inhomogeneity in the area where the Naboko Vent is situated. A bimodal inversion of the AMTS curves yielded a geoelectric section that contains a conductive inhomogeneity that is possibly related to a fault that carried fluids up to the ground surface. Along with AMTS, we used MTS curves in a broader range to identify a crustal conductive anomaly at depths of 15–35 km. The data from AMTS, MTS, and other geological and geophysical information were used to develop a conceptual model for the area of study that characterizes a possible origin of the anomalous zones. We obtained approximate estimates of rock porosity in the fault zone that transported magma melts upward into the overlying rocks in the area of the Naboko Vent.  相似文献   

14.
The epicenter field of earthquakes that occur in the Baikal Rift System (BRS) was analyzed to identify certain areas that have stable concentrations of seismic events; these are reflections (in time) of deformable earthquake-generating volumes in the tectonosphere, or earthquake-generating structures. The patterns that are identifiable in the interrelationships and interactions of earthquake-generating structures as found by analysis of the space-time characteristics of the seismic process characterize the present-day dynamics of the BRS. Time series of earthquake-generating structures were analyzed for the 1964?C2002 period using the following parameters: the number of earthquakes (N) and the logarithm of total energy released by the earthquakes (log Esum). The tool was frequency-time analysis (FTAN), which revealed dominant periodic components in the seismic process for each earthquake-generating structure. We also used correlation analysis based on the parameter N to determine the order of activation for the earthquake-generating structures and to identify periods of synchronization in the seismic process.  相似文献   

15.
We consider results from modeling the crustal and upper mantle velocity structure in Kamchatka by seismic tomography and compare these with gravity data and present-day tectonics. We found a well-pronounced (in the physical fields) vertical and lateral variation for the upper mantle and found that it is controlled by fault tectonics. Not only are individual lithosphere blocks moving along faults, but also parts of the Benioff zone. The East Kamchatka volcanic belt (EKVB) is confined to the asthenospheric layer (the asthenosphere lens) at a depth of 70–80 km; this lens is 10–20 km thick and seismic velocity in it is lower by 2–4%. The top of the asthenosphere lens has the shape of a dome uplift beneath the Klyuchevskoi group of volcanoes and its thickness is appreciably greater; overall, the upper mantle in this region is appreciably stratified. A low-velocity heterogeneity (asthenolith) at least 100 km thick has been identified beneath the Central Kamchatka depression; we have determined its extent in the upper mantle and how it is related to the EKVB heterogeneities. Gravity data suggest the development of a rift structure under the Sredinnyi Range volcanic belt. The Benioff zone was found to exhibit velocity inhomogeneity; the anomalous zones that have been identified within it are related to asthenosphere inhomogeneities in the continental and oceanic blocks of the mantle.  相似文献   

16.
Site response in the aftershock zone of 2001 Bhuj Mw 7.7 earthquake has been studied using the H/V spectral ratio method using 454 aftershocks (Mw 2.5–4.7) recorded at twelve three-component digital strong motion and eight three-component digital seismograph sites. The mean amplification factor obtained for soft sediment sites (Quaternary/Tertiary) varies from 0.75–6.03 times for 1–3 Hz and 0.49–3.27 times for 3–10 Hz. The mean amplification factors obtained for hard sediment sites (hard Jurassic/Mesozoic sediments) range from 0.32–3.24 times for 1–3 Hz and 0.37–2.18 times for 310 Hz. The upper bounds of the larger mean amplification factors for 1–3 Hz are found to be of the order of 3.13–6.03 at Chopadwa, Vadawa, Kavada, Vondh, Adhoi, Jahwarnagar and Gadhada, whereas, the upper bounds of the higher mean amplification factors at 3–10 Hz are estimated to be of the order of 2.00–3.27° at Tapar, Chopadwa, Adhoi, Jahwarnagar, Gandhidham and Khingarpur. The site response estimated at Bhuj suggests a typical hard-rock site behavior. Preliminary site response maps for 1–3 Hz and 310 Hz frequency ranges have been prepared for the area extending from 23–23.85 °N and 69.65–70.85°E. These frequency ranges are considered on the basis of the fact that the natural frequencies of multi-story buildings (3 to 10 floor) range between 1–3 Hz, while the natural frequencies for 1 to 3 story buildings vary from 3–10 Hz. The 1–3 Hz map delineates two distinct zones of maximum site amplification (>3 times): one lying in the NW quadrant of the study area covering Jahwarnagar, Kavada and Gadadha and the other in the SE quadrant of the study area with a peak of 6.03 at Chopadwa covering an area of 70 km × 50 km. While the 3–10 Hz map shows more than 2 times site amplification value over the entire study area except, NE quadrant, two patches in the southwest corner covering Bhuj and Anjar, and one patch at the center covering Vondh, Manfara and Sikara. The zones for large site amplification values (∼3 times) are found at Tapar, Chopadwa, Adhoi and Chobari. The estimated site response values show a good correlation with the distribution of geological formations as well as observed ground deformation in the epicentral zone.  相似文献   

17.
 The three-dimensional P-wave velocity structure of Mount Spurr is determined to depths of 10 km by tomographic inversion of 3,754 first-arriving P-wave times from local earthquakes recorded by a permanent network of 11 seismographs. Results show a prominent low-velocity zone extending from the surface to 3–4 km below sea level beneath the southeastern flank of Crater Peak, spatially coincident with a geothermal system. P-wave velocities in this low-velocity zone are approximately 20% slower than those in the shallow crystalline basement rocks. Beneath Crater Peak an approximately 3-km-wide zone of relative low velocities correlates with a near-vertical band of seismicity, suggestive of a magmatic conduit. No large low-velocity zone indicative of a magma chamber occurs within the upper 10 km of the crust. These observations are consistent with petrologic and geochemical studies suggesting that Crater Peak magmas originate in the lower crust or upper mantle and have a short residence time in the shallow crust. Earthquakes relocated using the three-dimensional velocity structure correlate well with surface geology and other geophysical observations; thus, they provide additional constraints on the kinematics of the Mount Spurr magmatic system. Received: 4 December 1997 / Accepted: 27 February 1998  相似文献   

18.
The lower crust of magmatically active rifts is usually too hot and ductile to allow seismicity. The Icelandic mid-Atlantic rift is characterized by high heat flow, abundant magmatism generating up to 25–30 km thick crust, and seismicity within the upper 8 km of the crust. In a 20-seismometer survey in July-August 2006 within the northern rift zone around the Askja volcano we recorded ~1700 upper-crustal earthquakes cutting off at 7–8 km depth, marking the brittle-ductile boundary. Unexpectedly, we discovered 100 small-magnitude (ML <1.5) earthquakes, occurring in swarms mostly at 14–26 km depth within the otherwise aseismic lower crust, and beneath the completely aseismic middle crust. A repeat survey during July-August 2007 yielded more than twice as many lower-crustal events. Geodetic and gravimetric data indicate melt drainage from crustal magma chambers beneath Askja. We interpret the microearthquakes to be caused by melt moving through the crust from the magma source feeding Askja. They represent bursts of magma motion opening dykes over distances of a few meters, facilitated by the extensional setting of the active rift zone.  相似文献   

19.
Double difference relocations of the 1402 Kachchh events (2001–2006) clearly delineate two fault zones viz. south-dipping North Wagad fault (NWF) and almost vertical Gedi fault (GF). The relocated focal depths delineate a marked variation of 4 and 7 km in the brittle-ductile transition depths beneath GF and NWF, respectively. The focal mechanism solutions of 464 aftershocks (using 8–12 first motions) show that the focal mechanisms ranged between pure reverse and pure strike-slip except for a few pure dip-slip solutions. The stress inversions performed for five rectangular zones across the Kachchh rift reveal both clockwise and anticlockwise rotation (7–32°) in the σ1 orientation within the rupture zone, favoring a heterogeneous stress regime with an average N-S fault normal compression. This rotation may be attributed to the presence of crustal mafic intrusives (5–35 km depth) in the rupture zone of the 2001 Bhuj main shock. Results suggest a relatively homogeneous stress regime in the GF zone favoring strike-slip motion, with a fault normal N-S compression.  相似文献   

20.
The Experimental platform of Tournemire (Aveyron, France) developed by IRSN (French Institute for Radiological Protection and Nuclear Safety) is located in a tunnel excavated in a clay–rock formation interbedded between two limestone formations. A well-identified regional fault crosscuts this subhorizontal sedimentary succession, and a subvertical secondary fault zone is intercepted in the clay–rock by drifts and boreholes in the tunnel at a depth of about 250 m. A 2D electrical resistivity survey was carried out along a 2.5 km baseline, and a takeout of 40 m was used to assess the potential of this method to detect faults from the ground surface. In the 300 m-thick zone investigated by the survey, electrical resistivity images reveal several subvertical low-resistivity discontinuities. One of these discontinuities corresponds to the position of the Cernon fault, a major regional fault. One of the subvertical conductive discontinuities crossing the upper limestone formation is consistent with the prolongation towards the ground surface of the secondary fault zone identified in the clay–rock formation from the tunnel. Moreover, this secondary fault zone corresponds to the upward prolongation of a subvertical fault identified in the lower limestone using a 3D high-resolution seismic reflection survey. This type of large-scale electrical resistivity survey is therefore a useful tool for identifying faults in superficial layers from the ground surface and is complementary to 3D seismic reflection surveys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号