首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
南海夏季风爆发与南大洋海温变化之间的联系   总被引:1,自引:1,他引:1       下载免费PDF全文
利用1979-2009年NCEP第二套大气再分析资料和ERSST海温资料,分析南海夏季风爆发时间的年际和年代际变化特征,考察南海夏季风爆发早晚与南大洋海温之间的联系.主要结果为:(1)南海夏季风爆发时间年际和年代际变化明显,1979-1993年与1994-2009年前后两个阶段爆发时间存在阶段性突变;(2)南海夏季风爆发时间与前期冬季(12-1月)印度洋-南大洋(0-80°E,75°S-50°S)海温、春季(2-3月)太平洋-南大洋(170°E -80°W,75°S-50°S)海温都存在正相关关系,当前期冬、春季南大洋海温偏低(高)时,南海夏季风爆发偏早(晚).南大洋海温信号,无论是年际还是年代际变化,都对南海夏季风爆发具有一定的预测指示作用;(3)南大洋海温异常通过海气相互作用和大气遥相关影响南海夏季风爆发的迟早.当南大洋海温异常偏低(偏高)时,冬季南极涛动偏强(偏弱),同时通过遥相关作用使热带印度洋-西太平洋地区位势高度偏低(偏高)、纬向风加强(减弱),热带大气这种环流异常一直维持到春季4、5月份,位势高度和纬向风异常范围逐步向北扩展并伴随索马里越赤道气流的加强(减弱),从而为南海夏季风爆发偏早(偏晚)提供有利的环流条件.初步分析认为,热带大气环流对南大洋海气相互作用的遥响应与半球际大气质量重新分布引起的南北涛动有关.  相似文献   

2.
An important part of the influence of the oceans on the atmosphere is through direct radiation, sensible heat flux and release of latent heat of evaporation, whereby all of these processes are directly related to the surface temperature of the oceans. A main effect of the atmosphere on the oceans is through momentum exchange at the air-ocean interface, and this process is directly related to the surface wind stress. The sea surface temperature (SST) and the surface wind stress are the two important components in the air-ocean system. If SST is given, a thermally forced boundary layer atmospheric circulation can be simulated. On the other hand, if the surface wind stress is given, the wind-driven ocean waves and ocean currents can be computed.The relationship between SST and surface wind is a coupling of the atmosphere and the oceans. It changes a one-way effect (ocean mechanically driven by atmosphere, or atmosphere thermally forced by oceans) into two-way air-sea interactions. Through this coupling the SST distribution, being an output from an ocean model, leads to the thermally forced surface winds, which feeds back into the ocean model as an additional forcing.Based on Kuo's planetary boundary layer model a linear algebraic equation is established to link the SST gradient with the thermally forced surface wind. The surface wind blows across the isotherms from cold to warm region with some deflection angle to the right (left) in the Northern (Southern) Hemisphere. Results from this study show that the atmospheric stratification reduces both the speed and the deflection angle of the thermally forced wind, however, the Coriolis' effect increases the wind speed in stable atmosphere (Ri>10–4) and increases the deflection angle.  相似文献   

3.
South China Sea is the largest marginal sea of the Western Pacific between the Pacific Ocean and Asia Continent. It has been influenced by both the Pacific Ocean and continental climate. Its continental margins are broad in north and south, narrow in west. There are many islands in east. A large amount of siliciclastic sediments derived from peri-continents and islands were trans-ported into the sea[1], in which significant information of paleoceanography and paleoclimate and paleoenvironm…  相似文献   

4.
Satellite-derived SSTs are validated in the northern South China Sea (NSCS) using in situ SSTs from the drifting buoys and well-calibrated sensors installed on Research/Vessel(R/V) Shiyan 3. The satellite SSTs are Advanced Very High Resolution Radiometer (AVHRR) daytime SST, AVHRR nighttime SST, Tropical rainfall Measuring Mission Microwave Imager (TMI) daytime SST and TMI nighttime SST. Availability of satellite SST, which is the ratio that the number of available satellite SST to the total ocean pixels in NSCS is calculated; annual average SST availabilities of AVHRR daytime SST, AVHRR nighttime SST, TMI daytime SST and TMI nighttime SST are 68.42%, 69.99%, 56.57% and 52.80%, respectively. Though the TMI SST availability is nearly constant throughout the year, the variations of the AVHRR SST availability are much larger because of seasonal variations of cloud cover in NSCS. Validation of the satellite-derived SSTs shows that bias±standard deviation (STD) of AVHRR SST is −0.43±0.76 and −0.33±0.79 °C for daytime and nighttime, respectively, and bias±STD of TMI SSTs is 0.07±1.11 and 0.00±0.97 °C for daytime and nighttime, respectively. It is clear that AVHRR SSTs have significant regional biases of about −0.4 °C against the drifting buoy SSTs. Differences between satellite-derived−in situ SSTs are investigated in terms of the diurnal SST cycle. When satellite-derived wind speeds decrease down below 6 m/s, the satellite SSTs become higher than the corresponding in situ SSTs, which means that the SST difference (satellite SST−Buoy SST) is positive. This wind-speed dependence of the SST difference is consistent with the previous results, which have mentioned that low wind speed coupled with clear sky conditions (high surface solar radiation) enhance the diurnal SST amplitude and the bulk-skin temperature difference.  相似文献   

5.
华南前汛期降水异常与太平洋海表温度异常的关系   总被引:9,自引:0,他引:9       下载免费PDF全文
利用近50年华南地区站点逐日降水观测资料和全球大气、海洋分析资料,分析了华南前汛期降水异常的变化特征及其与太平洋海温异常的联系.结果表明,近50年来华南前汛期降水总体呈现减少趋势.影响华南前汛期降水异常的太平洋海温异常型是一个类似于ENSO的西太平洋暖池模态,即显著海温异常区域位于西太平洋暖池.西太平洋暖池区域(120°E—180°E,20°S—20°N)前期冬季海温异常同华南前汛期降水存在显著的负相关关系,是具有预报意义的海温关键区.该关键区海温异常影响华南前汛期降水的可能物理过程是:当前期冬季暖池异常偏暖时,菲律宾周围地区对流活动加强,导致Walker环流及东亚太平洋中低纬局地Hadley环流增强;该异常通过影响东亚-太平洋遥相关波列,使前汛期期间西太平洋副高加强西伸,脊线位置偏北,同时副热带西风急流减弱北退.随着Hadley环流上升支的增强,东亚副热带地区下沉运动也增强了,华南地区对流活动受到抑制.而且由于副高的增强,经过其北侧向华南地区的西南水汽输送辐合也减弱了,因此前汛期降水偏少.冷海温年的情形则相反,华南前汛期降水偏多.近50年来华南前汛期降水总体呈现趋势性减少正是由于前冬西太平洋暖池趋势性增暖所致.  相似文献   

6.
TOPEX/Poseidon satellite altimetry data from 1993 to 1999 were used to study mean annual variation of sea surface height anomaly (SSHA) in the South China Sea (SCS) and to reproduce its climatological monthly surface dynamic topography in conjunction with historical hydrographic data. The characters and rules of seasonal evolution of the SCS dynamic topography and its upper circulation were then discussed. Analyses indicate that annual variation of the SCS large-scale circulation could be divided into four major phases. In winter (from November to February), the SCS circulation is mainly controlled by double cyclonic gyres with domination of the northern gyre. Other corresponding features include the Kuroshio intrusion from the Luzon Strait and the northeastward off-shelf current in the area northwest off Kalimantan Island. The double gyre structure disassembled in spring (from March to April) when the northern gyre remains cyclonic, the southern gyre becomes anticyclonic, and the general circulation pattern shows a dipole. There is no obvious large-scale closed gyre inside the SCS basin in both summer (from May to July) and autumn (from August to October) when the SCS Monsoon Jet dominates the circulation, which flows northeastward across the SCS. Even so, circulation patterns of these two phases diverse significantly. From May to July, the SCS monsoon jet flows northward near the Vietnam coast and bends eastward along the topography southeast off Hainan Island at about 18°N forming an anticyclonic turn. It then turns northeastward after crossing the SCS. From August to October, however, the monsoon Jet leaves the coast of Vietnam and enters interior of the basin at about 13°N, and the general circulation pattern becomes cyclonic. The Kuroshio intrusion was not obvious in spring, summer and autumn. It is suggested from these observations that dynamic adjustment of the SCS circulation starts right after the peak period of the prevailing monsoon.  相似文献   

7.
The study on the South China Sea (SCS) circulation has a history of more than 40 years. Nevertheless, the SCS circulation is not fully understood compared with the Bohai Sea, Yellow Sea and East China Sea (ECS). Many numerical studies on the SCS circulati…  相似文献   

8.
Ocean Dynamics - In this study, the spatial and temporal variability in surface chlorophyll a (Chl-a) in the whole South China Sea (SCS) was investigated in detail by using 8-day, 4-km, gap-free...  相似文献   

9.
Chen T  Yu K 《Marine pollution bulletin》2011,62(10):2114-2121
The P/Ca ratio in coral skeletons is considered to be a direct proxy for the nutrient P in seawater. We examined the reliability of this proxy by analyzing P/Ca in a Porites coral collected from a eutrophic area in the northern South China Sea. P concentrations were significantly higher compared to previously reported values from pristine and open seas, corresponding to the elevated nutrients from the study site. We compared coral P/Ca against recent in-situ records of seawater P concentrations. Our results show that P/Ca was primarily a function of TP sw rather than PO4sw, and that the signal of skeletal P included not only phosphate, but also organic phosphorus. Besides the form of skeletal P, sub-sampling and analytical procedures and the distinctive nutrient regime were the most reasonable explanations for our results. We suggest that total P in coral skeletons may be an efficient proxy for seawater P variations and associated phytoplankton dynamics in eutrophic environments.  相似文献   

10.
Black band disease(BBD),characterized by the Cyanobacterial dominated pathogenic consortium,is thought to play a key role in the global decline of the coral reef ecosystems.The present paper originally documents a case of BBD from Yongxing Island(Xisha Islands,South China Sea),and further probes the reasons of this abnormal phenomenon.Prior to 2007,corals at northern reef-flat of Yongxing Isand were in healthy growth.Catastrophic coral mortality occurred between 2007 and 2008.The 16S rRNA gene sequencing and PCR amplification,with universally conserved primers,were applied to detect the contagious bacterial community of the microbial mat.The results demonstrated that six bacterial divisions constituted the clone libraries derived from the BBD mat,and that Cyanobacteria are the most diversely represented group that inhabit BBD bacterial mats,despite the fact that species in five others divisions(α-Proteobacteria,γ-Proteobacteria,Bacteroidetes,Verrucomicrobia and Actinobacteria) are also consistently diverse within the BBD mats of diseased coral.Other factors such as coral bleaching,typhoons,ocean acidification and crown-of-thorns starfish outbreaks,are not primarily responsible for the coral mortality within such a short time interval.The disaster expansion of BBD associated with Cyanobacterial blooms is a more likely mechanism impacting these coral reefs.Excessive human activity enhances the eutrophication of the marine water of the reefal region and may result in occurrence of the BBD.  相似文献   

11.
Surface partial pressure of CO2 (pCO2), temperature, salinity, nutrients, and chlorophyll a were measured in the East China Sea (ECS; 31°30′–34°00′N to 124°00′–127°30′E) in August 2003 (summer), May 2004 (spring), October 2004 (early fall), and November 2005 (fall). The warm and saline Tsushima Warm Current was observed in the eastern part of the survey area during four cruises, and relatively low salinity waters due to outflow from the Changjiang (Yangtze River) were observed over the western part of the survey area. Surface pCO2 ranged from 236 to 445 μatm in spring and summer, and from 326 to 517 μatm in fall. Large pCO2 (values >400 μatm) occurred in the western part of the study area in spring and fall, and in the eastern part in summer. A positive linear correlation existed between surface pCO2 and temperature in the eastern part of the study area, where the Tsushima Warm Current dominates; this correlation suggests that temperature is the major factor controlling surface pCO2 distribution in that area. In the western part of the study area, however, the main controlling factor is different and seasonally complex. There is large transport in this region of Changjiang Diluted Water in summer, causing low salinity and low pCO2 values. The relationship between surface pCO2 and water stability suggests that the amount of mixing and/or upwelling of CO2-rich water might be the important process controlling surface pCO2 levels during spring and fall in this shallow region. Sea–air CO2 flux, based on the application of a Wanninkhof [1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97, 7373–7382] formula for gas transfer velocity and a set of monthly averaged satellite wind data, were −5.04±1.59, −2.52±1.81, 1.71±2.87, and 0.39±0.18 mmol m−2 d−1 in spring, summer, early fall, and fall, respectively, in the northern ECS. The ocean in this study area is therefore a carbon sink in spring and summer, but a weak source or in equilibrium with the atmosphere in fall. If the winter flux value is assumed to have been the mean of autumnal and vernal values, then the northern ECS absorbs about 0.013 Pg C annually. That result suggests that the northern ECS is a net sink for atmospheric CO2, a result consistent with previous studies.  相似文献   

12.
By reference of the δ18O and δ13C isotopic compositions of G.sacculifer and accelerator mass spectrometry (AMS)14C dates, the U K 37 , ∑C 21 /∑C +- 22 and Pr/Pn in core DGKS9603 have been used to characterize the changes of paleooceanographic environment occurring in the East China Sea (ECS) during the last 35000 years. The stratigraphic records of these proxies have shown that during the last 35 ka the Okinawa Trough has gone through 7 stronger cold-climate events (C1–C7) and 9 terrigenous matter-decreasing events (e2–e9), of which, the C1 corresponds to the cold episode occurring in the middle late Holocene, C2–C4 and C7 correspond to the H1–H4 events, respectively. e1 and e3–e8 correspond to the decrease of sea surface temperature (SST), respectively. The terrigenous inputs increased when Heinrich events occurred. Climate colding resulted in the decrease of terrigenous matter transported by rivers, and the increase of that transported by winter monsoon. Heinrich events are closely related to East Asia monsoon. During the Last Glacial Maximum (LGM, 15.5–25.8 Cal ka BP), reduction environment fluctuated strongly, bringing forth three stronger reduction events (R1–R3) and one weaker reduction event (O), of which, R1–R3 correspond to the decrease of SST and increase of terrigenous nutrient and O corresponds to the decrease of terrigenous nutrient. The fluctuation of reduction condition must be related to the change of sea surface productivity.  相似文献   

13.
The Yellow River headwaters region (YRHR) contributes nearly 40% of total flow in the Yellow River basin, which is suffering from a serious water shortage problem. Investigation of the relationship between runoff and climate variables is important for understanding the variation trend of runoff in the YRHR under global climate change. Global and local climate variables, including the West Pacific subtropical high; northern hemisphere polar vortex (NH); Tibetan Plateau Index B (TPI‐B); southern oscillation index; sea surface temperature; and precipitation, evaporation, and temperature, were fully considered to explore the relationship with runoff at Jimai, Maqu, and Tangnaihai stations from 1956 to 2014. The results reveal that runoff had a decreasing trend, which will likely be maintained in the future, and there was a significant change in runoff around 1995 at all stations. Correlation analysis indicated that runoff was dominated by precipitation, NH, temperature, and TPI‐B, and a substantial correlation was observed with sea surface temperature and evaporation, but there was little correlation with West Pacific subtropical high and southern oscillation index. Furthermore, impacts of climate change on runoff variations were distinctly different at different temporal scales. Three dominant runoff periodicities were identified by a singular spectrum analysis‐multitaper method and continuous wavelet transform, that is, 1.0‐, 6.9‐, and 24.8‐year runoff periodicities. In addition, runoff was positively correlated with temperature at a 1‐year periodicity, negatively correlated with TPI‐B at a 6.9‐year periodicity, and positively correlated with NH at a 24.8‐year periodicity, that is, temperature, TPI‐B, and NH‐controlled runoff at annual, interannual, and interdecadal scales. Further, all analyses of the stations in the YRHR showed excellent consistency. The results will provide valuable information for water resource management in the YRHR.  相似文献   

14.
The South China Sea (SCS) is a semi-enclosed deep basin with complex topography includ-ing broad continental shelves, steep slopes, and a large deep basin. It is dominated by prevailing southwest monsoon in summer and by much stronger northeast monsoon in…  相似文献   

15.
陈家其 《湖泊科学》1993,5(1):18-25
我国南海海温异常对长江中下游夏季旱涝的遥相关,已被许多实测资料研究所证实。太湖流域作为长江中下游的一部分,历史时期是否也存在相应的遥相关,通过大量历史资料分析,得出了肯定的回答。在此基础上,联系历史时期和实测资料时期的其它旱涝因素分析,建立了太湖流域旱涝变化模型。  相似文献   

16.
南海北部海底热流测量及分析   总被引:9,自引:1,他引:9       下载免费PDF全文
广州海洋地质调查局用德国产的微型温度传感器和自行研制的重力取样器组装成海底热流探针,并用该设备在中国南海北部开展了海底热流测量,这是国内首次独立开展此项工作,也是我国海洋地质和地球物理调查技术方法的新尝试.通过实测数据分析以及与1985年中美合作获得的西沙海域地热流测量剖面数据对比,表明测量数据可靠并具有良好的一致性.此项工作的成功,将有助于地热流测量工作的深入开展,进而提高我国海底天然气水合物的勘探和海洋地质基础研究的水平.  相似文献   

17.
18.
We investigated sea surface temperature (SST) variability over large spatial and temporal scales for the continental shelf region located off the northeast coast of the United States between Cape Hatteras, North Carolina, and the Gulf of Maine using the extended reconstruction sea surface temperature (ERSST) dataset. The ERSST dataset consists of 2°×2° (latitude and longitude) monthly mean values computed from in situ data derived from the International Comprehensive Ocean Atmosphere Data Set (ICOADS). Nineteen 2°×2° bins were chosen that cover the shelf region of interest between the years of 1854 and 2005. Mean annual and range of SST were examined using dynamic factor analysis to estimate trends in both parameters, while chronological clustering was used to determine temporal SST patterns and breakpoints in the time series that are believed to signal regime shifts in SST. Both SST and SST trend analysis show that interannual variability of SST fluctuations shows strong coherence between bins, with declining SST at the beginning of the last century, followed by increasing SST through 1950, and then rapidly decreasing between 1950 and mid-1960s, with somewhat warmer SST thereafter to present. Annual SST range decreases in a seaward direction for all bins, with strong coherence for interannual variability of range fluctuations between bins. The trend in SST range shows a decreasing range at the beginning of the last century followed by an increase in range from 1920 to the late-1980s, remaining high through present with some spatial variability. A more detailed spatial analysis was conducted by grouping the data into 7 regions using principal component analysis. We analyzed regional trends in mean annual SST, seasonal SST range (summer SST−winter SST), and normalized SST minima and maxima. Both the summer and winter seasons were also analyzed using the length of each season and amplitude of the warming and cooling season, respectively, along with the spring warming and fall cooling rates. Trends in all of the parameters were examined after low-pass filtering using a 10-point convolution filter (n=10 years) and regime shifts were identified using the sequential t-test analysis of regime shifts (STARS) method. The analysis shows some difference between regions in the timing of minimum SST with minima being reached 1 month earlier in the south (February) relative to more northern regions (March). Regional annual SST range decreased in a seaward direction. Amplitude of summer warming and the length of summer have shown fluctuations with recent years showing stronger warming and longer summers but generally not exceeding past levels. Overall, the difference in SST range, with recent larger values may be the most significant finding of this work. SST range changes have the potential to disrupt species important to local fisheries due to combinations of differing temperature tolerances, changes in reproduction potential, and changes in the distributional range of species.  相似文献   

19.
We observed a phytoplankton bloom downstream of a large estuarine plume induced by heavy precipitation during a cruise conducted in the Pearl River estuary and the northern South China Sea in May–June 2001. The plume delivered a significant amount of nutrients into the estuary and the adjacent coastal region, and enhanced stratification stimulating a phytoplankton bloom in the region near and offshore of Hong Kong. A several fold increase (0.2–1.8 μg Chl L−1) in biomass (Chl a) was observed during the bloom. During the bloom event, the surface water phytoplankton community structure significantly shifted from a pico-phytoplankton dominated community to one dominated by micro-phytoplankton (>20 μm). In addition to increased Chl a, we observed a significant drawdown of pCO2, biological uptake of dissolved inorganic carbon (DIC) and an associated enhancement of dissolved oxygen and pH, demonstrating enhanced photosynthesis during the bloom. During the bloom, we estimated a net DIC drawdown of 100–150 μmol kg−1 and a TAlk increase of 0–50 μmol kg−1. The mean sea–air CO2 flux at the peak of the bloom was estimated to be as high as ∼−18 mmol m−2 d−1. For an average surface water depth of 5 m, a very high apparent biological CO2 consumption rate of 70–110 mmol m−2 d−1 was estimated. This value is 2–6 times higher than the estimated air–sea exchange rate.  相似文献   

20.
The history of natural fire since 37 kaBP and its relationship to climate for the northern part of the South China Sea are revealed from the statistic study of charcoal particles and associated pollen data from deep sea core 17940 (20° 07’N, 117° 23’E, 1 727 m in water depth). Our study indicates that, during the last glaciation, the concentration of charcoal and the ratio of con centration between charcoal and terrestrial pollen are much higher than that of the Holocene. This can be explained as the relatively high strength and frequency of natural fire during glaciation which is probably due to the drier climate; during the Last Glacial Maximum (LGM), the substantial rising of the concentration of large and medium charcoal particles probably suggests the local source area of the natural fires, i.e. the exposed continental shelf; moreover, the correlation between charcoal concentration with different size and pollen percentage may elucidate different transport dynamics. During the glacial time, almost all the peak concentrations of small particles correspond with the peak pollen percentage ofArtemisia, an indicator of comparatively dry climate, while for large particles, their concentrations always lag behind small particles and thus change with pollen percentage of montane conifers implying relatively cold and humid climate. So, it is possible to assume that small particles reflect regional emissions under drier climate and were brought over by strengthened winter monsoon. When the climate became relatively humid, the increasing precipitation carried the large particles accumulated on continental shelf before under arid condition to the studied area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号