首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the western fold-and-thrust belt of the southern Urals, the Kübler and Árkai indices determined on shales, slates and phyllites record an increase from lower late diagenetic to epizonal grade from west to east. The metamorphic grade varies strongly within the different tectonic segments, which are separated by major thrusts. The increase of diagenetic and incipient metamorphic grade from the footwall to the hanging wall of all major Upper Palaeozoic thrusts indicates a pre-Permo/Triassic origin. West of the Avzyan thrust zone, the diagenetic to incipient metamorphic grade is related to the Palaeozoic basin development and reached the final grades in Late Carboniferous to Early Permian times. East of the first Avzyan thrust in the Yamantau anticlinorium, the diagenetic to lower greenschist metamorphic grade is possibly of Neoproterozoic origin and might be related to the development of the Neoproterozoic basin at the eastern margin of the East European Craton. The eastern part of the Yamantau anticlinorium was exhumed below 200 °C in the Late Carboniferous or Early Permian. The diagenetic grade of the autochthonous Palaeozoic sedimentary units increases toward the stack of Palaeozoic nappes and might partly be caused by the deformational process due to the emplacement of the Palaeozoic nappes. Within the Timirovo thrust sheet, the decrease of metamorphic grade with stratigraphic age developed prior to the emplacement of the nappes. The upper anchizonal metamorphic grade of the Upper Devonian slates of the Zilair nappe results from the deformation process related to the Lower Carboniferous nappe emplacement.  相似文献   

2.
The evolution of the pre-Alpine Corio and Monastero metagabbros points to strong chemical and mineralogical similarities with that of other Permian gabbro bodies of the Alps, which are concentrated in the Southalpine and Austroalpine domains. The structural and metamorphic pre-Alpine evolution of these gabbros records a re-equilibration following the emplacement in the deep crust (P=0.6–0.9 GPa and T=850±70 °C), exhumation through amphibolite facies conditions (P=0.5–0.35 GPa and T=570–670 °C), followed by a greenschist facies imprint (0.25≤P≤0.35 GPa and T<550 °C). This retrograde PT evolution suggests that the exhumation occurred in a high thermal gradient regime, such as that induced by upwelling of an asthenospheric plume during continental rifting. This would be consistent with the crustal thinning known to have occurred in both the Southalpine and Austroalpine domains during Permian times. The gabbros and their country acid granulites are spatially associated with the serpentinised subcontinental mantle of the Lanzo Massif. This lithologic association and the metamorphic evolution is similar to that of the Fedoz gabbro (Austroalpine Domain of the Central Alps) and completely different from that observed in passive margins, where no remnants of the lower crust occur and the upper granitic crust directly overlies the serpentinized lherzolites. The location of Permian gabbro bodies in the Austroalpine and Southalpine domains and their absence in the Helvetic domain is evidence for asymmetric rifting.  相似文献   

3.
A stratigraphic revision of the Paludi Formation, cropping out in Northern Calabria on the north-eastern side of Sila Massif, has confirmed that it has been deposited between two main tectonic phases. Actually the formation is involved only by top to the north-east thrusts, different from those separating the crystalline and ophiolitic nappes of Northern Calabria, and rests unconformably on the Sila Unit, the uppermost nappe of the tectonic stack. In the frame of the interpretation of Northern Calabria as a fragment of the Alps, the Paludi Formation play the role of a deposit post-dating the eo-alpine tectonic phases and pre-dating the Apenninic orogenic transport. Therefore the Aquitanian age of the formation, obtained by nannofloras analyses, can be considered the minimum age to the Apulia-verging orogenic transport, witnessed by top to north-east thrusts. It fairly corresponds to the age referred to the Lucanian ocean closure.  相似文献   

4.
To verify paleomagnetic proof for megatectonic translation in the Tethys a large collection of samples from a key area, the Bolzano Quartz Porphyry Plateau in the Southern Alps, was examined. Their natural remanent magnetization was analyzed with thermal, and mainly alternating field demagnetization. The result is a well-established paleomagnetic direction of D: 150° and I: −19.5° (95 = 4.9), obtained from 152 samples from 39 sites distributed over 12 volcanic units. It is argued that the inclination of this result is not significantly different from that which can be extrapolated for the Southern Alps from Early Permian paleomagnetic directions of the stable European shield. Consequently it is concluded that a paleomagnetic indication for megatectonic translation of the Southern Alps is virtually absent. But a large counterclockwise deviation of the declination is evident, and is easily explained by a counterclockwise rotation of 50° of the Southern Alps with respect to stable Europe. Since the paleomagnetic direction of the Early Permian volcanics of the Southern Alps fits in reasonably well with the (poorly known) Early Permian paleomagnetic pattern of Africa, a coherence between both regions is presumed.  相似文献   

5.
The Uralides, a linear N–S trending Palaeozoic fold belt, reveals an intact, well-preserved orogen with a deep crustal root within a stable continental interior. In the western fold-and-thrust belt of the southern Uralides, Devonian to Carboniferous siliciclastic and carbonate rocks overlay Mesoproterozoic to Neoproterozoic sedimentary rocks. Deformation in the Devonian, Carboniferous and Permian caused thick-skinned tectonic features in the western and central parts of the western fold-and-thrust belt. A stack of several nappes characterizes the deformation in the eastern part. Along the E–W transect AC-TS'96 that crosses the western fold-and-thrust belt, apatite fission track data record various stages of the geodynamic evolution of the Uralide orogeny such as basin evolution during the Palaeozoic, synorogenic movements along major thrusts, synorogenic to postorogenic exhumation and a change in the regional stress field during the Upper Jurassic and Lower Cretaceous. The Palaeozoic sedimentary cover and the Neoproterozoic basement of the Ala-Tau anticlinorium never exceed the upper limit of the PAZ since the Devonian. A temperature gradient similar to the recent one (20 °C/km) would account for the FT data. Reactivation of the Neoproterozoic Zilmerdak thrust was time equivalent to the onset of the Devonian and Carboniferous collision-related deformation in the east. West-directed movement along the Tashli thrust occurred in the Lower Permian. The Devonian and Carboniferous exhumation path of the Neoproterozoic siliciclastic units of the Tirlyan synclinorium mirrors the onset of the Uralian orogeny, the emplacement of the Tirlyan nappe and the continuous west-directed compression. The five main tectonic segments Inzer Synclinorium, Beloretzk Terrane, Ala-Tau anticlinorium, Yamantau anticlinorium and Zilair synclinorium were exhumed one after another to a stable position in the crust between 290 and 230 Ma. Each segment has its own t–T path but the exhumation rate was nearly the same. Final denudation of the western fold-and-thrust belt and exhumation to the present surface probably began in Late Tertiary. In Jurassic and Cretaceous, south-directed movements along W–E trending normal faults indicate a change in the tectonic regime in the southern Uralides.  相似文献   

6.
《Tectonophysics》1987,142(1):87-98
Four nappes have been recognized in the Ligurian Apennines. In the Lavagna Nappe very low-grade metamorphism is combined with very large, originally W-facing isoclinal folds. In the other nappes, no evidence for metamorphism is found and all eutectonic folding was originally E- to NE-facing. Tectonic transport along the major nappe contacts was in an E- to NE-direction. A tectonic model is presented, which explains the generation of the large, originally W-facing folds as a result of originally E-inclined subduction within a young oceanic basin. Young oceanic lithosphere (maximum age approximately 25 Ma) subducted beneath oceanic lithosphere with a maximum age of approximately 40 Ma, under the influence of horizontally oriented compressional forces. Within the tectonic wedge, associated with the subduction, originally W-facing isoclinal folding and metamorphism occurred. Decrease and/or termination of compression resulted in the cessation of the subduction movements, followed by uplift of the region above the subducted plate by means of buoyancy. This uplift formed a slope from which sequences slid in an E- to NE-direction, causing E- to NE-facing folds. Ultimately, detachment and thrusting of gravitational nappes took place, by which process rock sequences of oceanic origin have been externally transported to attain ensialic (continental) domains. The Triassic-Early Oligocene tectonic events recognized in the Ligurian Apennines correlate quite well with the events that preceded the collision phase of the Alps.  相似文献   

7.
The rocks of the Northern Apennines predominantly consist of non-metamorphic terrigeneous deposits (flysches and molasses) some of which are preorogenic, some synorogenic and others postorogenic with respect to the nappe tectonics (Miocene). As plant fragments frequently occur in these sediments, a study of coal rank based on reflectance measurements on vitrinites (% Rm = mean value of the random reflectance in non polarized light) contributes to the clarification of the relation between the orogenic and the palaeogeothermal development. The determination of the Rm values of more than 180 samples from outcrops and three deep drillings revealed some important features. Within the pile of Liguride and Tuscanide nappes, the coal rank increases from the uppermost nappe to the lower nappes until lowgrade metamorphism is reached in the Lower Tuscanides. In the single nappes the rank decreases from the Tyrrhenian coast (internal zone) towards the Po Plain (external zone). This regional trend is disturbed only locally by young post-coalification tectonics. In the uppermost Liguride nappe (M. Antola Unit) a pre-Oligocene (i. e. pre-Apenninic) thermal event was detected. Postorogenic heating is connected with the magmatic activity of Late Miocene to Pleistocene age in Tuscany. Except for these preorogenic and postorogenic thermal events, the main coalification is generally younger than the emplacement of the nappes in the nappe pile during the Apenninic orogeny in the Miocene, but it is older than the last thrust movements and the final tensional tectonics in the internal zones of the chain. For these reasons, the main regional thermal event has to be considered as synorogenic or, more precisely, as late-synorogenic.  相似文献   

8.
《Tectonophysics》1987,142(1):71-85
Analysis of data gathered during the 1983 European Geotraverse southern segment (EGT-S '83) experiments in the region extending from the Emilia-Liguria Apennines to the western Alpine Arc together with data from seismic profiles in the northwestern Apennines accumulated within the framework of the Alps-Apennines Orogene Study Group indicate new details on the structure of the upper crust east and west of the Alps-Apennines boundary.The main results of this analysis centre on two areas. In the Piedmont Tertiary Basin we could determine the depocenter configurations of the 6–7 km thick terrigenous sequence and differentiate the tectonic units in the Piedmont (Alpine) and the Ligurian (Apennine) domains within the basement. In the other area, the Insubric domain underneath the Ligurian nappes of the northern Apennines, we found indications of tectonic doubling within the terrigenous-carbonate sequence in which thrusting attenuates towards the underlying basement, detected at a depth of 12–15 km. In addition, we found that, on a line from the Emilia Apennines to the Monferrato Hills, displacement of the Ligurian nappes over the Insubric domain diminishes to nearly one-third its original extent.  相似文献   

9.
Musa Güner 《Tectonophysics》1982,90(3-4):309-312
The palaeomagnetism of basic rocks and sulphide ores has been studied in the Küre area, Pontic Ranges, Turkey. Progressive alternating-field demagnetization revealed a characteristic remanent magnetization in all investigated rock types except a dacite. The following virtual geomagnetic poles were obtained:

Basalt and quartz diabase (oldest): D = 59°, I = +66°, 95 = 4.8, pole 49°N, 93°E. Diabase: D = 210°, I = −15°, 95 = 15.0, pole 47°N, 167°E. Massive sulphide ores: D = 107°, I = +63°, 95 = 8.7, pole 18°N, 80°E. Peridotite: D = 131°, I = +54°, 95 = 10.9, pole 2°S, 72°E. Amphibolitized diabase (youngest): D = 293°, I = +59°, 95 = 12.6, pole 40°S, 145°E.

The longidutinal difference in pole positions between the oldest and the youngest rocks is interpreted as being due to a post-Permian counterclockwise rotation of the studied region in relation to the African continent. In addition, there are indications of local rotational movements within the Küre area.  相似文献   


10.
The Sila and Serre granitoids of Calabria were emplaced in the late Carboniferous at depths ranging from 6 to 23 km in a postcollisional extensional regime. Their fabric, which developed during and after final crystallization up to the solid state, strongly increases in intensity with emplacement depth. This relationship is attributed to the thermal history of the Calabrian basement. Cooling histories of granitoids, constrained by geological data and Rb–Sr cooling ages on micas, demonstrate that residence times of rocks at temperatures greater than those of the brittle–ductile transition vary greatly as a function of initial emplacement depth. This explains why shallow-level granitoids, that remained for about 10 Myr at temperatures above those of the brittle domain, retain their original magmatic fabric. By contrast, the strong fabrics of the deep-seated granitoids are explained by solid-state strain overprint that lasted more than 100 Myr at temperatures above those of the brittle domain.  相似文献   

11.
Two major divisions of the New England Fold Belt, Zone A and Zone B, are separated by the Peel Fault. Deposition in these two zones was probably contemporaneous (Lower Palaeozoic ‐ Lower Permian). Terminal orogenesis in both zones was also contemporaneous (Middle Permian) but whereas in Zone A deformation was only moderate, metamorphism was of burial type, and granitic emplacement was uncommon, in Zone B many rocks were severely deformed and regionally metamorphosed, and both syn‐tectonic and post‐tectonic granites are widespread.

Pre‐orogenic palaeogeography is envisaged in terms of an evolving volcanic chain ‐ fore‐chain basin ‐ trench system, with an outer non‐volcanic arc developed in the Carboniferous. Cessation of movement on a subduction zone dipping westward beneath the volcanic chain is believed to have caused the Middle Permian deformation, but neither metamorphism nor the granitic rocks are directly related to subduction.  相似文献   

12.
The Austroalpine nappe systems in SE-Switzerland and N-Italy preserve remnants of the Adriatic rifted margin. Based on new maps and cross-sections, we suggest that the complex structure of the Campo, Grosina/Languard, and Bernina nappes is inherited largely from Jurassic rifting. We propose a classification of the Austroalpine domain into Upper, Middle and Lower Austroalpine nappes that is new because it is based primarily on the rift-related Jurassic structure and paleogeography of these nappes. Based on the Alpine structures and pre-Alpine, rift-related geometry of the Lower (Bernina) and Middle (Campo, Grosina/Languard) Austroalpine nappes, we restore these nappes to their original positions along the former margin, as a means of understanding the formation and emplacement of the nappes during initial reactivation of the Alpine Tethyan margin. The Campo and Grosina/Languard nappes can be interpreted as remnants of a former necking zone that comprised pre-rift upper and middle crust. These nappes were juxtaposed with the Mesozoic cover of the Bernina nappe during Jurassic rifting. We find evidence for low-angle detachment faults and extensional allochthons in the Bernina nappe similar to those previously described in the Err nappe and explain their role during subsequent reactivation. Our observations reveal a strong control of rift-related structures during the subsequent Alpine reactivation on all scales of the former distal margin. Two zones of intense deformation, referred to as the Albula-Zebru and Lunghin-Mortirolo movement zones, have been reactivated during Alpine deformation and cannot be described as simple monophase faults or shear zones. We propose a tectonic model for the Austroalpine nappe systems that link inherited, rift-related structures with present-day Alpine structures. In conclusion, we believe that apart from the direct regional implications, the results of this paper are of general interest in understanding the control of rift structures during reactivation of distal-rifted margins.  相似文献   

13.
为了确定东天山觉罗塔格带黄山地区单一的角闪辉长岩岩体的形成时代、源区性质及其构造属性,本文对东天山觉罗塔格带黄山地区早二叠世角闪辉长岩岩体进行了系统的LA-ICP-MS锆石U-Pb定年与地球化学分析。结果表明:2个岩体中的锆石在CL图像上主要呈条痕状吸收,Th/U值较高(0.23~0.58),指示其岩浆成因,成岩年龄为早二叠世(281.1~282.3 Ma)。这些岩体均由单一的角闪辉长岩构成,w(SiO2)为46.45%~52.76%,w(MgO)为5.15%~8.42%,w(Al2O3)为14.52%~16.84%,Mg#主要为0.55~0.63;稀土元素配分模式呈右倾型,LREE/HREE=3.36~5.11,(La/Yb)N=2.64~4.41,δEu值多为1.06~1.98;在微量元素蛛网图上,Rb、Ba、K、Sr等大离子亲石元素相对富集,高场强元素Nb、Ta及Zr、P、Hf相对亏损;εNdt)=10.66~12.54(t=282 Ma),平均为11.60。综上所述,东天山觉罗塔格带黄山地区早二叠世角闪辉长岩的岩浆源区主要为受俯冲流体交代的亏损地幔楔。结合同时代火成岩的组合特征、沉积作用以及区域构造演化历史,认为东天山觉罗塔格带黄山地区早二叠世角闪辉长岩体形成于吐哈地块与中天山地块碰撞后的伸展背景。  相似文献   

14.
We present a map that correlates tectonic units between Alps and western Turkey accompanied by a text providing access to literature data, explaining the concepts used for defining the mapped tectonic units, and first-order paleogeographic inferences. Along-strike similarities and differences of the Alpine-Eastern Mediterranean orogenic system are discussed. The map allows (1) for superimposing additional information, such as e.g., post-tectonic sedimentary basins, manifestations of magmatic activity, onto a coherent tectonic framework and (2) for outlining the major features of the Alpine-Eastern Mediterranean orogen. Dinarides-Hellenides, Anatolides and Taurides are orogens of opposite subduction polarity and direction of major transport with respect to Alps and Carpathians, and polarity switches across the Mid-Hungarian fault zone. The Dinarides-Hellenides-Taurides (and Apennines) consist of nappes detached from the Greater Adriatic continental margin during Cretaceous and Cenozoic orogeny. Internal units form composite nappes that passively carry ophiolites obducted in the latest Jurassic–earliest Cretaceous or during the Late Cretaceous on top of the Greater Adriatic margin successions. The ophiolites on top of composite nappes do not represent oceanic sutures zones, but root in the suture zones of Neotethys that formed after obduction. Suturing between Greater Adria and the northern and eastern Neotethys margin occupied by the Tisza and Dacia mega-units and the Pontides occurred in the latest Cretaceous along the Sava-İzmir-Ankara-Erzincan suture zones. The Rhodopian orogen is interpreted as a deep-crustal nappe stack formed in tandem with the Carpatho-Balkanides fold-thrust belt, now exposed in a giant core complex exhumed in late Eocene to Miocene times from below the Carpatho-Balkan orogen and the Circum-Rhodope unit. Its tectonic position is similar to that of the Sakarya unit of the Pontides. We infer that the Rhodope nappe stack formed due to north-directed thrusting. Both Rhodopes and Pontides are suspected to preserve the westernmost relics of the suture zone of Paleotethys.  相似文献   

15.
The northern Pilot Mountains of west-central Nevada, consist of a complexly deformed terrane of imbricate thrust nappes composed of rocks of Permian(?), Triassic through Jurassic, and possible Cretaceous ages. Three episodes of fold and thrust generation are recognized on the basis of folded thrusts and thrusted folds, and deformation and emplacement of the nappes is constrained as having occurred during the late Mesozoic. Folds are apparently coeval with thrust faults, and fold geometry is used in determining approximate directions of thrust displacement. The history of thrust displacement is complex and involves three directions of motion on a regionally extensive detachment surface, the Luning thrust. The first motion, from NW to SE, results in displacements of the order of several tens of kilometres and is the probable result of NW-SE regional compression. The final two episodes of motion are NE-SW followed by E-W; they result in small displacements and are possibly the product of gravity sliding of the thrust sheet into depressions in the autochthon. Sites of downwarp in the autochthon may have been formed either by load induced subsidence or regional compression.  相似文献   

16.
The nappe pile of eastern Crete   总被引:1,自引:0,他引:1  
In eastern Crete four allochthonous units with different styles of deformation are piled up above the autochthonous Cherty Limestone (“Plattenkalk”). The emplacement of the nappes is discussed. Diapiric uplift of the Cycladic area was accompanied by large-scale gravity sliding in the direction towards the Aegean arc. There is no evidence from geophysical data for the existence of a subduction zone. Therefore, the transport of the eastern Cretan nappes may be better explained by gravity tectonics than by the model of plate tectonics.  相似文献   

17.
Xenoliths collected from Prindle volcano, Alaska (Lat. 63.72°N; Long. 141.82°W) provide a unique opportunity to examine the lower crust of the northern Canadian Cordillera. The cone's pyroclastic deposits contain crustal and mantle-derived xenoliths. The crustal xenoliths include granulite facies metamorphic rocks and charnockites, comprising orthopyroxene (opx)–plagioclase (pl)–quartz (qtz) ± mesoperthite (msp) and clinopyroxene (cpx). Opx–cpx geothermometry yields equilibrium temperatures (T) from 770 to 1015 °C at 10 kbar. Pl–cpx–qtz geobarometry yields pressures (P) of  6.6–8.0 kbar. Integrated mesoperthite compositions suggest minimum temperatures of 1020–1140 °C at 10 kbar using solvus geothermometry. The absence of garnet in these rocks indicates a range of maximum pressure of 5–11.3 kbar, and calculated solidi constrain upper temperature limits. We conclude that the granulite facies assemblages represent relatively dry metamorphism at pressures indicative of crustal thicknesses similar to present day ( 36 km). Zircon separates from a single crustal xenolith yield mainly Early Tertiary (48–63 Ma) U–Pb ages which are considerably younger than the cooling ages of the high-pressure amphibolites exposed at the surface. The distribution of zircon ages is interpreted as indicating zircon growth coincident with at least two different thermal events as expressed at surface: (i) the eruption of the Late Cretaceous Carmacks Group volcanic rocks in western Yukon and adjacent parts of Alaska, and (ii) emplacement of strongly bimodal high level intrusions across much of western Yukon and eastern Alaska possibly in an extensional tectonic regime. The distributions of zircon growth ages and the preservation of higher-than-present-day (> 25 ± 3 °C km− 1) geothermal gradients in the granulite facies rocks demonstrate the use of crustal xenoliths for recovering records of past, lithospheric-scale thermal–tectonic events.  相似文献   

18.
Understanding the exhumation process of deep-seated material within subduction zones is important in comprehending the tectonic evolution of active margins. The deformation and slip history of superficial nappe pile emplaced upon high-P/T type metamorphic rocks can reveal the intimate relationship between deformation and transitions in paleo-stress that most likely arose from changes in the direction of plate convergence and exhumation of the metamorphic terrane. The Kinshozan–Atokura nappe pile emplaced upon the high-P/T type Sanbagawa (= Sambagawa) metamorphic rocks is the remnant of a pre-existing terrane located between paired metamorphic terranes along the Median Tectonic Line (MTL) of central Japan. Intra- and inter-nappe structures record the state of paleo-stress during metamorphism and exhumation of the Sanbagawa terrane. The following tectonic evolution of the nappes is inferred from a combined structural analysis of the basal fault of the nappes and their internal structures. The relative slip direction along the hanging wall rotated clockwise by 180°, from S to N, in association with a series of major tectonic changes from MTL-normal contraction to MTL-parallel strike-slip and finally MTL-normal extension. This clockwise rotation of the slip direction can be attributed to changes in the plate-induced regional stress state and associated exhumation of the deep-seated Sanbagawa terrane from the Late Cretaceous (Coniacian) to the Middle Miocene.  相似文献   

19.
藏北改则新生代早期逆冲推覆构造系统   总被引:2,自引:0,他引:2  
藏北改则及邻区新生代早期发育大型逆冲推覆构造系统,由不同方向的逆冲断层、不同时代的构造岩片、不同规模的飞来峰和构造窗、不同类型的褶皱构造组成。羌塘中部发育羌中薄皮推覆构造,石炭系板岩和二叠系白云质灰岩自北向南逆冲推覆于上白垩统与古近系红层之上,形成大型逆冲岩席和弧形逆冲断层,原地系统古近纪红层下伏三叠系—侏罗系海相烃源岩。羌塘南部发育南羌塘薄皮推覆构造,导致班公—怒江蛇绿岩、三叠系—侏罗系海相地层及侏罗纪混杂岩自北向南逆冲推覆于古近纪红层与下白垩统海相沉积岩层之上,形成三条蛇绿岩片带、大量飞来峰和厚度较大的构造片岩。中新世早期火山岩层和湖相沉积呈角度不整合覆盖逆冲断层、褶皱构造和逆冲岩席,不整合面上覆火山岩年龄为23.7~19.1Ma,指示中新世早期改则及邻区基本结束了强烈逆冲推覆构造运动。估算羌中逆冲推覆构造的推覆距离约100~115km,南羌塘逆冲推覆构造的推覆距离约82~110km;新生代早期改则逆冲推覆构造系统近南北方向逆冲推覆总距离为182~225km,对应地壳缩短率为(50.3±2.7)%。  相似文献   

20.
杨振宇  JeanBESSE 《地质论评》2001,47(6):568-576
本文在讨论中国东部现有构造演化模式基础上,着重从华北与华南地块之间板块尺度的动力学过程剖析秦岭-大别中生代造山带构造演化,以及大别-苏鲁超高压变质地体的形成和折返过程。晚二叠世-中三叠世华南地块向华北地块持续挤压,陆壳大规模俯冲导致超高压变质作用的产生,而华北地块在晚三叠世至早侏罗世发生快速逆时针旋转,使得这一地区上地幔深度的超高压变质地体快速折返至下地壳。由于超高压变质地体侵位后,地壳结构、构造的差异,在南北地块的进一步挤压下,造成中国东部晚侏罗世-早白垩世郯庐断裂带的巨大左行剪切。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号