首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marbles and metapelites from the Reynolds Range Group (centralAustralia) were regionally metamorphosed at low pressure duringM2 at 1.6 Ga, M2 ranged in grade from greenschist to granulitefacies along the length of the Reynolds Range, and overprinted1.78 Ga granites and their contact aureoles in the ReynoldsRange Group metasediments. At all M2 grades the marbles andmetapelites have highly variable oxygen isotope ratios [marbles:18O(carb) 14–20%; metapelites: 18O 6–14%). Similarly, 1.78 Ga granites have highly variable oxygen isotope ratios(18O 5–13%), with the lowest values occurring at thegranite margins. In all rock types, the lowest oxygen isotopevalues are consistent with the infiltration of channelled magmaticand/or meteoric fluids. The variable lowering of oxygen isotopevalues resulted from pre-M2 contact metamorphism and fluid—rockinteraction around the 1.78 Ga granites. In contrast, mineralassemblages in the marbles define a trend of increasing XCO2with increasing grade from <0.05 (greenschist facies) to0.7–1.0 (granulite facies). This, together with the lackof regionally systematic resetting of oxygen isotope ratios,implies that there was little fluid—rock interaction duringprograde regional metamorphism. KEY WORDS: low pressure; polymetamorphism; fluids; stable isotopes; petrology *Corresponding author Fax: 61–3–94791272. e-mail: geoisb{at}lure.latrobe.edu.au  相似文献   

2.
Progress () of the infiltration-driven reaction, 4olivine +5CO2 + H2O = talc + 5magnesite, that occurred during Barrovianregional metamorphism, varies at the cm-scale by a factor of3·5 within an 3 m3 volume of rock. Mineral and stableisotope compositions record that XCO2, 18Ofluid, and 13Cfluidwere uniform within error of measurement in the same rock volume.The conventional interpretation of small-scale variations in in terms of channelized fluid flow cannot explain the uniformityin fluid composition. Small-scale variations in resulted insteadbecause (a) reactant olivine was a solid solution, (b) initiallythere were small-scale variations in the amount and compositionof olivine, and (c) fluid composition was completely homogenizedover the same scale by diffusion–dispersion during infiltrationand subsequent reaction. Assuming isochemical reaction, spatialvariations in image variations in the (Mg + Fe)/Si of the parentrock rather than the geometry of metamorphic fluid flow. Ifinfiltration-driven reactions involve minerals fixed in composition,on the other hand, spatial variations in do directly imagefluid flow paths. The geometry of fluid flow can never be determinedfrom geochemical tracers over a distance smaller than the oneover which fluid composition is completely homogenized by diffusion–dispersion. KEY WORDS: Alpine Barrovian metamorphism; diffusion; metamorphic fluid composition; metamorphic fluid flow; reaction progress  相似文献   

3.
A new method has been suggested for evaluating the overall basicityof minerals and rocks by using ionization reactions involvingone proton: (sum of cations) + H2O = mineral + H+, (sum of cations) + H2O = (sum of normative minerals of a rock)+ H+. The basicity indicators are expressed as standard free energychanges of these reactions (). At standard water pressure (logPH2O = 0) and chemical activity of the metal ions ( log Mn+= 0), the relationship between and alkalinity of solutions(pH) becomes: = –2.303 RTlog H+ = 2.303 RT pH. The overall basicities of rock-forming oxides, minerals andmajor rocks were calculated from the thermodynamic data on ionsin water solutions and solid compounds.  相似文献   

4.
Corella marbles in the Mary Kathleen Fold Belt were infiltratedby fluids during low-pressure (200-MPa) contact metamorphismassociated with the intrusion of the Burstall granite at 1730–1740Ma. Fluids emanating from the granite [whole-rock (WR) 18O=8.1–8.6%]produced Fe-rich massive and banded garnet—clinopyroxeneskarns [18O(WR)=9.1–11.9%]. Outside the skarn zones, marblemineralogies define an increase in temperature (500 to >575C) and XCO2 (0.05 to >0.12) towards the granite, andmost marbles contain isobarically univariant or invariant assemblagesin the end-member CaO–MgO–Al2O3–SiO2–H2O–CO2system. Marbles have calcite (Cc) 18O and 13C values of 12.3–24.6%and –1.0 to –3.9%, respectively. A lack of down-temperaturemineral reactions in the marbles suggests that pervasive fluidinfiltration did not continue after the thermal peak of contactmetamorphism. The timing of fluid flow probably correspondsto a period of high fluid production and high intrinsic permeabilitiesduring prograde contact metamorphism. The petrology and stableisotope geochemistry of the marbles suggest that these rockswere infiltrated by water-rich fluids. If fluid flow occurredup to the peak of contact metamorphism, the mineralogical andisotopic resetting is best explained by fluids flowing up-temperaturetoward the Burstall granite. However, if fluid flow ceased beforthe peak of regional metamorphism, the fluid flow directioncannot be unambiguously determined. At individual outcrops,marble 18O(Cc) values vary by several permil over a few squaremetres, suggesting that fluid fluxes varied by at least an orderof magnitude on the metre to tens-of-metre scale. Fluids werefocused across lithological layering; however, mesoscopic fracturesare not recognized. The focusing of fluids was possibly viamicrofractures, and the variation in the degree of resettingmay reflect variations in microcrack density and fracture permeability.The marble—skarn contacts represent a sharp discontinuityin both major element geochemistry and 18O values, suggestingthat, at least locally, little fluid flow occurred across thesecontacts.  相似文献   

5.
Sapphirine occurs with humite-group minerals and forsteritein Precambrian amphibole-facies rocks at Kuhi-lal, SW PamirMountains, Tajikistan, a locality also for talc+kyanite magnesiohornblendewhiteschist. Most of these sapphirine-bearing rocks are graphiticand sulfidic (pyrite and pyrrhotite) and contain enstatite,clinohumite or chondrodite, spinel, rutile, gedrite, and phlogopite.A phlogopite schist has the assemblage with XFe = Fe/(Fe+Mg)increasing as follows: chlorite (0-003)<phlogopite (0.004–0.005)sapphirine (0.004–0.006) enstatite (0-006)forsterite (0-006–0-007)<spinel (0-014). This assemblage includes the incompatiblepair sapphirine+forsterite, but there is no textural evidencefor reaction. In one rock with clinohumite, XFe increases asfollows: clinohumite (0-002) <sapphirine (0-003) <enstatite(0-004–0-006) <spinel (0-010). Ion microprobe and wet-chemicalanalyses give 0-57–0-73 wt.% F in phlogopite and 0-27wt.% F in chlorite in the phlogopite schist; 0-04, 1.5–1.9,and 4.4 wt.% F in forsterite, clinohumite, and chondrodite,respectively; and 0-0-09 wt.% BeO and 0-05–0-21 wt.% B2O3in sapphirine. Stabilization of sapphirine+clinohumite or sapphirine+chondroditeinstead of sapphirine+phlogopite is possible at high F contentsin K-poor rocks, but minor element contents appear to be toolow to stabilize sapphirine as an additional phase with forsterite+enstatite+spinel.Although sapphirine+forsterite is metastable relative to spinel+enstatitein experiments conducted at aH2O=1 in the MgO-Al2O3-SiO2-H2Osystem, it might be stabilized at aH2O0.5, P4 kbar, T650–700C.Textures in the Kuhi-lal whiteschists suggest a polymetamorphicevolution in which the rocks were originally metamorphosed atT650C, P 7 kbar, conditions under which sapphirine+clinohumiteand sapphirine+chondrodite are inferred to have formed, andsubsequently affected by a later event at lower P, similar T,and lower aH2O. The latter conditions were favorable for sapphirine+forsteriteto form in a rock originally containing chlorite+forsterite+spinel+enstatite.  相似文献   

6.
Different lithologies (impure marble, eclogite and graniticorthogneiss) sampled from a restricted area of the coesite-bearingBrossasco–Isasca Unit (Dora Maira Massif) have been investigatedto examine the behaviour of 40Ar–39Ar and Rb–Srsystems in phengites developed under ultrahigh-pressure (UHP)metamorphism. Mineralogical and petrological data indicate thatzoned phengites record distinct segments of the PT path:prograde, peak to early retrograde in the marble, peak to earlyretrograde in the eclogite, and late retrograde in the orthogneiss.Besides major element zoning, ion microprobe analysis of phengitein the marble also reveals a pronounced zoning of trace elements(including Rb and Sr). 40Ar–39Ar apparent ages (35–62Ma, marble; 89–170 Ma, eclogite; 35–52 Ma, orthogneiss),determined through Ar laserprobe data on phengites (step-heatingand in situ techniques), show wide intra-sample and inter-samplevariations closely linked to within-sample microchemical variations:apparent ages decrease with decreasing celadonite contents.These data confirm previous reports on excess Ar and, more significantly,highlight that phengite acted as a closed system in the differentlithologies and that chemical exchange, not volume diffusion,was the main factor controlling the rate of Ar transport. Conversely,a Rb–Sr internal isochron from the same eclogite yieldsan age of 36 Ma, overlapping with the time of the UHP metamorphicpeak determined through U–Pb data and thereby corroboratingthe previous conclusion that UHP metamorphism and early retrogressionoccurred in close succession. Different phengite fractions ofthe marble yield calcite–phengite isochron ages of 36to 60 Ma. Although this time interval matches Ar ages from thesame sample, Rb–Sr data from phengite are not entirelyconsistent with the whole dataset. According to trace elementvariations in phengite, only Rb–Sr data from two wet-groundphengite separates, yielding ages of 36 and 41 Ma, are internallyconsistent. The oldest age obtained from a millimetre-sizedgrain fraction enriched in prograde–peak phengites mayrepresent a minimum age estimate for the prograde phengite relics.Results highlight the potential of the in situ 40Ar–39Arlaser technique in resolving discrete PT stages experiencedby eclogite-facies rocks (provided that excess Ar is demonstrablya negligible factor), and confirm the potential of Rb–Srinternal mineral isochrons in providing precise crystallizationages for eclogite-facies mineral assemblages. KEY WORDS: 40Ar–39Ar dating; Rb–Sr dating; phengite; SIMS; UHP metamorphism  相似文献   

7.
A suite of dolerite dykes from the Ahlmannryggen region of westernDronning Maud Land (Antarctica) forms part of the much moreextensive Karoo igneous province of southern Africa. The dykecompositions include both low- and high-Ti magma types, includingpicrites and ferropicrites. New 40Ar/39Ar age determinationsfor the Ahlmannryggen intrusions indicate two ages of emplacementat 178 and 190 Ma. Four geochemical groups of dykes have beenidentified in the Ahlmannryggen region based on analyses of60 dykes. The groups are defined on the basis of whole-rockTiO2 and Zr contents, and reinforced by rare earth element (REE),87Sr/86Sr and 143Nd/144Nd isotope data. Group 1 were intrudedat 190 Ma and have low TiO2 and Zr contents and a significantArchaean crustal component, but also evidence of hydrothermalalteration. Group 2 dykes were intruded at 178 Ma; they havelow to moderate TiO2 and Zr contents and are interpreted tobe the result of mixing of melts derived from an isotopicallydepleted source with small melt fractions of an enriched lithosphericmantle source. Group 3 dyke were intruded at 190 Ma and formthe most distinct magma group; these are largely picritic withsuperficially mid-ocean ridge basalt (MORB)-like chemistry (flatREE patterns, 87Sr/86Sri 0·7035, Ndi 9). However, theyhave very high TiO2 (4 wt %) and Zr (500 ppm) contents, whichis not consistent with melting of MORB-source mantle. The Group3 magmas are inferred to be derived by partial melting of astrongly depleted mantle source in the garnet stability field.This group includes several high Mg–Fe dykes (ferropicrites),which are interpreted as high-temperature melts. Some Group3 dykes also show evidence of contamination by continental crust.Group 4 dykes are low-K picrites intruded at 178 Ma; they havevery high TiO2–Zr contents and are the most enriched magmagroup of the Karoo–Antarctic province, with ocean-islandbasalt (OIB)-like chemistry. Dykes of Group 1 and Group 3 aresub-parallel (ENE–WSW) and both groups were emplaced at190 Ma in response to the same regional stress field, whichhad changed by 178 Ma, when Group 2 and Group 4 dykes were intrudedalong a dominantly NNE–SSW strike. KEY WORDS: flood basalt; depleted mantle; enriched mantle; Ahlmannryggen; Karoo dyke  相似文献   

8.
The Aravalli–Delhi Mobile Belt in the northwestern partof India demonstrates how granulite enclaves and their hostgneisses can be utilized to unravel multistage metamorphic historiesof orogenic belts, using three suites of metamorphic rocks:(1) an enclave of pelitic migmatite gneiss–leptynite gneiss;(2) metamorphosed megacrystic granitoids, intrusive into theenclave; (3) host tonalite–trondhjemite–granodiorite(TTG) gneisses associated with an interlayered sequence of garnetiferousmetabasite and psammo-pelitic schist, locally migmatitic. Basedon integrated structural, petrographic, mineral compositional,geothermobarometric studies and P–T pseudosection modellingin the systems NCKFMASH and NCFMASH, we record three distincttectonothermal events: an older, medium-pressure granulite-faciesmetamorphic event (M1) in the sillimanite stability field, whichis registered only in the enclave, a younger, kyanite-gradehigh-pressure granulite-facies event (M2), common to all thethree litho-associations, and a terminal amphibolite-faciesmetamorphic overprint (M3). The high-P granulite facies eventhas a clockwise P–T loop with a well-constrained prograde,peak (M2, P 12–15 kbar, T 815°C) and retrograde (M2R,6·1 kbar, T 625°C) metamorphic history. M3 is recordedparticularly in late shear zones. When collated with availablegeochronological data, the metamorphic P–T conditionsprovide the first constraint of crustal thickening in this belt,leading to the amalgamation of two crustal blocks during a collisionalorogeny of possible Early Mesoproterozoic age. M3 reactivationis inferred to be of Grenvillian age. KEY WORDS: Northwestern India; polycyclic granulite enclave; pseudosection; high-pressure metamorphism; P–T path  相似文献   

9.
In the southern periphery of the Sausar Mobile Belt (SMB), thesouthern component of the Central Indian Tectonic Zone (CITZ),a suite of felsic and aluminous granulites, intruded by gabbro,noritic gabbro, norite and orthopyroxenite, records the polymetamorphicevolution of the CITZ. Using sequences of prograde, peak andretrograde reaction textures, mineral chemistry, geothermobarometricresults and petrogenetic grid considerations from the felsicand the aluminous granulites and applying metamorphosed maficdyke markers and geochronological constraints, two temporallyunrelated granulite-facies tectonothermal events of Pre-Grenvillianage have been established. The first event caused ultrahigh-temperature(UHT) metamorphism (M1) (T 950°C) at relatively deepercrustal levels (P 9 kbar) and a subsequent post-peak near-isobariccooling PT history (M2). M1 caused pervasive biotite-dehydrationmelting, producing garnet–orthopyroxene and garnet–rutileand sapphirine–spinel-bearing incongruent solid assemblagesin felsic and aluminous granulites, respectively. During M2,garnet–corundum and later spinel–sillimanite–biotiteassemblages were produced by reacting sapphirine–spinel–sillimaniteand rehydration of garnet–corundum assemblages, respectively.Applying electron microprobe (EMP) dating techniques to monazitesincluded in M1 garnet or occurring in low-strain domains inthe felsic granulites, the UHT metamorphism is dated at 2040–2090Ma. Based on the deep crustal heating–cooling PTtrajectory, the authors infer an overall counterclockwise PTpath for this UHT event. During the second granulite event,the Palaeoproterozoic granulites experienced crustal attenuationto 6·4 kbar at T 675°C during M3 and subsequentnear-isothermal loading to 8 kbar during M4. In the felsic granulites,the former is marked by decomposition of M1 garnet to orthopyroxene–plagioclasesymplectites. During M4, there was renewed growth of garnet–quartzsymplectites in the felsic granulites, replacing the M3 mineralassemblage and also the appearance of coronal garnet–quartz–clinopyroxeneassemblages in metamorphosed mafic dykes. Using monazites frommetamorphic overgrowths and metamorphic recrystallization domainsfrom the felsic granulite, the M4 metamorphism is dated at 1525–1450Ma. Using geochronological and metamorphic constraints, theauthors interpret the M3–M4 stages to be part of the sameMesoproterozoic tectonothermal event. The result provides thefirst documentation of UHT metamorphism and Palaeo- and Mesoproterozoicmetamorphic processes in the CITZ. On a broader scale, the findingsare also consistent with the current prediction that isobaricallycooled granulites require a separate orogeny for their exhumation. KEY WORDS: Central Indian Tectonic Zone; UHT metamorphism; counterclockwise PT path; monazite chemical dating  相似文献   

10.
At Kabbaldurga, infiltration of carbonic fluids along a systemof ductile shears and foliation planes has led to partial transformationof Archaean grey biotite–hornblende gneiss to coarse-grainedmassive charnockite at about 2.5 b.y. ago. The dehydration ofthe gneiss assemblage was induced by a marked metasomatic changeof the reacting system from granodioritic to granitic, and obviouslytook place under conditions of an open system at 700–750?C and 5–7 kb. Extensive replacement of plagioclase (An16–30)by K-feldspar through Na, Ca–K exchange reactions withthe ascending carbonic fluids led to strong enrichment in K,Rb, Ba, and SiO2, and to a depletion in Ca. Progressive dissolutionof hornblende, biotite, magnetite, and the accessory mineralsapatite and zircon resulted in a marked depletion in Fe, Mg,Ti, Zn, V, P, and Zr. Most important is the recognition of REEmobility: with advancing charnockitization, the moderately fractionatedREE distribution patterns of the grey gneisses (LaN270; LaN/YbN= 5–20; EuN27; Eu/Eu* = 0.6–0.3) give way to stronglyfractionated REE patterns with a positive Eu-anomaly (LaN200;LaN/YbN = 20–80; EuN22; Eu/Eu* = 0.6–1.8). The systematicdepletion especially in the HREE is due to the progressive dissolutionof zircon, apatite (and monazite), which strongly concentratethe REE. Stable isotope data (18O of 6.9–8.0 per mille for gneissesand charnockites; 13C of –8.5 and –6.5 per millefor late carbonate) indicate a magmatogenic source for the carbonicfluids. In contrast to the currently favoured derivation ofcarbonic fluids by decarbonation of the upper mantle or degassingof underplated basaltic intrusions, it is discussed here thatabundant fluid inclusions in lower crustal charnockites providedan extensive reservoir of ‘fossil’ carbonic fluids.Shear deformation has tapped this reservoir and generated thechannel-ways for fluid ascent. Charnockitization of the Kabbaldurgatypethus appears to be a metasomatic process which is tectonicallycontrolled and restricted to the crustal level of the amphiboliteto granulite transition.  相似文献   

11.
The Marum ophiolite complex in northern Papua New Guinea includesa thick (3–4 km) sequence of ultramafic and mafic cumulates,which are layered on a gross scale from dunite at the base upwardsthrough wehrlite, lherzolite, plagioclase lherzolite, pyroxenite,olivine norite-gabbro and norite-gabbro to anorthositic gabbroand ferrogabbro at the top. Igneous layering and structures,and cumulus textures indicate an origin by magmatic crystallizationin a large magma chamber(s) from magma(s) of evolving composition.Most rocks however show textural and mineralogical evidenceof subsolidus re-equilibration. The cumulate sequence is olivine and chrome spinel followedby clinopyroxene, orthopyroxene and plagioclase, and the layeredsequence is similar to that of the Troodos and Papuan ophiolites.These sequences differ from ophiolites such as Vourinos by thepresence of cumulus magnesian orthopyroxene, and are not consistentwith accumulation of low pressure liquidus phases of mid-oceanridge-type olivine tholeiite basalts. The cumulus phases show cryptic variation from Mg- and Ca-richearly cumulates to lower temperature end-members, e.g. olivineMg93–78, plagioclase An94–63. Co-existing pyroxenesdefine a high temperature solidus with a narrower miscibilitygap than that of pyroxenes from stratiform intrusions. Re-equilibratedpyroxene pairs define a low-temperature, subsolidus solvus.Various geothermometers and geobarometers, together with thermodynamiccalculations involving silica buffers, suggest the pyroxene-bearingcumulates crystallized at 1200 °C and 1–2 kb pressureunder low fO2. The underlying dunites and chromitites crystallizedat higher temperature, 1300–1350 °C. The bulk of thecumulates have re-equilibrated under subsolidus conditions:co-existing pyroxenes record equilibration temperatures of 850–900°C whereas olivine-spinel and magnetite-ilmenite pairs indicatefinal equilibration at very low temperatures (600 °C). Magmas parental to the cumulate sequence are considered to havebeen of magnesian olivine-poor tholeiite composition (>50per cent SiO2, 15 per cent MgO, 100 Mg/(Mg + Fe2+) 78) richin Ni and Cr, and poor in TiO2 and alkalies. Fractionated examplesof this magma type occur at a number of other ophiolites withsimilar cumulate sequences. Experimental studies show that suchlavas may result from ial melting of depleted mantle lherzoliteat shallow depth. The tectonic environment in which the complexformed might have been either a mid-ocean ridge or a back-arebasin.  相似文献   

12.
The <80 ka basalts–basanites of the Potrillo VolcanicField (PVF) form scattered scoria cones, lava flows and maarsadjacent to the New Mexico–Mexico border. MgO ranges upto 12·5%; lavas with MgO < 10·7% have fractionatedboth olivine and clinopyroxene. Cumulate fragments are commonin the lavas, as are subhedral megacrysts of aluminous clinopyroxene(with pleonaste inclusions) and kaersutitic amphibole. REE modellingindicates that these megacrysts could be in equilibrium withthe PVF melts at 1·6–1·7 GPa pressure. Thelavas fall into two geochemical groups: the Main Series (85%of lavas) have major- and trace-element abundances and ratiosclosely resembling those of worldwide ocean-island alkali basaltsand basanites (OIB); the Low-K Series (15%) differ principallyby having relatively low K2O and Rb contents. Otherwise, theyare chemically indistinguishable from the Main Series lavas.Sr- and Nd-isotopic ratios in the two series are identical andvary by scarcely more than analytical error, averaging 87Sr/86Sr= 0·70308 (SD = 0·00004) and 143Nd/144Nd = 0·512952(SD=0·000025). Such compositions would be expected ifboth series originated from the same mantle source, with Low-Kmelts generated when amphibole remained in the residuum. ThreePVF lavas have very low Os contents (<14 ppt) and appearto have become contaminated by crustal Os. One Main Series picritehas 209 ppt Os and has a Os value of +13·6, typical forOIB. This contrasts with published 187Os/188Os ratios for KilbourneHole peridotite mantle xenoliths, which give mostly negativeOs values and show that Proterozoic lithospheric mantle formsa thick Mechanical Boundary Layer (MBL) that extends to 70 kmdepth beneath the PVF area. The calculated mean primary magma,in equilibrium with Fo89, has Na2O and FeO contents that givea lherzolite decompression melting trajectory from 2·8GPa (95 km depth) to 2·2 GPa (70 km depth). Inverse modellingof REE abundances in Main Series Mg-rich lavas is successfulfor a model invoking decompression melting of convecting sub-lithosphericlherzolite mantle (Nd = 6·4; Tp 1400°C) between90 and 70 km. Nevertheless, such a one-stage model cannot accountfor the genesis of the Low-K Series because amphibole wouldnot be stable within convecting mantle at Tf 1400°C. Thesemagmas can only be accommodated by a three-stage model thatenvisages a Thermal Boundary Layer (TBL) freezing conductivelyonto the 70 km base of the Proterozoic MBL during the 20 Myrtectonomagmatic quiescence before PVF eruptions. As it grew,this was veined by hydrous small-fraction melts from below.The geologically recent arrival of hotter-than-ambient (Tp 1400°C) convecting mantle beneath the Potrillo area re-meltedthe TBL and caused the magmatism. KEY WORDS: western USA; picrites; Sr–Nd–Os isotopes; petrogenetic modelling; thermal boundary layer  相似文献   

13.
Komatiites from the 2 Ga Jeesiörova area in Finnish Laplandhave subchondritic Al2O3/TiO2 ratios like those in Al-depletedkomatiites from Barberton, South Africa. They are distinct inthat their Al abundances are higher than those of the Al-depletedrocks and similar to levels in Al-undepleted komatiites. Moderatelyincompatible elements such as Ti, Zr, Eu, and Gd are enriched.Neither majorite fractionation nor hydrous melting in a supra-subductionzone setting could have produced these komatiites. Their highconcentrations of moderately incompatible elements may haveresulted from contamination of their parental melt through interactionwith metasomatic assemblages in the lithospheric mantle or enrichmentof their mantle source in basaltic melt components. Re–Osisotope data for chromite from the Jeesiörova rocks yieldan average initial 187Os/188Os of 0·1131 ± 0·0006(2), Os(I) = 0·1 ± 0·5. These data, coupledwith an initial Nd of +4, indicate that melt parental to thekomatiites interacted minimally with ancient lithospheric mantle.If their mantle source was enriched in a basaltic component,the combined Os–Nd isotopic data limit the enrichmentprocess to within 200 Myr prior to the formation of the komatiites.Their Os–Nd isotopic composition is consistent with derivationfrom the contemporaneous convecting upper mantle. KEY WORDS: Finnish Lapland; Jeesiörova; komatiites; mantle geochemistry; petrogenesis; redox state; Re/Os isotopes; Ti enrichment  相似文献   

14.
Mount Galunggung is a historically active volcano in southwesternJava that has erupted four times in the last two centuries.During the most recent event, which occurred during a 9–monthinterval in 1982– 83, some 305 106 m3 of medium–K,calc–alkaline magma was erupted. This eruption was unusualbecause of its duration, the diversity of eruption dynamicsand products, and the range of lava compositions produced. Thecomposition of juvenile material changed gradually during thecourse of the eruption from initial plagioclase (An60–75)and two–pyrozene bearing andesites with 58% SiO2 to finalplagioclase (An85–90), diopside, and olivine (Fo85–90)bearing primitive magnesium basalts with 47% SiO2 Mineralogicaland compositional relationships indicate a magmatic evolutioninvolving differentitation of high–Mg parental melt. Theeruptive volumes of 35 106 m3 andesite, 120 106 m3 maficandesite, and 150 106 m3 basalt are consistent with the ideathat the 1982– 83 eruption progressively tapped and draineda magma chamber that had become chemically stratified throughextensive crystal fractionation. Separates of plagioclase and pyroxene have 18O( SMO W) rangesof + 5. 6 to + 6.0 and + 5.3 to + 5.6, respectively, with 18Oplag–pxvalues of + 0.4 to + 0.6o, indicating internal O–isotopeequiliburium at temperature of 1100–850 C. The magenesianbasalts have magmatic 18O/ 16O ratios similar to those of mid–oceanridge basalt, and the O–isotope ratios of compositionallyevolved derivative melts show no evidence for contaminationof the galunggung magmas by 18O–rich crust during differentiation.Andesites and transitional mafic and sites have a more variableO–isotope character, with laves and phenocrysts havingboth higher and lower 18O values than observed in the parentalmagnesium basalts. These features are interpreted to reflectintramagma chamber processes affecting the upper portions ofthe differentiating Galunggung magma body before the 1982–83eruption.  相似文献   

15.
Triclinic KFeSi3O8, iron-microcline, has been synthesized fromoxide mixes and by complete conversion of monoclinic KFeSi3O8,iron-sanidine. Iron-microcline is triclinic, C, a=8?68?0?01?, b=13?10?0?01, c=7?34?0?01, =90? 45'?10', ß=116?03'?10', =86?14'?10'. The optical properties (Na light) are:=1?585?0?002, ß=1?596?0?002, =1?605?0?002, 2V=85?(calc.), Xb, Z c=20??5?. A reversible phase transition betweentriclinic and monoclinic KFeSi3O8 occurs at 704??6? C at 2000bars total pressure. Iron-microcline is the low-temperaturepolymorph; no intermediate polymorphs were observed in eitherhydrothermal or dry heating experiments.  相似文献   

16.
Pelitic schists and quartzites in the Picuris Range of northernNew Mexico exhibit mineral 18O and D compositions that indicaterock-buffered isotopic exchange during metamorphism at uniformphysical conditions of T 530C and P 4 kbar. Phase assemblagesand major-element compositions among silicates and oxides areuniform within stratigraphic units, but they change abruptlyacross lithologic contacts, yielding distinctive mineral Mg/Fe2+ratios and inferred f(O2) values. Mineral compositions reflectthe pre-metamorphic compositions of individual rock units. O-and H-isotopic compositions of quartz and muscovite are alsodiscontinuous across lithologic boundaries, showing intra-layerhomogeneity and bulk-rock isotopic compositions retained fromsedimentary protoliths. Uniform 18 OQu-Ms values indicate isotopicequilibrium at peak metamorphic conditions. Sharp discontinuitiesin mineral and fluid isotopic compositions reflect limited isotopicexchange between units. The isotopic system in these units wasprobably one of rock-buffered exchange, in which the sedimentarycompositions of individual rock units exerted the dominant controlon mineral and fluid isotopic composition over short distancesin a relatively closed metamorphic system. Fluid migration duringprogressive metamorphic devolatilization in this simple systemwas probably non-pervasive, and it was probably influenced bycontrasting rock permeability. Consequently, our study suggeststhat pervasive exchange between interlayered units may be uncommonin regionally metamorphosed terrains that show weak initialgeochemical gradients. In contrast, the chemical and isotopichomogenization that attends pervasive fluid flow and high fluidfluxes may be restricted to settings characterized by extremegeochemical gradients, such as interlayered silicates and carbonates,or terrains that host plutonic hydrothermal systems. KEY WORDS: fluids; metamorphism; stable isotopes; New Mexico *Corresponding author. E-mail: jgoodgc{at}sun.cis.smu.edu.. Telephone (214) 768–4140. Fax (214) 768–2701  相似文献   

17.
Equilibrium crystallization experiments at atmospheric pressureand over a range of oxygen fugacity (fO2) have been carriedout on a ferro-basaltic composition similar to liquids proposedto have been parental to much of the exposed portion of theSkaergaard intrusion. Before Fe-Ti oxide saturation the liquidline of descent is little affected by fO2. However, the appearancetemperatures of the magnetite-ulvspinel solid solution (Mt)and the ilmenite-haematite solid solution (Ilm) depend stronglyon fO2. Above the fayalite-magnetite-quartz (FMQ) buffer Mtis the first oxide phase to appear on the liquidus, but belowthe FMQ buffer Ilm is the first oxide to crystallize. The appearancetemperature of Mt is 1100C at FMQ and the Mt liquidus slopeis 30C/log fO2 unit between FMQ–;2 and FMQJ+1. The Ilmliquidus is at 1100C between FMQ and FMQ–2, but movesto lower temperature at higher fO2 where Mt is the first oxidephase. The results indicate that the ferric iron content ofMt-saturated melts varies linearly with inverse temperature,and that Ilm saturation is closely related to melt TiO2 content.Mt saturation produces an immediate enrichment of SiO2 and depletionin FeO* in the melt phase, whereas Ilm saturation produces similarenrichment in SiO2, but inn enrichment may continue for 10Cbelow the ilmenite liquidus. The experimental liquids reacha maximum of 18 wt% FeO*, at 48 wt% SiO2 for ilmenite-saturatedmelts at low fO2, more differentiated melts having lower ironand higher silica. Cotectic proportions, derived from mass balancecalculations, are in good agreement with data from natural samplesand other experimental studies. Olivine resorption is inferredat all fO2, with the onset of resorption occurring 10C higherthan the appearance of magnetite. The effect of fO2 on silicatemineral compositions, and partitioning of elements between coexistingmineral-melt pairs, is small. Thermodynamic considerations suggestthat variations of Fe-Mg partitioning between the iron-richolivines, pyroxenes and melts produced in this study may beexplained by known non-idealities of Fe-Mg mixing in the crystallinephases, rather than nonidealities in the coexisting melts. Theseexperiments also provide insights into many features commonto natural tholeiitic series of volcanic and plutonic rocks,and provide experimental data required for modelling of fractionalcrystallization and crystallization closed to oxygen, processeswhich are not easily investigated experimentally. KEY WORDS: ferro-basalt; Fe-Ti oxides; oxygen fugacity; Skaergaard intrusion; iron enrichment *Corresponding author. Present address: Bayerisches Geoinstitut, Univerritt Bayreuth, D-95440 Bayreuth, Germany  相似文献   

18.
The ascent history of the Horoman peridotite complex, Hokkaido,northern Japan, is revised on the basis of a detailed studyof large ortho- and clinopyroxene grains 1 cm in size (megacrysts)in the Upper Zone of the complex. The orthopyroxene megacrystsexhibit distinctive M-shaped Al zoning patterns, which werenot observed in porphyroclastic grains less than 5 mm in sizedescribed in previous studies. Moreover, the Al and Ca contentsof the cores of the orthopyroxene megacrysts are lower thanthose of the porphyroclasts. The Upper Zone is inferred to haveresided not only at a higher temperature than previously suggestedbut also at a higher pressure (1070°C, 2·3 GPa) thanthe Lower Zone (950°C, 1·9 GPa), in the garnet stabilityfield, before the ascent of the two zones. The Horoman complexprobably represents a 12 ± 5 km thick section of lithosphericmantle with an 10 ± 8°C/km vertical thermal gradient.The current thickness of the Horoman complex is 3 km, whichis a result of shortening of the lithospheric mantle by 0·25± 0·1 during its ascent. The Upper Zone appearsto have experienced a heating event during its ascent throughthe spinel stability field, with a peak temperature as highas 1200°C. The effect of heating decreases continuouslytowards the base of the complex, and the lowermost part of theLower Zone underwent very minor heating at a pressure higherthan 0·5 GPa. The uplift and associated deformation,as well as heating, was probably driven by the ascent of a hotasthenospheric upper-mantle diapir into the Horoman lithosphere. KEY WORDS: Horoman; PT trajectory; thermal history; Al diffusion in pyroxene; geothermobarometry  相似文献   

19.
Hafnium isotope and incompatible trace element data are presentedfor a suite of mid-ocean ridge basalts (MORB) from 13 to 47°Eon the Southwest Indian Ridge (SWIR), one of the slowest spreadingand most isotopically heterogeneous mid-ocean ridges. Variationsin Nd–Hf isotope compositions and Lu/Hf ratios clearlydistinguish an Atlantic–Pacific-type MORB source, presentwest of 26°E, characterized by relatively low Hf valuesfor a given Nd relative to the regression line through all Nd–Hfisotope data for oceanic basalts (termed the ‘Nd–Hfmantle array line’; the deviation from this line is termedHf) and low Lu/Hf ratios, from an Indian Ocean-type MORB signature,present east of 32°E, characterized by relatively high Hfvalues and Lu/Hf ratios. Additionally, two localized, isotopicallyanomalous areas, at 13–15°E and 39–41°E,are characterized by distinctly low negative and high positiveHf values, respectively. The low Hf MORB from 13 to 15°Eappear to reflect contamination by HIMU-type mantle from thenearby Bouvet mantle plume, whereas the trace element and isotopiccompositions of MORB from 39 to 41°E are most consistentwith contamination by metasomatized Archean continental lithosphericmantle. Relatively small source-melt fractionation of Lu/Hfrelative to Sm/Nd, compared with MORB from faster-spreadingridges, argues against a significant role for garnet pyroxenitein the generation of most central SWIR MORB. Correlations betweenHf and Sr and Pb isotopic and trace element ratios clearly delineatea high-Hf ‘Indian Ocean mantle component’ that canexplain the isotope composition of most Indian Ocean MORB asmixtures between this component and a heterogeneous Atlantic–Pacific-typeMORB source. The Hf, Nd and Sr isotope compositions of IndianOcean MORB appear to be most consistent with the hypothesisthat this component represents fragments of subduction-modifiedlithospheric mantle beneath Proterozoic orogenic belts thatfoundered into the nascent Indian Ocean upper mantle duringthe Mesozoic breakup of Gondwana. KEY WORDS: mid-ocean ridge basalt; isotopes; incompatible elements; Indian Ocean  相似文献   

20.
Oxygen isotope analyses have been obtained on rocks and coexistingminerals, principally plagioclase and clinopyroxene, from about400 samples of the Skaergaard layered gabbro intrusion and itscountry rocks. The 18O values of plagioclase decrease upwardin the intrusion, from ‘normal’ values of about+6.0 to +6.4 in the Lower Zone and parts of the Middle Zone,to values as low as –2.4 in the Upper Border Group. The18O depletions of the plagioclase all took place under subsolidusconditions, and were produced by the Eocene meteoric-hydrothermalsystem established by this pluton. Clinopyroxene, which is moreresistant to 18O exchange than is plagioclase, also underwentdepletion in 18O, but to a lesser degree (18O = +5.2 to +3.5).The 18O-depleted rocks typically show reversed 18Oplag–pxfractionations, except at the top of the Upper Zone, where thepyroxenes are very fine-grained aggregates pseudomorphous afterferrowollastonite; these inverted pyroxenes were much more susceptibleto subsolidus 18O exchange (18O = +3–9 to +0.7). D/H analysesof the chloritized basalt country rocks and of the minor quantitiesof alteration minerals in the pluton (D = –116 to –149)confirm these interpretations, indicating that the rocks interactedwith meteoric groundwaters having an original D –100.and 18O –14. Low D values ( –125) were also foundthroughout the biotites of the Precambrian basement gneiss,requiring that small amounts of water penetrated downward todepths of at least 6 to 10 km. These values, together with thelack of 18O depletion of the gneiss, imply that the overallwater/rock ratios were very small in that unit (<0.01), andthus that convective circulation of these waters was much morevigorous in the overlying highly jointed plateau basalts (18O –4.0 to +4–0) than in the relatively impermeablegneiss (18O +7–3 to +7–7). This contrast in permeabilitiesof the country rocks is also reflected in the distribution of18O values in the pluton; the plagioclases with ‘normal’18O values all lie stratigraphically beneath the projectionof the basalt-gneiss unconformity through the pluton. Elsewhere,the 18O depletions are correlated with abundance of fracturesand faults, particularly in the NE portion of the intrusion,where the Layered Series is very shallow-dipping and permeablebasalts underlie the gabbro. The transgressive granophyres in the lower part of the intrusivehave 18O values identical to those of the basement gneiss, indicatingthey were probably formed by partial melting of stoped blocksof gneiss. In the upper part of the intrusion these granophyredikes have 18O values similar to the adjacent host gabbro; thissuggests that much of the hydrothermal alteration occurred aftertheir emplacement. However, because of the rarity of low-temperaturehydrous alteration minerals, it is also clear that most of theinflux of H2O into the layered gabbro occurred at very hightemperatures (>400–500 °C). Prior to flowing intothe gabbro, these fluids had exchanged with similar mineralassemblages in the basaltic country rocks, explaining the lackof chemical alteration of the gabbro. Xenoliths of roof rockbasalt and of Upper Border Group leucogabbro were strongly depletedin 18O by the hydrothermal system prior to their falling tothe bottom of the magma chamber and being incorporated in thelayered series. This proves that the hydrothermal system wasestablished very early, at the time of emplacement of the Skaergaardintrusion. However, no measurable 18O depletion of the gabbromagma could be detected, indicating that very little H2O penetrateddirectly into the liquid magma, in spite of the fact that ahydrothermal circulation system totally enveloped the magmachamber for at least 100, 000 years during its entire periodof crystallization. Only as crystallization proceeded was thehydrothermal system able to collapse inward and interact withthe solidified and fractured portions of the gabbro. Neverthelesssome H2O was clearly added directly to the magma by dehydrationof the stoped blocks of altered roof rock. It is also plausiblethat small amounts of meteoric water diffused directly intothe magma, most logically in the vicinity of major fracturezones that penetrated close to, or were underneath, the late-stagesheet of differentiated ferrodiorite magma. It is suggestedthat such influx of meteoric waters was responsible for manyof the gabbro pegmatite bodies that are common in the MarginalBorder Group; also, such H2O might have produced local increasesin Fe+3/Fe+2 in the magma that in turn could explain some ofthe asymmetric crystallization effects in the magma chamber.Local lowering of the liquidus temperature would also occur,perhaps leading to topographic irregularities on the floor ofthe magma chamber (e.g. the trough bands?).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号