首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Qunshu Tang  Ling Chen   《Tectonophysics》2008,455(1-4):43-52
We have used Rayleigh wave dispersion analysis and inversion to produce a high resolution S-wave velocity imaging profile of the crust and uppermost mantle structure beneath the northeastern boundary regions of the North China Craton (NCC). Using waveform data from 45 broadband NCISP stations, Rayleigh wave phase velocities were measured at periods from 10 to 48 s and utilized in subsequent inversions to solve for the S-wave velocity structure from 15 km down to 120 km depth. The inverted lower crust and uppermost mantle velocities, about 3.75 km/s and 4.3 km/s on average, are low compared with the global average. The Moho was constrained in the depth range of 30–40 km, indicating a typical crustal thickness along the profile. However, a thin lithosphere of no more than 100 km was imaged under a large part of the profile, decreasing to only ~ 60 km under the Inner Mongolian Axis (IMA) where an abnormally slow anomaly was observed below 60 km depth. The overall structural features of the study region resemble those of typical continental rift zones and are probably associated with the lithospheric reactivation and tectonic extension widespread in the eastern NCC during Mesozoic–Cenozoic time. Distinctly high velocities, up to ~ 4.6 km/s, were found immediately to the south of the IMA beneath the northern Yanshan Belt (YSB), extending down to > 100-km depth. The anomalous velocities are interpreted as the cratonic lithospheric lid of the region, which may have not been affected by the Mesozoic–Cenozoic deformation process as strongly as other regions in the eastern NCC. Based on our S-wave velocity structural image and other geophysical observations, we propose a possible lithosphere–asthenosphere interaction scenario at the northeastern boundary of the NCC. We speculate that significant undulations of the base of the lithosphere, which might have resulted from the uneven Mesozoic–Cenozoic lithospheric thinning, may induce mantle flows concentrating beneath the weak IMA zone. The relatively thick lithospheric lid in the northern YSB may serve as a tectonic barrier separating the on-craton and off-craton regions into different upper mantle convection systems at the present time.  相似文献   

2.
The Lachlan Fold Belt has the velocity‐depth structure of continental crust, with a thickness exceeding 50 km under the region of highest topography in Australia, and in the range 41–44 km under the central Fold Belt and Sydney Basin. There is no evidence of high upper crustal velocities normally associated with marginal or back‐arc basin crustal rocks. The velocities in the lower crust are consistent with an overall increase in metamorphic grade and/or mafic mineral content with depth. Continuing tectonic development throughout the region and the negligible seismicity at depths greater than 30 km indicate that the lower crust is undergoing ductile deformation.

The upper crustal velocities below the Sydney Basin are in the range 5.75–5.9 km/s to about 8 km, increasing to 6.35–6.5 km/s at about 15–17 km depth, where there is a high‐velocity (7.0 km/s) zone for about 9 km evident in results from one direction. The lower crust is characterised by a velocity gradient from about 6.7 km/s at 25 km, to 7.7 km/s at 40–42 km, and a transition to an upper mantle velocity of 8.03–8.12 km/s at 41.5–43.5 km depth.

Across the central Lachlan Fold Belt, velocities generally increase from 5.6 km/s at the surface to 6.0 km/s at 14.5 km depth, with a higher‐velocity zone (5.95 km/s) in the depth range 2.5–7.0 km. In the lower crust, velocities increase from 6.3 km/s at 16 km depth to 7.2 km/s at 40 km depth, then increase to 7.95 km/s at 43 km. A steeper gradient is evident at 26.5–28 km depth, where the velocity is about 6.6—6.8 km/s. Under part of the area an upper mantle low‐velocity zone in the depth range 50–64 km is interpreted from strong events recorded at distances greater than 320 km.

There is no substantial difference in the Moho depth across the boundary between the Sydney Basin and the Lachlan Fold Belt, consistent with the Basin overlying part of the Fold Belt. Pre‐Ordovician rocks within the crust suggest fragmented continental‐type crust existed E of the Precambrian craton and that these contribute to the thick crustal section in SE Australia.  相似文献   

3.
Crustal shear wave velocity structure beneath the Malawi and Luangwa Rift Zones (MRZ and LRZ, respectively) and adjacent regions in southern Africa is imaged using fundamental mode Rayleigh waves recorded by 31 SAFARI (Seismic Arrays for African Rift Initiation) stations. Dispersion measurements estimated from empirical Green's functions are used to construct 2-D phase velocity maps for periods between 5 and 28 s. The resulting Rayleigh wave phase velocities demonstrate significant lateral variations and are in general agreement with known geological features and tectonic units within the study area. Subsequently, we invert Rayleigh wave phase velocity dispersion curves to construct a 3-D shear wave velocity model. Beneath the MRZ and LRZ, low velocity anomalies are found in the upper-most crust, probably reflecting the sedimentary cover. The mid-crust of the MRZ is characterized by an ~3.7% low velocity anomaly, which cannot be adequately explained by higher than normal temperatures alone. Instead, other factors such as magmatic intrusion, partial melting, and fluid-filled deep crustal faults might also play a role. Thinning of the crust of a few kilometers beneath the rifts is revealed by the inversion. A compilation of crustal thicknesses and velocities beneath the world's major continental rifts suggests that both the MRZ and LRZ are in the category of rifts beneath which the crust has not been sufficiently thinned to produce widespread syn-rifting volcanisms.  相似文献   

4.
We have studied the structures of the Earth’s crust and upper mantle of the Asian continent using a representative sample of dispersion curves of group velocities of fundamental-mode Rayleigh and Love waves for more than 3200 seismic paths. Maps of distributions of variations in group velocities with periods of 10 to 250 s over a spherical surface were calculated by the 2D tomography method. The maps reflect the deep structure of the Earth’s crust and upper mantle of the study area and give a tentative idea of the horizontal distribution of the anisotropic properties of the mantle matter. The obtained data are confirmed by the calculations of the velocity profiles of SV- and SH-waves for the entire Asian continent and for its regions. Vertically, anisotropy is observed to the depths of ~ 250 km, with its maximum in the depth range from the bottom of the crust to 150 km.  相似文献   

5.
We present results from a 484 km wide-angle seismic profile acquired in the northwest part of the South China Sea (SCS) during OBS2006 cruise. The line that runs along a previously acquired multi-channel seismic line (SO49-18) crosses the continental slope of the northern margin, the Northwest Subbasin (NWSB) of the South China Sea, the Zhongsha Massif and partly the oceanic basin of the South China Sea. Seismic sections recorded on 13 ocean-bottom seismometers were used to identify refracted phases from the crustal layer and also reflected phases from the crust-mantle boundary (Moho). Inversion of the traveltimes using a simple start model reveals crustal images in the study area. The velocity model shows that crustal thickness below the continental slope is between 14 and 23 km. The continental part of the line is characterized by gentle landward mantle uplift and an abrupt oceanward one. The velocities in the lower crust do not exceed 6.9 km/s. With the new data we can exclude a high-velocity lower crustal body (velocities above 7.0 km/s) at the location of the line. We conclude that this part of the South China Sea margin developed by a magma-poor rifting. Both, the NWSB and the Southwest Sub-basin (SWSB) reveal velocities typical for oceanic crust with crustal thickness between 5 and 7 km. The Zhongsha Massif in between is extremely stretched with only 6–10 km continental crust left. Crustal velocity is below 6.5 km/s; possibly indicating the absence of the lower crust. Multi-channel seismic profile shows that the Yitongansha Uplift in the slope area and the Zhongsha Massif are only mildly deformed. We considered them as rigid continent blocks which acted as rift shoulders of the main rift subsequently resulting in the formation of the Northwest Sub-basin. The extension was mainly accommodated by a ductile lower crustal flows, which might have been extremely attenuated and flow into the oceanic basin during the spreading stage. We compared the crustal structures along the northern margin and found an east-west thicken trend of the crust below the continent slope. This might be contributed by the east-west sea-floor spreading along the continental margin.  相似文献   

6.
Relative SV and SH wave speeds are generally attributed to radial seismic anisotropy which can be used as the indicator of crust/mantle deformation styles. Surface wave data were initially collected from events of magnitude Ms  5.0 and shallow or moderate focal depth occurring between 1980 and 2002: 713 of them generated Rayleigh waves and 660 Love waves, which were recorded by 13 broadband digital stations in Eurasia and India. Up to 1525 source-station Rayleigh waveforms and 1464 Love wave trains were earlier analysed by multiple filtering to obtain Love- and Rayleigh wave group velocity curves in the broad period range 10–105 s. We have performed tomographic inversion to obtain period-dependent group velocity and further shear wave velocity at 2° × 2°-sized grid-cells of a mesh covering the model region, after averaging azimuthal effects. Horizontally and vertically varying shear-wave velocities are observed, but the models of isotropic seismic velocity in the crust and upper mantle cannot fit simultaneously the inverted group-velocity dispersion curves due to the discrepancy in the transmission velocities of Love and Rayleigh waves, whose likely origin is the existence of radial anisotropy in the continental crust and topmost mantle. The strength of radial anisotropy computed from the Love–Rayleigh discrepancy and its spatial extent beneath the Qinghai-Tibet Plateau are shown as maps of percentage anisotropy at various depths down to 170 km and cross-sections along five profiles of reference. Areas in which radial anisotropy is in excess of 6% are found in the crust and upper mantle underlying most of the plateau, and even up to 10% in some places. The strength and spatial configuration of radial anisotropy seem to indicate the existence of a regime of horizontal compressive forces in the frame of the convergent Himalayan–Tibetan orogen, the laterally variation of the lithospheric rheology and the differential movement as regards the compressive driving forces.  相似文献   

7.
The main target of the present study is an objective and automated regionalization of Rayleigh wave dispersion data for the Mediterranean basin, without a priori seismotectonic constraints, and to determine the corresponding regional shear-velocity structures. The database used is formed by almost 200 Rayleigh wavetrains corresponding to 42 regional events, with surface-wave magnitude greater than 4.5, recorded at the MedNet very-broad-band stations in the Mediterranean area. Path-averaged group velocities for the Rayleigh wave fundamental mode are derived for each available epicentre-station trajectory crossing the Mediterranean basin. After this, a principal component analysis and a clustering process are applied to local group velocities, obtained for 13 different periods from 10 to 70 s, in order to classify the Mediterranean basin into several homogeneous regions. The stochastic inversion of the averaged group velocity dispersion curve obtained for each region provides the respective shear-velocity structures, down to a depth of 150–160 km. The characteristics of these areas and their possible correlation with the main seismotectonic features of the Mediterranean region are discussed. The regional models reveal significant lateral changes in the elastic structure, with the main differences concerning particularly the upper 35–40 km. Within this depth range, low shear velocities, varying from 2.8 to 3.9 km s−1, characterize the Eastern Mediterranean, whereas higher velocities, ranging from 3.0 to 4.2 km s−1, are deduced for the Western Mediterranean. These results suggest a thicker crust in the eastern part, but with a greater thickness of sedimentary layers. However, for depths of between 80 and 110 km, lower shear velocities are obtained in the Western part, while higher shear velocities are derived for the Eastern Mediterranean Sea, in the Aegean Sea, Greece, the south of Italy, Sicily and Tunisia. This velocity pattern suggests an averaged thicker lithosphere under the latter areas, as the top of the asthenosphere is detected at a mean depth of 75 km for the remaining regions. This thicker lithosphere can be related to processes associated with the convergence of the Eurasian and African plates and subduction under the Calabrian and Hellenic Arcs.  相似文献   

8.
On the basis of a one-by-one latitude-longitude grid three-dimensional seismic velocity model, the crustal P-wave velocity structure in eastern China (105-125°E and 18-41°N) is obtained, and a set of geotherms for each grid is established for P-T correction on P-wave velocities. The average depths of sub-crustal layers and their average P-wave velocities of 18 tectonic units in eastern China are exhibited. Our result presents a 32-34 km thick crust beneath eastern China, which is thinner than previous studies, with an average velocity of 6.54 km/s, corresponding to a 5 kg/m3 variation in crustal mean density. The thicker upper but thinner middle and lower crust results in a lower average seismic velocity of eastern China. An intermediate crustal composition with a SiO2 content of 59.7 wt% has been estimated. However, there exists a significant lateral variation in the crustal structures among the tectonic units of eastern China. The structure and composition features of some regions in eastern China in  相似文献   

9.
v_p/v_s ESTIMATION IN TIBETAN CRUST FROM INVERSION OF SURFACE WAVE DISPERSIONS  相似文献   

10.
We obtain a lithospheric shear‐wave velocity model across the Tien Shan orogenic belt by jointly inverting Rayleigh wave group velocities and teleseismic P‐wave receiver functions at 61 broadband seismic stations deployed in this region. Our new model reveals prominent lateral variations of shear‐wave velocity in both the crust and uppermost mantle. This model reveals different structures in the upper and middle crust across the Talas Fergana Fault, which may suggest the presence of a tectonic boundary between the western and central Tien Shan beneath the fault. According to the velocity images, the depth extent of the fault is ~40 km and this is confined to the crust. Pronounced low‐velocity anomalies are imaged in the middle crust and uppermost mantle beneath the southern and middle Tien Shan, implying that the upwelling of the materials from the upper mantle could have played an important role in the mountain building.  相似文献   

11.
Seismic refraction profiles completed in the past twenty years reveal that the top of the basement complex generally lies near sea level in East Antarctica but typically 2 or 3 km below sea level in West Antarctica. Throughout much of East Antarctica the thickness of the layer overlying the basement complex is less than half a kilometer, although a Phanerozoic sequence more than 1 km thick probably underlies the ice at the South Pole. Throughout central West Antarctica, on the other hand, a section one to several kilometers thick generally overlies the basement complex. The observed sedimentary section is no more than one half kilometer thick on either side of the Transantarctic Mountains. Rocks with high seismic velocities typical of the lower continental crust occur within a few kilometers of the surface on both sides of the Transantarctic Mountains. This occurrence lends support to the hypothesis of an abrupt increase in crustal thickness between West and East Antarctica.

In 1969, deep seismic soundings were carried out by the 14th Soviet Antarctic Expedition near the coast of Queen Maud Land. The crustal thickness was found to be about 40 km near the mountains, decreasing to about 30 km near the coast. In the top 15 km of the crust there is a gradual downward increase in P-wave velocity from 6.0 to 6.3 km/sec. The average velocity through the crust is 6.4 km/sec and the measured velocity below the M-discontinuity is 7.9 km/sec.

At the southwestern margin of the Ronne Ice Shelf, near-vertical reflections from the M-discontinuity have been recorded. A mean P-wave velocity of 6 km/sec in the crust was measured, leading to an estimated depth to M of 24 km below sea level.

Seismic surface wave dispersion studies indicate a mean crustal thickness of about 30 km in West Antarctica and about 40 km in East Antarctica. The dispersion data also show that group velocities across East Antarctica are much closer to those along average continental paths than to those across the Canadian shield. The results thus support other indications that central East Antarctica is not a simple crystalline shield.

P′P′-reflections beneath the continent support the existence of a low-velocity channel for P-waves, but show no significant difference in deep structure between Antarctica and other continents.  相似文献   


12.
Regional surface wave tomography in the sub-Antarctic Scotia Sea is helpful in revealing the nature of the crust and the S-wave seismic velocity profile beneath the Bransfield Strait. The joint use of our regional network, global seismographic network stations and local temporary arrays provide better lateral resolution than that obtained in our previous studies concerning the Scotia Sea region.Tomographic analysis of data obtained using 10 broad band seismic stations and more than 300 regional events, shows that the Bransfield Basin is characterised by a strong group velocity reduction of 8% with respect to the surrounding areas, in the period range from 15 s to 50 s.The crustal and upper mantle models of the eastern, central and western Bransfield Basin are obtained by joint inversion of Rayleigh and Love local dispersion curves from 15 s to 50 s. In addition our data set is expanded to a broader period interval (1–80 s), in central Bransfield Strait in order to better constrain the upper mantle and shallow crust.The main results can be summarized as follows: (a) the crust thins distinctly from W toward E; the variation is consistent with the type of volcanism, earthquake distribution and bathymetric observations, (b) low upper mantle velocities (soft lid) extend down to depths exceeding 70 km as a consequence of elevated temperatures, (c) the crust beneath the central Bransfield Basin displays continental characteristics with a gradually increasing S-wave velocity distribution versus depth analogous to the East African Rift structure of Kenya, (d) negative velocity gradients are present in the lower crust beneath the eastern Bransfield Basin; these could be interpreted as magmatic bodies originating from decompression melting of the mantle.  相似文献   

13.
We have mapped the transition from the continental Faroe block (the Faroe Islands and surrounding shelf) to the thickened oceanic crust of the Faroe–Iceland Ridge in the North Atlantic using the results of a detailed sea-to-land seismic profile with wide-angle to normal-incidence recordings of explosive and airgun shots fired at sea along the Faroe–Iceland Ridge. Interpretation of all available seismic and gravity data indicates that this aseismic ridge is composed of 30±3-km-thick oceanic crust, with a gradual transition to ancient continental crust from 100 to 40 km northwest of the Faroe Islands, close to the shelf edge. This confirms that the crust beneath the Faroe Islands, which may be up to 46 km thick, comprises continental material in agreement with previous seismic and geochemical results. Results suggest that the upper 5.2±0.7 km of the Faroe crust consists of Tertiary basalts generated during continental breakup, overlying the continental crust beneath. The lower crust, where seismic constraint is poor, may exhibit high seismic velocities (7.1–7.6 km s−1) which we attribute to underplating or intrusion by mafic melts during continental breakup in the early Tertiary.  相似文献   

14.
Group velocity dispersion data of fundamental-mode Rayleigh and Love waves for 12 wave paths within southeastern China have been measured by applying the multiple-filter technique to the properly rotated three-component digital seismograms from two Seismic Research Observatory stations, TATO and CHTO. The generalized surface wave inversion technique was applied to these group velocity dispersion data to determine the S-wave velocity structures of the crust and upper mantle for various regions of southeastern China. The results clearly demonstrate that the crust and upper mantle under southeastern China are laterally heterogeneous. The southern China region south of 25°N and the eastern China region both have a crustal thickness of 30 km. The eastern Tibet plateau along the 100°E meridian has a crustal thickness of 60 km. Central China, consisting mainly of the Yangtze and Sino-Korean platforms, has a crustal thickness of 40 km. A distinct S-wave low-velocity layer at 10–20 km depth in the middle crust was found under wave paths in southeastern China. On the other hand, no such crustal low-velocity layer is evident under the eastern Tibet plateau. This low-velocity layer in the middle crust appears to reflect the presence of a sialic low-velocity layer perhaps consisting of intruded granitic laccoliths, or possibly the remnant of the source zone of widespread magmatic activities known to have taken place in these regions since the late Carboniferous.  相似文献   

15.
西北次海盆的深部地壳结构蕴含着南海北部陆缘拉张过程的重要信息.广角反射/折射测线(OBS2006-2)长386 km,是目前唯一的一条沿NEE向穿过西沙地块、并平行于西北次海盆扩张脊的深地震测线.通过射线追踪与走时模拟方法(RAYINVR),获得了OBS2006-2测线下方的速度结构.结果表明:西沙地块的沉积层厚度约为1~2 km,而西北次海盆的沉积层厚度大约为2~3 km;Moho界面从西沙地块的27 km逐步抬升到西北次海盆的12 km,Moho界面下方的速度为7.8~8.0 km/s;未发现壳内高速层和低速层.在西沙地块和西北次海盆的过渡区,有着较大量的岩浆活动信息,推测与西北次海盆的初始扩张有关.OBS2006-2测线中114.5°E以西的地区为减薄的陆壳,而114.5°E以东的地区为洋壳,莫霍面在陆壳与洋壳的结合处剧烈抬升,地壳厚度明显减薄.西北次海盆的扩张脊下方可能有残余岩浆的存在.   相似文献   

16.
Refraction data taken from ocean bottom seismograph recordings in the western Arafura Sea indicate a continental‐type structure for the region. This structure is characterised by a thin column (2 km) of sediments, with velocities ranging from about to 2 to 4 km s‐1, overlying an essentially two layer crust. The compressional wave velocities in the upper and lower crust are 5.97 and 6.52 km s‐1, respectively, with the boundary between the layers at a depth of 11 km. Very weak mantle‐refracted arrivals with a velocity of about 8.0 km s‐1 were recorded. Large‐amplitude, later arrivals, beginning at distances near 100 and 150 km, have been interpreted to be part of the retrograde branches from the 8.0 and 7.33 km s‐1 layers, respectively. Model studies indicate that a small positive velocity gradient is required between 17 and 30 km, and that the Moho is at a depth of 34 km. A third set of large amplitude, later arrivals starting at a distance near 250 km has been interpreted as most probably multiple refraction‐reflection arrivals from the 5.97 and 6.52 km s‐1 layers. Correlation of this structure with the stratigraphic logs from exploratory oil wells in the Arafura Sea using layer velocities indicates that rocks younger than Jurassic appear to thin towards the east.  相似文献   

17.
A recent surge of interest in short-period fundamental mode Rayleigh waves (Rg) propagation is motivated by their usefulness for structural mapping and estimation of attenuation (Q) properties of the uppermost crust, their importance in scattering studies and as a nuisance (false alarms) in detection seismology. We have investigated Rg phase velocity dispersion characteristics, using recordings from 16 out of 22 subarrays of the NORSAR array of aperture 100 km. The observed phase velocity in combination with a one-layer and two-layers model over halfspace models were inverted using a maximum likelihood scheme. In view of the smoothness and simplicity of the dispersion curves, the number of unknowns were limited to three parameters, namely shear velocities and thickness, using a Poisson's ratio of 0.25 for P-S velocity coupling and density fixed. In the general array siting area the derived low velocity layer has an average thickness of 1.02 km, and the associated shear velocity is 2.82 km s-1. The underlying model half space appears to be uniform, and its derived shear velocity is 3.55 km s-1, which is typical of the upper crust. In contrast to other similar studies, no obvious correlation was found with local geology, which mainly consists of Precambrian crystalline rock sequences. Group velocities were calculated from the structural models and compared to the observational ones. The agreement between calculated and observed group velocities was reasonable.  相似文献   

18.
利用中国地震台网和ISC台站记录的P波到时数据,采用球坐标系有限差分地震层析成像方法反演了南海东北部及其邻近地区壳幔三维P波速度结构,并分析了不同地质单元的构造差异及其深部特征。结果表明:南海东北部表现出陆架地区的岩石层特性,属于华南大陆向海区的延伸,岩石层厚度较大,现今不存在大规模的地幔热流活动,推测大陆边缘张裂作用仅限于地壳内部而没有延伸进入上地幔,具有非火山型大陆边缘的深部特点。中央海盆附近上地幔P波速度明显降低,与海盆下方地幔热流活动密切相关。不同的速度异常特征表明:华南大陆暨台湾地区属于欧亚大陆的正常地壳或是与菲律宾海板块相互作用产生的增厚型地壳,冲绳海槽则是弧后扩张产生的减薄型地壳。滨海断裂带作为华南大陆高速异常和南海北部高速异常的分界,代表了一定地质时期华南地块和南海地块的拼合边界。断裂附近的上地幔低速异常揭示了闽粤沿海岩浆作用的深层动力机制。吕宋岛弧、马尼拉海沟、东吕宋海槽的速度异常与其所处的特殊构造位置有密切的关系,清晰地反映出岛弧俯冲带的地壳结构差异;台湾南部至吕宋岛弧的上地幔低速异常揭示了两个重要火山链的深部构造特征,北吕宋海脊下方100 km深度的条带状高速异常有可能代表了俯冲下沉的岩石层板片。  相似文献   

19.
The 3-D P- and S-wave velocity models of the upper crust beneath Southwest Iberia are determined by inverting arrival time data from local earthquakes using a seismic tomo~raphy method. We used a total of 3085 P- and 2780 S-wave high quality arrival times from 886 local earthquakes recorded by a per- manent seismic network, which is operated by the Institute of Meteorology (IM), Lisbon, Portugal. The computed P- and S-wave velocities are used to determine the 3-D distributions of Vp/Vs ratio. The 3-D velocity and Vp/Vs ratio images display clear lateral heterogeneities in the study area. Significant veloc- ity variations up to ~6% are revealed in the upper crust beneath Southwest lberia, At 4 km depth, both P- and S-wave velocity take average to high values relative to the initial velocity model, while at 12 km, low P-wave velocities are clearly visible along the coast and in the southern parts. High S-wave velocities at 12 km depth are imaged in the central parts, and average values along the coast; although some scattered patches of low and high S-wave velocities are also revealed. The Vp/Vs rztio is generally high at depths of 4 and 12 km along the coastal parts with some regions of high Vp/Vs ratio in the north at 4 km depth, and low Vp/Vs ratio in the central southern parts at a depth of 12 km, The imaged low velocity and high Vp/Vs ratios are related to the thick saturated and unconsolidated sediments covering the region; whereas the high velocity regions are generally associated with the Mesozoic basement rocks.  相似文献   

20.
ABSTRACT

The land-sea transition zone in the northern South China Sea (SCS) records important information from the continental rifting to the seafloor spreading. The crustal structure is the key to explore the deep tectonic environment and the evolution of the SCS. In 2015, the onshore-offshore 3D deep seismic experiment was carried out on the Pearl River Estuary (PRE). Explosions and air guns were used as sources on land and at sea respectively in this experiment.Onshore seismic stations and Ocean Bottom Seismographs (OBSs) synchronously recorded the seismic signals. We focus on an onshore-offshore seismic profile (L2, SE-trending) along the eastern side of the PRE. By modelling the seismic travel times, we constructed a P-wave velocity model along the profile. The model shows that the sediment on land is thin and has seismic velocities of 4.5–5.5 km/s. In contrast, thickness of the offshore sediment gradually increases to more than 4.0 km, and the velocities vary between 2.0 km/s and 4.5 km/s. The onshore and offshore crustal velocities are 5.8–6.8 km/s and 5.5–6.8 km/s, respectively. At depth between 15 km and 20 km, a low-velocity layer (LVL; only 5.9 km/s) is detected, pinching out under the Littoral Fault Zone (LFZ). The LVL has probably accommodated the crustal extension beneath the land area, resulting in low extent of the crustal thinning. A slightly uplifted Moho exists beneath the Dongguan fault depression zone, representing a place where hot mantle materials ascend. Localized thickening of the sediments and rapid thinning of the crust characterize the LFZ, and it can be regarded as a tectonic boundary between the South China (SC) with normal continental crust and the northern SCS margin with extended continental crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号