首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The distribution of gold in the weathering blanket at the Belikombone gold prospect in east Cameroon provides insights into gold mobility in the secondary environment and in tropical terrains worldwide. Both gridline-controlled sampling of topsoil (surface samples) and sampling of various layers in pits are used and the gold assay for each sample determined by NiS fire assay with ICP-AES finish. One hundred and thirty-two (132) surface samples and a total of 206 samples from 19 exploration pits were analyzed. The results from the topsoil samples show an anomaly with the highest Au concentration at 5.9 mgkg−1. The mineralization corridor follows a NE-SW trend. The horizons within the pits range from sap rock at the base, through saprolite, rubble layer rich in relict quartz material to a ferruginous loose layer at the top although some horizons are missing in some pits. All the layers contain gold and the highest concentration in the sap rock horizon is 3.4 mgkg−1 while the rubble layer has a gold high of 6.1 mgkg−1. The individual soil horizons show no systematic gold trends and given the presence of gold in all layers, the patterns point towards supergene dissolution and redistribution of gold. Gold enrichment within the upper horizons in the weathering blanket is attributed to sequestration by Fe oxides of chemically remobilized gold. However, the high gold content within the sap rock and saprolite layers suggests that migration of gold in the particulate form supersedes chemical gold redistribution. Particulate gold obtained by panning samples from the pits varies in shape from euhedral, elongated to irregular. Electron microprobe analysis on the grains record high contents of gold in the rim zones (90.0 to 99.8 wt%). The cores are relatively rich in Ag (12.6 to 14.2 wt%) while the rims are poor in Ag. The low Ag content in the rims is attributed to the preferential leaching of Ag. The soil pH value in this area varies between 3.6 and 7.3. Under such acidic to near neutral conditions, bisulfide and thiosulfate ions can dissolve and transport Au and Ag to be precipitated under surficial conditions creating authigenic Au haloes especially in the saprolite and sap rock layers. Such pH values together with oxidizing Eh conditions explain the solubility of gold in the area. These results are important for geochemical exploration of gold in tropical terrains, and confirm previous studies.  相似文献   

2.
At Norseman Au mineralization is hosted by parallel easterly dipping quartz reefs in a westerly dipping sequence of Archaean basaltic flows and As is strongly correlated with this mineralization. Near-surface exploration is hampered by an extensive cover of deeply weathered soils and a veneer of silty calcareous material, probably of aeolian origin, which, because of its low Fe content of < 5%, has a very low (< 10 ppm) and often indiscernible As signature over mineralization. At a test traverse over the southern end of the Mararoa quartz reef, drill sampling to 10 m depth in highly weathered in situ material beneath the calcareous veneer produced As anomalies which are strongly correlated with the extrapolation to surface of a shear zone hosting Au mineralization which is probably blind. The As anomalies can be extended into the surface horizon by manipulating the data to compensate for the low Fe content of the calcareous layer.The Au values in the drill samples were very low and poorly correlated with the extrapolation to surface of the Mararoa shear. However, the absence of a Au halo (at a 10 ppb detection limit) may be due to the shear being barren near surface, or may be due to the samples being taken from the strongly leached zones of a laterite profile. In the area of the test traverse at the southern Mararoa area, the upper horizons of the original laterite profile have been eroded away and the remaining horizons covered by a veneer of calcareous material. There is a better correlation of the Au values of the shallow drill samples with the projection to surface of a porphyry, which hosts minor low-grade Au mineralization.The results for Au dispersion around the Mararoa shear contrast with dispersion at the nearby Hinemoa Mine where gold mineralization crops out. Channel sampling in costeans showed that an Au anomaly (threshold 40 ppb) extends 50 to 150 m into oxidized wall rocks. This well defined halo may be due to the secondary dispersion of Au from the quartz reef into the ferruginous zone of the laterite profile.Gold in the leaves and twigs of Melaleuca pauperiflora F. Muell. from the traverse at the southern end of the Mararoa shear was determined by neutron activation analysis and found to be broadly correlated with the projected Au mineralization. However, the lack of correlation with the soil Au values to 10 m may be due to the plants taking up most of their water from below the depth of sampling.  相似文献   

3.
Oxidation of sulfide- and carbonate-rich vein gold deposits under semiarid conditions can be represented as a three-stage process, each creating supergene environments conducive to dissolution and reprecipitation of gold-silver alloys. The three-stage weathering process of sulfide-carbonate gold veins is depth-dependent, and develops from the relatively young, lowermost weathering horizon just below the water table, through an intermediate weathering horizon in the oxidation zone above the water table, and culminating in the oxide-rich upper saprolite and oxisol.Neoformed gold crystals in the weathering profile have distinct composition and morphologic characteristics from the hypogene gold crystals associated with the sulfide- and carbonate-rich ores. Two distinct types of secondary gold are present in the weathering profile: (1) gold crystals associated with sulfates and arsenates; and (2) gold crystals associated with iron and aluminum oxides/hydroxides, or with kaolinite. The distinct crystal morphologies and mineralogical associations of primary and secondary gold are useful in prospecting for gold deposits in weathered terrains.  相似文献   

4.
The Albany-Fraser Orogen (AFO), southeast Western Australia, is an underexplored, deeply weathered regolith-dominated terrain that has undergone complex weathering associated with various superimposed climatic events. For effective geochemical exploration in the AFO, integrating landscape evolution with mineralogical and geochemical variations of regolith and bedrock provides fundamental understanding of mechanical and hydromorphic dispersion of ore and pathfinder elements associated with the different weathering processes.In the Neale tenement, northeast of the AFO, a residual weathering profile that is 20-55 m thick was developed under warm and humid climatic conditions over undulating Proterozoic sheared granitoids, gneisses, schists and Au-bearing mafic rocks. From the base, the typical weathering profile consists of saprock, lower ferruginous saprolite, upper kaolinitic saprolite and discontinuous silcrete duricrust or its laterally coeval lateritic residuum. These types of duricrusts change laterally into areas of poorly-cemented kaolinitic grits or loose lateritic pisoliths and nodules.Lateritic residuum probably formed on remnant plateaus and was transported mechanically under arid climatic conditions over short distances, filling valleys to the southeast. Erosion of lateritic residuum exposes the underlying saprolite and, together with dilution by aeolian sands, constitutes the transported overburden (2-25 m thick). The reworked lateritic materials cover the preserved silcrete duricrusts in valleys. The lower ferruginous saprolite and lateritic residuum are well developed over mafic and sulphide-bearing bedrocks, where weathering of ferromagnesian minerals and sulphides led to enrichment of Fe, Cu, Ni, Cr, Co, V and Zn in these units. Kaolinitic saprolite and the overlying pedogenic silcrete are best developed over alkali granites and quartzofeldspathic gneisses, which are barren in Au and transition elements, and enriched in silica, alumina, rare earth and high field strength elements.A residual Au anomaly is formed in the lower ferruginous saprolite above a Au -bearing mafic intrusion at the Hercules prospect, south of the Neale tenement, without any expression in the overlying soil (< 20 cm). Conversely, a Au anomaly is recorded in the transported cover, particularly in the uppermost 3 m at the Atlantis prospect, 5 km southwest of the Hercules prospect. No anomalies have been detected in soils using five different size fractions (> 2,000 μm, 2,000-250 μm, 250-53 μm, 53-2 μm and < 2 μm). Therefore, soil cannot be efficiently applied as a reliable sampling medium to target mineralization at the Neale tenement. This is because mechanical weathering was interrupted by seasonal periods of intensive leaching under the present-day surface conditions and/or dilution by recently deposited aeolian sediments which obscure any signature of a potential Au anomaly in soils. Therefore, surface soil sampling should extend deeper than 20 cm to avoid dilution by aeolian sands and seasonal leaching processes. Regolith mapping and the distinction between the residual and transported weathering products are extremely significant to follow the distal or proximal mineralization.  相似文献   

5.
In vast tropical rain forest areas, weathering profiles are commonly characterized by a “stone line” overlain by a brown-yellow loose-clay horizon. Concordant with the topographic surface, such a stone line may be traced continuously over considerable distances. It is typically composed of coarse fragments of lithorelics, debris of laterite as Fe-oxides nodules, corroded quartz, gibbsitic aggregates, …, embedded in a clayey matrix. These materials cover the saprolitic weathering profile which is typically a few tens of metres thick.The origin of stone lines has given rise to much controversy and are still widely misunderstood. A broad range of processes, allochthonist or autochthonist, have been put forward in the literature. The findings in this paper conclude that these weathering profiles result from chemical leaching and differential movement between the matrix and the coarse fragments which accumulate by downward migration. Accumulation takes place at the lower limit of rain water impregnation and forms the stone line, whereas leaching and homogenization of fine material occur throughout the upper water-impregnated horizon. Although the materials of the loose-clay horizon and of the stone are extensively altered, the relics are chemically rather well recognizable.According to the above hypothesis, stone line weathering profiles should thus be mostly residual. The main aspects of geochemical dispersion processes of some stone line profiles in Gabon are presented as examples. These show that:
1. (a) The vertical redistribution of some major elements in the profiles, accumulation (Fe2O3, Al2O3, SiO2) or leaching (K2O, MgO, CaO, SiO2,..) are different from the bedrock composition;
2. (b) In some situations, it is possible to characterize the bedrock by using groups of trace elements such as V, Ni,.. for basic rocks or Ba, Sr,.. for gneisses for instance; the contrasts obtained can be smoothed in comparison with results from deeper in the profile.
3. (c) The persistence of geochemical anomalies arising from mineralization, throughout the weathering profile, up to the main sampling media, the surface soil. A “mushroom” dispersion pattern can be recognized where the foot of the mushroom corresponds to the element dispersion pattern can be recognized where the foot of the mushroom corresponds to the element dispersion in the saprolite and the bedrock, with the top of the mushroom being partly in the stone line and partly in the loose clay horizon.
Such a dispersion pattern has two consequences on exploration: (1) the spreading out of the surficial signal favoring the identification of anomalies during follow-up on a relatively wide spaced grid; and (2) at the same time, a reduction of the extension of the signals by dilution and leaching according to the weathering process; therefore, relatively low anomaly contents must be taken into account in exploration.Thus, anomalies arising from stone line profiles tend to be well-dispersed, but of weak magnitude, and represent in situ transfer from the parent rock.  相似文献   

6.
In some glaciated regions, weathered mantles, formed under previous climatic regimes, were not always eroded bare by glacial activity, but instead lie buried beneath the glacial overburden. It is obviously important that geochemical exploration programs in such terrain should take into account some of the known regolith features seen in deeply weathered regions. The effects of glacial action upon deeply weathered terrain are considered in three conceptual models. The critical factor in each is the depth of truncation of the preglacial weathering profile. All three proposed models are dynamic systems and a wide range of intermediate situations must be expected.In Model 1 a complete, largely undisturbed, weathering profile is preserved beneath till. The key characteristic is preservation of a lateritic duricrust which may contain areally large (up to 200 km2) geochemical anomalies. It would be critical, firstly, that the duricrust be sufficiently continuous to allow a reasonable success rate in its being sampled, and secondly that the duricrust be recognizable in drill spoil. The most efficient geochemical exploration could be based upon wide-spaced overburden drilling directed at sampling the duricrust. For reconnaissance, holes could be based upon a 1-km grid where stratabound massive polymetallic sulphide or stratabound gold deposits are sought. Even wider spacing could be tried where larger-sized ore deposits are expected.Model 2 is characterized by a weathered profile that was partly stripped prior to glaciation. The essential feature is a vertically zoned weathering profile in the basement rock in which the upper levels of the weathering profile have undergone leaching of certain elements and lower levels contain enrichments of these elements. Any gossans present would show strong vertical zonation. Relatively strong sources for dispersion in till are likely to be enriched gossans where erosion has cut deep into the profile, zones of supergene enrichment of ore deposits, and supergene ore deposits themselves. In many situations, saprolite under glacial drift would be too soft to provide boulders so important in conventional till prospecting.The essential ingredient in hypothetical Model 3 involves progressive planing away of the weathering profile by glacial action. Thus any halo in duricrust is initially dispersed, followed by dispersion of progressively deeper levels of saprolite. If taken deep enough the supergene enriched zone of a mineral deposit could add to the glacial dispersion. A broadly zoned anomaly would be expected; a till anomaly would be characterized distally by elements from the former duricrust anomaly, with elements more characteristic of supergene zones closer to the source.  相似文献   

7.
The Igarapé Bahia, situated in the Carajás Mineral Province, is a world-class example of a lateritic gold deposit. It has developed under tropical weathering conditions since at least the Eocene and resulted in a regolith cover of at least 100 m thickness. The regolith is dominated by ~ 80 m thick ferruginous saprolite containing gossan bodies that constitute the main Au ore. Above saprolite the regolith stratigraphy has been established considering two distinct domains. One composed of residual materials and the other transported materials deposited over palaeochannels. In the residual domain the ferruginous saprolite grades upwards into a fragmental duricrust, interpreted as a collapsed zone, and then into different types of ferruginous duricrusts. Over palaeochannel the ferruginous saprolite is truncated by poorly sorted ferruginous sediment of variable composition that grades upwards into the ferruginous duricrusts formed over transported materials. Lateritization took place during a marked period that transformed the colluvium of the residual domain, and the transported materials accumulated in the channel depressions, into the ferruginous duricrust units. A later bauxitization event has overprinted all duricrust types but has mostly affected the duricrusts over the palaeochannel forming gibbsitic nodules. All duricrusts were finally covered by a transported layer of latosol which flattened the whole landscape in the Carajás region. Gold shows a depletion trend across the regolith but is enriched in the fragmental duricrust below the ferruginous duricrust from which gold is leached. Gold is also chemically dispersed laterally into the fragmental duricrust, but lateral Au dispersion in the ferruginous duricrusts of the residual domain is probably also influenced by colluvial transport. Metals associated with Au mineralization (Cu, U, Mo, Pb, Ag, LREE, Sn, W, Bi, Sb and P) are generally depleted in the saprolite but most of them are still anomalous. The fragmental and ferruginous duricrusts are more leached but the tests performed to estimate the dispersion potential of metals contained in the ferruginous duricrust show that some metals are still significantly anomalous especially Au, Ag and Cu. However, if ferruginous duricrusts are used as an exploration sample media their environment of formation must be considered. Metal depletion is generally more advanced in the ferruginous duricrusts developed in the vicinities of palaeochannels as oppose to those developed in residual domain. On the contrary, Au over palaeochannel areas is enriched in the upper bauxitized ferruginous duricrusts and in their gibbsitic nodules as a result of lateral chemical transport that is more widespread than in the colluvium over residual domain. The latosol is highly depleted in most metals due to its transported nature. However, the nodular fractions of the latosol show the greatest dispersion potential especially for Au, Ag, W, U, Bi and Sn. It can incorporate magnetic nodules that bring a rich suit of metals associated to the magnetic gossans, and non-magnetic nodules, classified as concretion and pisolites, which bring metals enriched or dispersed in the ferruginous duricrusts. This suggests that Lag constitutes a promising sample medium for geochemical exploration in the lateritic terrains of the Carajás region.  相似文献   

8.
The nature of gold dispersion in soils and stream sediments associated with a copper-gold-mineralized system in northeastern Thailand has been investigated as a basis for identifying appropriate geochemical exploration techniques for the search for comparable deposits in similar environments.Soils were collected with varying relationships to mineralization as a basis for determining sample representativity, size distribution of gold, variation with soil horizon and possible pathfinder elements. Similarly, stream sediments were collected to estimate sample representativity, size distribution of gold, variation of gold with depth in the stream sediment profile and to compare the relative recoveries of gold in field-panned and laboratory-prepared heavy-mineral concentrates. Samples were analyzed for Au and potential indicator elements by a variety of methods but mostly by instrumental neutron activation analysis.Results indicate the consistent distribution of fine-grained gold in soils which allows Au analysis of relatively small samples from B-horizon soils to be used effectively and reliably to identify the surficial patterns of gold mineralization in the study area. Anomalous patterns of other indicator elements, Co, As, Cu, Sb, W, Pb, Zn, Ag, Fe and Mn, may contribute additional information regarding type of mineralization. This finding indicates the effectiveness of soil surveys in gold exploration, particularly in areas of deep weathering where fresh bedrock exposures are infrequent.Unlike soils, size distributions of gold in stream sediments, as a result of the local flow regime, vary both between sampling sites and at depths within a sampling site. Exploration requires Au analysis of the fine fraction (minus 63 μm) of active stream sediments to reduce the problem of sampling representativity. The presence of coarse-grained gold in the stream channel has drawn attention to the possible benefit of using the conventional field-panning method as a semiquantitative technique for providing immediate results. However, highly erratic distribution of pannable gold on a very local scale together with variable proportions of the total gold recovered in field-panned or heavy-mineral concentrates highlights a potentially serious drawback of the method. Combination of analysis of the minus 63 μm fraction and field panning appears warranted to cover the possible existence of gold of a wide size range in stream sediments.The overall results indicate the utility of geochemical exploration techniques in the search for gold mineralization. However, particular care is necessary in the design and implementation of geochemical techniques to ensure maximum reliability of exploration.  相似文献   

9.
Résumé Les sols de la région d'Ovala (Sud Gabon) présentent une anomalie superficielle en or, à l'aplomb d'une minéralisation de la roche-mère, latéritisée sur 50 m d'épaisseur. De bas en haut, le profil d'altération comprend trois horizons principaux: saprolitique, nodulaire et sablo-argileux. Cette altération est développée in-situ à partir de gneiss archéens et de roches métamorphiques protérozoïques du faciès schiste vert. Dans la roche fraîche, l'or est associé avec du quartz, de la pyrite, de la tourmaline et de la muscovite. Lorsque l'altération progresse, les particules aurifères sont libérées et chimiquement arrondies. Depuis la minéralisation primaire jusqu'à la surface, les mécanismes de dissolution amenuisent de plus les particules d'or, et les appauvrissent en argent. Une dispersion mécanique latérale, vers l'aval des versants, se superpose á l'évolution verticale. Ce mécanisme fournit les particules de plus petite taille, dans l'horizon superficiel. Des mécanismes á la fois chimiques et physiques sont á l'origine de la formation du halo supergène.
In the southern part of Gabon, at Ovala, a surficial gold anomaly has been found in soils. This anomaly develops directly from an underlying fresh mineralized rock through a 50-m-thick lateritic profile. From the bottom to the top, this profile consists of saprolite, a nodular layer and a sandy-clayey layer. The weathering profile formed in situ from Archean gneisses and Proterozoic greenschist facies. In the fresh rock, gold is associated with quartz, pyrite, tourmaline and muscovite. With increasing weathering, the residual gold particles become free and chemically rounded. From the primary gold mineralization to the surface, dissolution processes make gold more and more fine and Ag-depleted. Lateral downslope mechanical dispersion superimposes on this vertical evolution. This process spreads out the finest gold particles through the sandy-clayey layer. Both chemical and physical processes are responsible for the formation of the supergene dispersion halo.
  相似文献   

10.
中国金的地球化学省及其成因的微观解释   总被引:3,自引:0,他引:3  
利用全国1:20万区域化探扫面600×104km2和东天山、中蒙边界1:100万地球化学填图86×104km2的金分析数据,在全国圈定了15处金的地球化学省集中区,并发现与金矿成矿带或大型矿集区有关的地球化学省都具有多层套合结构特征。这种具有多层套合特征的地球化学省的形成是由高背景岩石、成矿作用和矿床风化产生的次生分散相互叠加的结果。高背景岩石提供了成矿元素的初始物源,成矿过程使得元素的进一步活化和富集,矿床风化产生元素的点源分散进一步形成叠加异常浓集中心,最后形成了具有多层套合的地球化学异常。通过使用微米和纳米观测手段发现地球化学样品中存在大量微米至纳米级金微粒,这种金微粒具有极强的活动性,能被各种营力作长距离搬运,形成了大规模具有多层套合特征的金地球化学省。  相似文献   

11.
Weathered Mantle Hosted Gold Deposit atShewushan, Hubei, Central China   总被引:1,自引:0,他引:1  
1The Shewushan gold dePOsit consists of a series of mineralized faults containing high gold grades (1. OX 10-6 to 19. 5 X10-s ) in a larger lower 'grade zone (0. 2 X 10-8 to 1. 0 X 10-6 )peripheral to these. The total reserve was approximately I X10,tons with an average grade around 2. 2 X 10-s. The discovery outcrop is of intense silicification and anomalous gold values(up tO 3. 4 X 10-e ). Hubei No. 4 Geological Party investigatedthe data from Hubei Regional Measuring Party and Hubei…  相似文献   

12.
《International Geology Review》2012,54(12):1149-1165
The Gay deposit, situated in the Orenburg region, is identified with one of Russia's principal occurrences of pyrite (pyrite deposits are an important source of Russia's gold). It belongs to the west subzone of the Magnitogorsk synclinorium and occurs in Devonian rhyolite-basaltic volcanic rocks. The deposit comprises five large pyrite-chalcopyrite, pyrite-chalcopyrite- sphalerite, and pyrite orebodies. The supergene zone extends to 120-240 m below surface and consists of the following three subhorizontal zones (from bottom to top): the secondary sulfide enrichment, the leaching, and the oxidation zone (where ores are enriched in gold).

There are two levels of secondary gold enrichment in the weathering profile. The lower level, located in the leaching zone, corresponds with the level of water table fluctuations. The rich, flat-lying horizon (1.5-10.0 m) is composed of bedded, friable native sulfur-quartz ores; it contains 19.0-52.2 ppm Au and up to 389 ppm Ag. Native gold and silver halides (chlorargyrite, iodargyrite, and embolite) are the principal precious-metal minerals. Electrum, native silver, acanthite, and uytenbogaardtite constitute the minor ones. The upper level of the enrichment is located in the lower part of gossan. This bonanza is composed of hematite-quartz ochres. Gold concentration is 13.5 to 21.2 ppm. Native gold of high fineness and silver halides apparently are associated here with poorly crystallized iron oxides. The formation of supergene gold enrichments may result partly from residual concentration and partly from mobilization and reprecipitation of the precious metal. Rich horizons form by repeated gold redeposition in accordance with weathering and a gradual erosion surface lowering. The lower bonanza forms at first in the process of oxidation involving pyrite and native sulfur. Gold may be transported by complexes with metastable sulfur oxy-anions: sulfites, thiosulfates, or polythionates. The upper enriched horizon forms in the course of further evolution of the weathering profile in the stage of hematite recrystallizaiton and its transformation into goethite.  相似文献   

13.
《Applied Geochemistry》2000,15(2):245-263
Since the 80's, studies have shown that Au is mobile in supergene lateritic surficial conditions. They are based either on petrological, thermodynamic studies, or experimental works. In contrast, few studies have been done on the mobility of the Pt group elements (PGE). Moreover, at the present time, no study has addressed the differential mobility of Au, Ag and Pd from natural alloys in the supergene environment. The aim of this study is to understand the supergene behavior, in lateritic conditions, of Au–Ag–Pd alloys of the Au ore locally called Jacutinga at the Maquiné Mine, Iron Quadrangle, Minas Gerais state, Brazil.The field work shows that the host rock is a “Lake Superior type” banded iron formation (BIF) and that the Au mineralization originates from sulfide-barren hydrothermal processes. Primary Ag–Pd-bearing Au has developed as xenomorphous particles between hematite and quartz grains. The petrological study indicates that the most weathered primary Au particles with rounded shapes and pitted surfaces were found, under the duricrust, within the upper friable saprolite. This layer, however is not the most weathered part of the lateritic mantle, but it is where the quartz dissolution resulting porosity is the most developed. The distribution of Au contents in the weathered rocks are controlled by the initial hydrothermal primary pattern. No physical dispersion has been found. Most of the particles are residual and very weakly weathered. This characterizes early stages of Au particle weathering in agreement with the relatively low weathering gradient of the host itabiritic formations that leads essentially to the development of isostructural saprolite lateritic mantle. Limited dissolution of primary Au particles issued from the friable saprolite induces Pd–Ag depleted rims compared to primary Au particle Pd–Ag contents.In addition, limited very short distance in situ dissolution/reprecipitation processes have been found at depth within the primary mineralization, as illustrated by tiny supergene, almost pure, Au particles. The supergene mobility order Pd>Ag>Au as reflecting early weathering stages of Au–Ag–Pd alloys under lateritic conditions is proposed.  相似文献   

14.
通过对查干德日斯铜(金)矿区地质地球化学勘查工作,区内发现铜矿体1条、铜(金)矿化体1条、铜矿化蚀变带8条。铜(金)矿化体均赋存于NEE向、NNW向断裂破碎带内,且以NEE向为主;矿化与褐铁矿化石英脉密切共生,伴随明显的硅化、钾化热液蚀变。认为矿区Cu-Au-Ag原生晕组合异常明显,与断裂构造套合良好;铜(金)矿化受构造控矿特征明显,热液充填-交代作用强烈,初判为热液充填交代型矿床。矿区深部矿成矿地质条件优越,找矿前景良好。  相似文献   

15.
Thick, commonly lateritic, regoliths are widespread in inter-tropical regions of the world and present particular challenges in exploration. These are best tackled through a sound understanding of the evolution of the landscapes in which they occur. The regoliths formed under humid, warm to tropical conditions and, although they may have been modified by later climatic changes, i.e., to more humid or more arid conditions, many chemical and mineralogical characteristics are retained. These include the geochemical expressions of concealed mineralization. Erosional and depositional processes control the preservation and occurrence of specific regolith units that may be used as sample media and, in turn, target size, element associations and contrast, thereby influencing sampling procedures, analysis and data interpretation. These parameters are best summarized in terms geochemical dispersion models based on the degree of preservation of the pre-existing lateritic regolith. Regolith–landform mapping permits an assessment of the terrain in terms of such models. In relict regolith–landform regimes, in which the lateritic regolith is largely preserved, broad multi-element anomalies in the upper ferruginous horizons (lateritic residuum) can be detected using sample intervals of 1 km or more. In contrast, in erosional regimes, where this material is absent, anomalies in upper saprolite, and the soil and lag derived from it, are more restricted in area and closer sampling intervals, (200×40 m or less) may be necessary. Lag and soil are, generally, ineffective in depositional areas, except where the sediments are very thin (e.g.,<2 m) or overburden provenance can be established. Stratigraphic drilling is necessary to establish whether the overburden overlies a buried lateritic horizon or an erosion surface cut in saprolite. Lateritic residuum remains an excellent sample medium if present, again with widespread haloes, but where it is absent, leaching and the restricted haloes in upper saprolite present formidable problems. Ferruginous saprolite or composites across the unconformity may be effective, but otherwise carefully targeted drilling and sampling through saprolite and saprock may be necessary. Partial extraction analyses have yet to demonstrate significant results except in very specific environments. In arid regions, pedogenic carbonate (calcrete, caliche) may be a valuable sample medium for Au exploration, principally in erosional regimes, and in depositional areas where the overburden is shallow. Sample intervals range from 1 km for regional surveys, through to 100×20 m in prospect evaluation. Saprolite is an essential sample medium in all landform environments, but the restricted halos and possibility of leaching requires that drilling and sampling should be at close intervals.  相似文献   

16.
The present study examines a fossil saprock–saprolite–laterite-profile beneath the sub-Cambrian peneplain in the Pan-African Roded Granite, Israel, with regard to structure and magnetic fabrics (anisotropy of magnetic susceptibility, AMS), and image analysis of compaction. The deformed granite shows two pre-weathering foliations, S1m (magmatic) and S2g (gneissic). Pre-Early Cambrian weathering comprised weathering-brecciation in saprock and saprolite, and chemical weathering with clay-formation in saprolite and laterite. During subsequent Phanerozoic burial the laterite was vertically compacted to 73% of its original thickness. In the laterite, compaction produced an unconformity-parallel cleavage (S3d) with increasing intensity towards the unconformity. Bulk susceptibility (κbulk) and anisotropy (P′) decrease from the unweathered granite into the saprolite, as a result of progressive magnetite breakdown, martitization and weathering-brecciation. In the laterite, an enrichment of haematite and relic Fe–Mg–mica lead to increased κbulk. Here, magnetic fabrics trace the compaction fabrics. The subhorizontal, compactional clay–/mica-fabric S3d defines a structurally weak and impermeable layer. The mechanical weakness of a clay-enriched weathering horizon with an unconformity-parallel, planar shape-preferred orientation, combined with the potentially overpressured state due to the sealing character of such a zone provides a viable explanation for the abundant localization of decollement horizons at or beneath basement-cover interfaces.  相似文献   

17.
地球化学基因是近两年提出的一种新的地球化学示踪技术,本文选择北京怀柔云蒙山地区两个邻近的花岗岩风化剖面(编号为B和C)来分析岩性地球化学基因和金矿化地球化学基因的属性特征.剖面B样品的化学蚀变指数CIA变化为51.3~58.9,WIG的范围为89.4~68.6,属于初始风化程度;剖面C样品的CIA变化为52.4~78....  相似文献   

18.
峪耳崖金矿床为大型-特大中温热液型金矿床,形成于燕山中晚期,金矿脉包括两种自然类型,即脉型和细脉网脉浸染型,通过对金的统计分布特征和空间分布特征的研究,认为金矿化为一个矿化期两个矿化阶段,金品位由对应于矿化阶段的两个对数正态分布总体混合而成,在垂向空间上各空间段的金品位都是由两个对数正态总体控一定比例叠加而成;三个矿化带在垂向空间依次向下分布,矿化强度随标高减小而增高,综合考虑相关分析,聚类分析,模糊聚类分析的结果,提炼出与金矿化密切相关的最佳地球化学标志组合,运用回归分析,模型出原生金矿化元素地球化学模型,利用变异指数法确定了矿体原生晕垂向分带。  相似文献   

19.
Mineralogy, major, trace and rare earth elements of a weathering profile developed on tertiary greenstone belt in the extreme North Cameroon are reported. The aim of which was to investigate mineralogical evolution and element mobilization and redistribution during weathering under dry tropical climate. The weathering profile consists of four main horizons: (1) a spheroidal weathering zone constituted by a corestone–shell complex, (2) a C horizon, (3) a Bw horizon and an Ah horizon. The results indicate that nontronite, a Fe-rich smectite, is the exclusive clay mineral formed in the exfoliated shells and the C horizon. It is associated with kaolinite in the upper horizons. The coexistence of these two clay minerals induced a decrease of CEC and pH which becomes neutral. The weathering index (WI) values reveal that weathering becomes more and more intensive from the corestone up to Bw horizon, which is the most weathered horizon in the weathering profile. Mass balance calculations, using Th as immobile element, indicate that Ti is quite mobile and that Al and Fe are relatively enriched at the bottom and strongly leached at the top of the profile. Alkalis and alkaline earth elements are strong leached through out the profile, except Ca which displays similar trend as Al and Fe. The same goes for LILE (Cs, Sr), TTE (Cr, Co, Ni) and HSFE (Y, Nb, Hf). In opposite, REE are depleted at the bottom and enriched in the upper horizons, with more enrichment for LREE than for HREE. It appears that weathering of greenstone belt causes a fractionation of HREE and induces a concentration of LREEs. Ce and Eu anomalies display opposite behaviour.  相似文献   

20.
Two weathering profiles developed over disseminated Cu mineralization hosted by granodiorites (porphyry type) and felsic volcanics respectively, in a savannah tropical environment (Burkina Faso) have been studied in detail. A mineralogical and geochemical study was carried out in order to determine the characteristics of both profiles and the behaviour of Cu in such deeply weathered environments. Our investigation was focused on the upper part of the weathering profile, respectively 4.0 and 10.5 m below the surface.The mineralogical study reveals that in the first case (profile A) the predominant clay minerals are smectites and kaolinite while in the second (profile B) a more kaolinitic composition is indicative of more severe leaching. In fact, field observations seem to demonstrate that the latter situation is more clearly related to an ancient lateritic-type weathering while the first one results from more recent processes.In both cases the Cu contents through the profiles are high (several thousands of ppm) and in good agreement with the grades obtained in depth, in the mineralized rock. Nevertheless, some leaching can be observed in the upper soil horizons, but the contents still remain highly anomalous, in the 1000 ppm range.It is shown that Cu is distributed in the main secondary minerals constituting the weathering products, whether they are silicates (smectites, phyllites, kaolinites) or oxides (goethite, hematite, Mn oxides).The main stable Cu-bearing mineral seems to be the kaolinite: indeed, smectites turn into kaolinite in the upper part of the profiles while goethite seems to be depleted in Cu under the same conditions.As concerns geochemical exploration, two observations can be noted. Firstly, Cu is very stable in such supergene environments, and secondly, the best size fraction in which to detect the Cu secondary dispersion haloes in soil or stream sediment samples is the <63 μ fraction, in terms of anomaly intensity or contrast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号