首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The rate of chemical weathering of rocks has been determined by using uranium as a natural isotopic tracer. The concentration of uranium and 234U/238U ratio in natural waters, rocks, and soils of the Preto river basin (Bahia State, Brazil) was measured by alpha-ray spectroscopy.The activity ratio U234/U238 measured in the various samples indicates the uranium fraction which is dissolved from rocks during the weathering process. The results obtained show that 1 m of rock needs 25,000 yr to be weathered in this region under present climatic conditions.  相似文献   

2.
Uranium contents and234U/238U ratios have been determined on 29 water samples from the Taiyuan area, Shanxi Province. The results show that the same artesian aquifer has similar uranium contents and234U/238U activity ratios, and the deeper aquifers have higher A. R. values but lower uranium contents. The A. R. values increase slightly towards groundwater flow in the artesian aquifers dominated by oxidizing ground waters. The Lancun Spring and the famous Jinci Spring belong to two different karst groundwater systems, i.e., the east and west karst groundwater systems. The recharge area of the Lancun Spring should cover the wide limestone outcrops of middle Ordovician in the northeast. The Ordovician fissure-karst ground water to the Jinci Spring is extensively mixed with fissure water in Carboniferous-Jurassic formations and seepage water from the Fenhe River.  相似文献   

3.
Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and 234U/238U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and α-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Peña Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced 234U/238U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using 234U/238U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model’s potential applications using radium isotopes.  相似文献   

4.
Uranium and thorium isotopic composition of kasolite [Pb(UO2)SiO4-(H2O)] from Jabal Sayid area was determined by thermal ionization mass spectrometry. Secondary electron imaging, back-scattered electron imaging, and energy dispersive spectral scans were used to investigate the mineralogical characteristics of this uranyl mineral phase. Distinct crystal faces and crystal growth of kasolite from the study area confirm mineral precipitation near the surface from the circulating groundwater. The obtained data were used to interpret the mechanism of uranium mobility in Jabal Sayid weathering profile and to construct a tentative model to explain the isotopic evolution of uranium and thorium. This model indicates that (1) uranium was leached at depth, (2) uranyl mineralization was precipitated along fractures and cavities in the host rocks during humid conditions and pluvial periods, (3) preferential leaching of 234U from uranyl mineralization by recoil processes was continuous indicative of a weakly circulating groundwater, and (4) 234U-deficiency resulted in isotopic signatures characterized by low 234U/238U and high 230Th/234U ratios. The modification pattern of these activity ratios suggests that uranyl mineralization of Jabal Sayid, most probably, has been precipitated during the same Late Quaternary pluvial periods responsible for the formation of the corresponding mineralizations in the Eastern Desert of Egypt.  相似文献   

5.
Extensive hydrogeological investigations followed by three-dimensional groundwater flow and contaminant transport modelling were carried out around a proposed uranium tailings pond at Seripalli in Andhra Pradesh, India, to estimate its radiological impact. The hydrogeological parameters and measured groundwater level were used to model the groundwater flow and contaminant transport from the uranium tailings pond using a finite-element-based model. The simulated groundwater level compares reasonably with the observed groundwater level. Subsequently, the transport of long-lived radionuclides such as 238U, 234U, 230Th and 226Ra from the proposed tailings pond was modelled. The ingrowths of progenies were also considered in the modelling. It was observed that these radionuclides move very little from the tailings pond, even at the end of 10,000 y, due to their high distribution coefficients and low groundwater velocities. These concentrations were translated into committed effective dose rates at different distances in the vicinity of the uranium tailings pond. The results indicated that the highest effective dose rate to members of the public along the groundwater flow pathway is 2.5 times lower than the drinking water guideline of 0.1?mSv/y, even after a long time period of 10,000 y.  相似文献   

6.
A fractionation of uranium (U) series into parent–daughter pairs – 234U and 238U – always occurs in natural waters, and the disequilibria between these is commonly used as a tracer of groundwater flow. We report here an interpretation of the U-content and U isotope disequilibria in groundwater sampled from the deep Complexe Terminal and Continental Intercalaire aquifers of southern Tunisia. Variations in both the contents of these isotopes (0.006–2.4 ppb) and 234U/238U activity ratios (ARs) (1.7–15.4) were observed. The data could be plotted in two distinct fields of reciprocal U concentration versus 234U/238U AR according to groundwater flow and regional bedrock differences. An initial assessment aimed at verifying whether the results of this investigation support those of previous hydrogeological and isotope studies, thereby suggesting that the disequilibrium between U isotopes in groundwater may represent a useful tool for hydrogeological investigations of deep and fossil groundwater. In addition, the disequilibrium can be used for quantifying the recharge or mixing rates between different formations with the aim of delineating the preferential outflow pattern or determining residence times of waters.  相似文献   

7.
The economic iron ore deposits of Egypt are located at Bahariya Oasis in the Lower Middle Eocene limestone. The main iron minerals are goethite, hematite, siderite, pyrite, and jarosite. Manganese minerals are pyrolusite and manganite. Gangue minerals are barite, glauconite, gibbsite, alunite, quartz, halite, kaolinite, illite, smectite, palygorskite, and halloysite. Geochemical comparison between the ore and the Nubia sandstone showed that the ore is depleted in the residual elements (Al, Ti, V, and Ni) and enriched in the mobile elements (Fe, Mn, Zn, Ba, and U) which indicates that the Bahariya iron ore is not a lateritic deposit despite the deep weathering in this area. On the other hand, the Nubia sandstone showed depletion in the mobile elements, which demonstrates the leaching process in the Nubia Aquifer. The presence of such indicator minerals as jarosite, alunite, glauconite, gibbsite, palygorskite, and halloysite indicate that the ore was deposited under strong acidic conditions in fresh water.Isotopic analyses of the uranium in the amorphous and crystalline phases of the ore, in the country rocks, and dissolved in the Nubia Aquifer water, all support the conclusion that U and Fe were precipitated together from warm ascending groundwater. U and Fe display strong co-variation in the ore, and the 234U/238U activity ratio of the newly precipitated U in the country rock and the leached component of U in the groundwater are identical. There is only slightly more uranium in the amorphous phase than in the crystalline and only a slightly lower 234U/238U activity ratio, suggesting that the iron in the two phases have a similar origin. Comparison of the excess 234U in the water and in the total ore leads to the conclusion that the precipitation of the U, and by inference the iron, occurred within the last million years. However, that both precipitation and leaching of U have occurred over the last 300,000 years is evidenced by the extreme 230Th/234U disequilibria observed in some of the samples. Some of the amorphous depositional events have been very recent, perhaps within the last 10,000 years.  相似文献   

8.
The ability to detect hydrologic variation in large arctic river systems is of major importance in understanding and predicting effects of climate change in high-latitude environments. Monitoring uranium isotopes (234U and 238U) in river water of the Yukon River Basin of Alaska and northwestern Canada (2001?C2005) has enhanced the ability to identify water sources to rivers, as well as detect flow changes that have occurred over the 5-year study. Uranium isotopic data for the Yukon River and major tributaries (the Porcupine and Tanana rivers) identify several sources that contribute to river flow, including: deep groundwater, seasonally frozen river-valley alluvium groundwater, and high-elevation glacial melt water. The main-stem Yukon River exhibits patterns of uranium isotopic variation at several locations that reflect input from ice melt and shallow groundwater in the spring, as well as a multi-year pattern of increased variability in timing and relative amount of water supplied from higher elevations within the basin. Results of this study demonstrate both the utility of uranium isotopes in revealing sources of water in large river systems and of incorporating uranium isotope analysis in long-term monitoring of arctic river systems that attempt to assess the effects of climate change.  相似文献   

9.
U-Series Chronology of Lacustrine Deposits in Death Valley, California   总被引:1,自引:0,他引:1  
Uranium-series dating on a 186-m core (DV93-1) drilled from Badwater Basin in Death Valley, California, and on calcareous tufas from nearby strandlines shows that Lake Manly, the lake that periodically flooded Death Valley during the late Pleistocene, experienced large fluctuations in depth and chemistry over the last 200,000 yr. Death Valley has been occupied by a long-standing deep lake, perennial shallow saline lakes, and a desiccated salt pan similar to the modern valley floor. The average sedimentation rate of about 1 mm/yr for core DV93-1 was punctuated by episodes of more-rapid accumulation of halite. Arid conditions similar to the modern conditions prevailed during the entire Holocene and between 120,000 and 60,000 yr B.P. From 35,000 yr B.P. to the beginning of the Holocene, a perennial saline lake existed, over 70 m at its deepest. A much deeper and longer lasting perennial Lake Manly existed from about 185,000 to 128,000 yr B.P., with water depths reaching about 175 m, if not 330 m. This lake had two significant “dry” excursions of 102–103yr duration about 166,000 and 146,000 yr B.P., and it began to shrink to the point of halite precipitation between 128,000 and 120,000 yr B.P. The two perennial lake periods correspond to marine oxygen isotopic stages (OIS) 2 and 6. Based on the shoreline tufa ages, we do not rule out the possible existence 200,000 yr ago of yet a third perennial lake comparable in size to the OIS 6 lake. The234U/238U data suggest that U in tufa owes its origin mainly to Ca-rich springs fed by groundwater that emanated along lake shorelines in southern Death Valley, and that an increase of this spring-water input relative to the river-water input apparently occurred during OIS 6.  相似文献   

10.
Whole rock samples of hydrothermally-altered Biscuit Basin rhyolite from Yellowstone drill cores Y-7 and Y-8 were analyzed for 230Th, 234U, 238U, and 232Th. Extreme disequilibrium was found, with (230Th/ 234U) ranging from 0.30 to 1.27. Values of (230Th/232Th) and (234U/232Th) define a linear correlation with a slope of 0.16 ± 0.01, which corresponds to a (230Th/234U) age of approximately 19 ka. The (230Th/234U) disequilibrium was apparently caused by U redistribution which occurred mostly at about 19 ka, and is not related simply to the relative degree of hydrothermal alteration and self-sealing of the rhyolite. Mass balance of U requires a large flux of U-bearing groundwater through the rhyolite at the time of U redistribution; rough estimates of minimum water/rock ratio range from 102 to 104, for a range of possible groundwater U concentrations. Conservative hydraulic calculations indicate that the required groundwater flux could have occurred within a period of hundreds of years prior to self-sealing. The disequilibrium data are consistent with a model involving U redistribution during the initial stages of development of a geothermal discharge zone that formed in response to the hydrogeologic effects of glacial melting and unloading during the decline of the Pinedale Glaciation.  相似文献   

11.
This paper presents results of hydrochemical and isotopic analyses of groundwater (fracture water) and porewater, and physical property and water content measurements of bedrock core at the Chalk River Laboratories (CRL) site in Ontario. Density and water contents were determined and water-loss porosity values were calculated for core samples. Average and standard deviations of density and water-loss porosity of 50 core samples from four boreholes are 2.73 ± 12 g/cc and 1.32 ± 1.24 percent. Respective median values are 2.68 and 0.83 indicating a positive skewness in the distributions. Groundwater samples from four deep boreholes were analyzed for strontium (87Sr/86Sr) and uranium (234U/238U) isotope ratios. Oxygen and hydrogen isotope analyses and selected solute concentrations determined by CRL are included for comparison. Groundwater from borehole CRG-1 in a zone between approximately +60 and −240 m elevation is relatively depleted in δ18O and δ2H perhaps reflecting a slug of water recharged during colder climatic conditions. Porewater was extracted from core samples by centrifugation and analyzed for major dissolved ions and for strontium and uranium isotopes. On average, the extracted water contains 15 times larger concentration of solutes than the groundwater. 234U/238U and correlation of 87Sr/86Sr with Rb/Sr values indicate that the porewater may be substantially older than the groundwater. Results of this study show that the Precambrian gneisses at Chalk River are similar in physical properties and hydrochemical aspects to crystalline rocks being considered for the construction of nuclear waste repositories in other regions.  相似文献   

12.
The 234U/238U alpha activity ratio (AR) was determined in 47 samples of variably uraniferous groundwater from the vicinity of a uranium mill near Cañon City, Colorado. The results illustrate that uranium isotopes can be used to determine the distribution of uranium contamination in groundwater and to indicate processes such as mixing and chemical precipitation that affect uranium concentrations. Highly to moderately contaminated groundwater samples collected from the mill site and land immediately downgradient from the mill site contain more than 100?μg/l of dissolved uranium and typically have AR values in the narrow range of 1.0–1.06. Other samples from the shallow alluvial aquifer farther downgradient from the mill contain 10–100?μg/l uranium and plot along a broad trend of increasing AR (1.06–1.46) with decreasing uranium concentration. The results are consistent with mixing of liquid mill waste (AR≈1.0) with alluvial groundwater of small, but variable, uranium concentrations and AR of 1.3–1.5. In the alluvial aquifer, the spatial distribution of wells with AR values less than 1.3 is consistent with previous estimates of the probable distribution of contamination, based on water chemistry and hydrology. Wells more distant from the area of probable contamination have AR values that are consistently greater than 1.3 and are indicative of little or no contamination. The methodology of this study can be extended usefully to similar sites of uranium mining, milling, or processing provided that local geohydrologic settings promote uranium mobility and that introduced uranium contamination is isotopically distinct from that of local groundwater.  相似文献   

13.
The solution of radioelements and radiogenic 4He by groundwaters in fractured rocks is dependent upon the radioelement distribution in the rock matrix and the extent of the rock-water interface. The 234U238U activity ratio and the dissolved U, Rn and He contents of such groundwaters respond to changes in the flow regime with time. Although 234U238U activity ratios change with groundwater residence time as a consequence of 234Th-recoil induced solution of 234U, the activity ratio is strongly influenced by the U distribution within fractures, by the extent of the rock-water interface and by the amount of 238U in solution. A model for the quantitative evaluation of these effects is presented.Groundwaters from depths up to 880 m in the Stripa granite have variable dissolved uranium contents and 234U238U activity ratios. The uranium geochemistry is primarily determined by variations in flow path rather than by groundwater age.Dissolved radiogenic 4He in the groundwaters increases with their depth of origin, and is dependent upon the U content of the granite and upon its fracture porosity. It increases with groundwater residence time but movement of 4He by diffusion and transport processes make the actual groundwater age indeterminate.  相似文献   

14.
Uranium-series disequilibrium dating of island phosphate deposits is evaluated in terms of known associated coral ages, uranium geochemistry, and stratigraphic sequences as well as the concordance between the geochronometers 234U/238U, 230Th/234U and 226Ra/238U. U(VI) is the predominant oxidation state of uranium in island phosphorites and by analogy to the youngest surficial deposits, most of the uranium initially bound is in the form of U(VI) sorbed by surfaces from seawater. Insular deposits contain more organic matter than even very young ocean floor samples and this leads to a greater probability of reduction of available recoil uranium than occurs in marine deposits. As a consequence, R(VI) ? R(T) ? R(VI), where R represents the 234U/238U activity ratio. This situation is completely opposite from that observed for marine-origin phosphorites. We determined that a fraction of U(VI) in ancient insular phosphorites is very labile and lost to alkaline carbonate solutions with a uranium activity ratio even more depleted in 234U than the bulk R(VI).Most younger samples appear to have no more discordance between 234U/238U, 230Th/234U and 226Ra/238U than marine phosphorites of similar apparent age. Young, surficial atoll-rim apatite cements and unconsolidated phosphorites date in the range of 1500–8000 years B.P., consistent with the concept of partial submergence of low-lying coral islands prior to 2000 years B.P. Sub-surficial samples in the same environment date older at about 20,000 years B.P. Violation of the closed system assumption occurs in at least 6 out of 13 ancient (> 800,000 year) samples. Uranium-series disequilibrium dating of insular apatite shows some promise as a recorder of climatic/sea level events, but the assumptions necessary for valid ages must be carefully evaluated for each occurrence.  相似文献   

15.
The uranium (U) content and 234U/238U activity ratio were determined for water samples collected from Korea's Han River in spring, summer, and winter 2006 to provide data that might constrain the origin of U isotope fractionation in river water and the link between U isotope systematics in river waters and the lithological nature of the corresponding bedrock. The large difference in the major dissolved loads between the two major branches of the Han River, the North Han River (NHR) and South Han River (SHR), is reflected in the contrasting U content and 234U/238U activity ratio between the tributaries: low U content (0.08–0.75 nM; average, 0.34 nM) and small 234U/238U activity ratio (1.03–1.22; average, 1.09) in the NHR; and high U content (0.65–1.98 nM; average, 1.44 nM) and large 234U/238U activity ratio (1.05–1.45; average, 1.24) in the SHR. The large spatial differences in U content and 234U/238U activity ratio are closely related to both lithological differences between the two tributaries and groundwater input. The low U content and small 234U/238U activity ratio in the NHR arise mainly from a combination of surface and meteoric weathering of the dominant silicate rocks in this branch and congruent dissolution of already weathered (secular equilibrium) materials. In contrast, the high U content and large 234U/238U activity ratio in the SHR are ascribed to the dissolution of carbonates and black shales along with significant inputs of deep groundwater.  相似文献   

16.
Uranium-series mass spectrometric analyses of corals from the uplifted last glacial terraces at Huon Peninsula, Papua New Guinea, that grew from 50,000 years ago to 30,000 years ago show systematically low values of 234U/238U, at the time of coral growth, compared with modern corals. When combined with coral data from other studies a systematic trend emerges indicating shifts in the 234U/238U ratio at times of major glacial-interglacial transitions that involve large variations in sea-levels. From last glacial to Holocene, the rate of change in δ234U is approximately 1‰ per thousand years. The variations in the U budget of the oceans appear to be due to accumulation of excess 234U in near shore areas in anoxic and suboxic sediments, in salt marshes and mangroves, in estuaries, and in continental margins during periods of warm climate and high sea-levels. These near-shore areas are exposed during periods of low sea level resulting in rapid oxidation of U into highly soluble phases. The subsequent release of 234U-enriched uranium into the oceans occurs over a sustained period, in step with rising sea-levels.  相似文献   

17.
The processes that affect water chemistry as the water flows from recharge areas through breccia-pipe uranium deposits in the Grand Canyon region of the southwestern United States are not well understood. Pigeon Spring had elevated uranium in 1982 (44 μg/L), compared to other perched springs (2.7–18 μg/L), prior to mining operations at the nearby Pigeon Mine. Perched groundwater springs in an area around the Pigeon Mine were sampled between 2009 and 2015 and compared with material from the Pigeon Mine to better understand the geochemistry and hydrology of the area. Two general groups of perched groundwater springs were identified from this study; one group is characterized by calcium sulfate type water, low uranium activity ratio 234U/238U (UAR) values, and a mixture of water with some component of modern water, and the other group by calcium-magnesium sulfate type water, higher UAR values, and radiocarbon ages indicating recharge on the order of several thousand years ago. Multivariate statistical principal components analysis of Pigeon Mine and spring samples indicate Cu, Pb, As, Mn, and Cd concentrations distinguished mining-related leachates from perched groundwater springs. The groundwater potentiometric surface indicates that perched groundwater at Pigeon Mine would likely flow toward the northwest away from Pigeon Spring. The geochemical analysis of the water, sediment and rock samples collected from the Snake Gulch area indicate that the elevated uranium at Pigeon Spring is likely related to a natural source of uranium upgradient from the spring and not likely related to the Pigeon Mine.  相似文献   

18.
The contents of radioactive elements and the uranium isotopic composition of kimberlite in the Arkhangelskaya pipe at the M.V. Lomonosov deposit and of nearby country rocks have been studied. A surplus of 234U isotope has been established in rocks from the near-pipe space. The high γ = 234U/238U ratio is controlled by the geological structure of the near-pipe space. A nonequilibrium uranium halo reaches two pipe diameters in size and can be regarded as a local ore guide for kimberlite discovery. The rocks in the nearpipe space are also characterized by elevated or anomalous U, Th, and K contents with respect to the background.  相似文献   

19.
Globally, rivers supply uranium to the oceans with excess 234U relative to secular equilibrium and 234U taken-up by corals can be used for dating. In addition, the 234U abundance in sea water, at the time the coral was growing, can be measured independently. The veracity of U-series ages used in determining past sea-level variations is dependent on selecting pristine corals free from diagenetic alteration. A quantitative test for alteration assumes invariant 234U abundances in the oceans for at least the past half a million years and results from samples outside of a narrow range in modern ocean 234U abundance are excluded from data sets. Here, we have used previously published data to show that 234U in the oceans appears to be variable and directly related to changes in sea-level, not only over long glacial-interglacial timescales but also at very short, centennial timescales. Most of the previously discarded data can be used to provide valuable additional sea-level information. The process permits a unique insight into the interplay between sources and sinks of uranium in the oceans mediated by sea-level changes at rates far faster than previously thought possible. Similar, rapid sea-level, forcing of other trace element abundances in the oceans is likely.  相似文献   

20.
Dissolved uranium concentration and 234U/238U activity ratio have been measured in two distinctly different Indian drainage systems: the Yamuna headwaters in the Himalaya and the Chambal river system in the plains to study the weathering and mobility of uranium in these watersheds. The dissolved uranium in the Chambal river system ranges from 0.2 to 1.74 μg L−1 during September (tail end of monsoon), whereas in the Yamuna river system, its concentration varies from 0.1 to 3.18 μg L−1 during October (post-monsoon) and from 0.09 to 3.61 μg L−1 in June (summer). In the Yamuna main stream, uranium is highest at its source and decreases steadily along its course, from 3.18 μg L−1 at Hanuman Chatti to 0.67 μg L−1 at Batamandi, at the base of the Himalaya. This decrease results mainly from mixing of the Yamuna mainstream with its tributaries, which are lower in uranium. The high concentration of uranium at Hanuman Chatti is derived from weathering of the Higher Himalayan Crystalline series (HHC) and associated accessary minerals, which may include uranium-mineralised zones. The 234U/238U activity ratios in the samples from the Chambal watershed are in the range of 1.15±0.05 to 1.67±0.04; whereas in the Yamuna the ratios vary from 0.95±0.03 to 1.56±0.07, during post-monsoon and from 0.98±0.01 to 1.30±0.03, during summer. The relatively high 234U/238U activity ratios in the Yamuna system are in its tributaries from the lower reaches viz., the Amlawa, Aglar, Bata, Tons and the Giri. It is estimated that ~9×103 and ~12 × 103 kg of dissolved uranium are transported annually from the Yamuna at Batamandi and the Chambal at Udi, respectively. This corresponds to uranium weathering rates of 0.9 and 0.09 kg U km−2 y−1 in the basins of the Yamuna and the Chambal headwaters. This study confirms that uranium weathering rate in the Himalaya is far in excess (by about an order of magnitude) of the global average value of ~0.08 kg U km−2 y−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号