首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
晚第四纪MIS6以来柴达木盆地成盐作用对冰期气候的响应   总被引:2,自引:0,他引:2  
气候是控制柴达木盆地盐类沉积的主要因素之一,但是其作用机制尚待明确。作者以柴达木盆地察汗斯拉图盐湖的3个含盐剖面为研究对象,采用多接收电感耦合等离子质谱(MC-ICP-MS)铀系测年测定其沉积时代,并通过X射线粉晶衍射(XRD)分析测定其盐类矿物种类。铀系测年显示D18剖面石盐和芒硝层的沉积时代为13.1±2.0 ka BP~15.9±2.5 ka BP,其中芒硝沉积年代属于末次冰期MIS2晚期;MXK2剖面芒硝层的沉积时代分别为131.7±39.5 ka BP和158.3±10.8 ka BP,D12剖面芒硝层的沉积时代分别为166.6±20.2 ka BP和198.0±20.6 ka BP,可以对应于倒数第二次冰期MIS6。XRD分析确定了3个剖面的盐类矿物主要为芒硝、石盐和石膏。综合多个盐湖晚第四纪成盐数据,本文认为倒数第二次冰期MIS6和末次冰期MIS2是柴达木盆地晚第四纪重要的成盐期,冰期的冷干气候有利于石盐和芒硝等盐类沉积。柴达木盆地"冰期成盐"的根本原因,是由于冰期环境下盆地周边山体冰川规模的扩张以及干冷的冰期气候,共同造成了盐湖补给水量的减少。此外,晚第四纪MIS6和MIS2的冰期降温也是导致盆地中冷相盐类沉积的直接原因。  相似文献   

2.
本文通过对渭南黄土剖面末次盛冰期地层较高分辨率的蜗牛化石记录研究,发现这一时期特征蜗牛种类峰值的演替反映了古气候的演化过程和温,湿度的组合关系。气候变化显示出百年-千年尺度波动的特征,温度的变化明显地要早于湿度(降水)的变化1000-2000a,表现为变冷-冷湿-冷干-温干-温湿的气候过程,研究认为造成这一气候特点的原因是东亚冬,夏季风共同作用的结果,可喜温湿蜗牛种类的研究,揭示出东亚夏季风在这一时期至少能够持续地影响到黄土高原的东南部地区,这个时期冬季风强化的结果之一是影响了夏季风在这一地区滞留的时间,加大了季节性的差异,分析表明尽管夏季风在这一地区滞留的时间缩短,但维持了它固有的强度,提供了适量的水热条件供喜温湿蜗牛种类在这一寒冷阶段持续地生长和发育。  相似文献   

3.
Aeolian sand sea accumulations can serve as valuable archives of climate change in continental environments. The Wahiba Sand Sea is situated at the northern margin of the area presently affected by Indian Summer Monsoon Circulation and it records environmental changes associated with this major climatic boundary over the last 160 000 years. The internal stratigraphy and evolution of the sand sea is investigated using a combination of outcrop, borehole, seismic and luminescence data. Proximity to the Indian Ocean means that the sand sea succession shows the influence of sea level changes on the sedimentary architecture and composition of the dune deposits. During the last two glacial periods, low global sea level was associated with a high input of bioclastic grains, reflecting the significance of subaerially exposed shelf areas as one of the main sources of aeolian sediment. The onset of aeolian sediment transport and deposition was related to the breakdown of stabilizing vegetation during arid periods that equate with sea level lowstands. The preservation of aeolian sediments by the formation of supersurfaces and associated palaeosoils took place during times of increased wetness and elevated groundwater tables. This interplay of constructive and destructive periods greatly influenced the sedimentary architecture. Oscillations of wet and dry periods between 160 000 and 130 000 years and 120 000–105 000 years ago are attributed to the evolution of a wet aeolian system. Younger periods of aeolian deposition around and after the last glacial maximum were characterized by dry aeolian conditions. No soil horizons developed during these times.  相似文献   

4.
Continental sediments and geomorphological features of the coastal Wahiba Sands, Sultanate of Oman, reflect environmental variability in southeastern Arabia during the late Quaternary. Weakly cemented dune sands, interdune deposits and coastal sediments were dated by luminescence methods to establish an absolute chronology of changes in sedimentary dynamics. The dating results confirm previous assumptions that during times of low global sea level sand was transported by southerly winds from the exposed shelf onto the Arabian Peninsula. Two prominent phases of sand accumulation in the coastal area took place just before and after the last glacial maximum (LGM). A final significant period of dune consolidation is recognised during the early Holocene. However, no major consolidation of dunes appears to have occurred during the LGM and the Younger Dryas. In the northern part of the Wahiba Sands, these two periods are characterised by substantial sand deposition. This discrepancy is explained by the lack of conservation potential for dunes in the coastal area, probably caused by a low groundwater table due to low sea level and decreased precipitation. While the times of aeolian activity reflect arid to hyper‐arid conditions, lacustrine and pedogenically altered interdune deposits indicate wetter conditions than today caused by increased monsoonal circulation during the Holocene climatic optimum. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
We present a new method of analyzing model results to help identify the sensitivity of the location of different paleodust records to estimate local to regional scale variability of dust and climate variables. We use model simulations of global dust distribution from the last glacial maximum, preindustrial, current, and predicted future. The dust model has been previously shown to match available observational data for the current and last glacial maximum climate. Here, the model is compared to available source provenance data and is shown to agree with these limited observations. Using correlations and slopes across different time periods, the modeled relationships between deposition at specific observational sites and regional deposition and dustiness are shown. In addition, we evaluate the modeled relative slope of these cores to determine the location of paleodust sites that are especially easy to interpret as regional indicators of dustiness. Model predictions suggest that deposition in Antarctic ice cores is usually better than dust concentration to capture regional deposition and dustiness variability over glacial–interglacial time periods, in agreement with ice core interpretations. For Greenland, the model predicts a possible shift from dominantly wet deposition under modern conditions to dominantly dry deposition during glacial climate conditions indicating that deposition may be better suited to capture dustiness variability under LGM conditions in Greenland. The model also identifies specific regions that are not well covered by observations for glacial/interglacial or anthropocene dust variability. In addition, we evaluate the modeled relative slope of the location of these cores to determine regions that would provide ideal localities for pursuing records that would provide easily interpretable paleo-proxy records of regional dustiness.  相似文献   

6.
Whether or not tropical climate fluctuated in synchrony with global events during the Late Pleistocene is a key problem in climate research. However, the timing of past climate changes in the tropics remains controversial, with a number of recent studies reporting that tropical ice age climate is out of phase with global events. Here, we present geomorphic evidence and an in-situ cosmogenic 3He surface-exposure chronology from Nevado Coropuna, southern Peru, showing that glaciers underwent at least two significant advances during the Late Pleistocene prior to Holocene warming. Comparison of our glacial-geomorphic map at Nevado Coropuna to mid-latitude reconstructions yields a striking similarity between Last Glacial Maximum (LGM) and Late-Glacial sequences in tropical and temperate regions.Exposure ages constraining the maximum and end of the older advance at Nevado Coropuna range between 24.5 and 25.3 ka, and between 16.7 and 21.1 ka, respectively, depending on the cosmogenic production rate scaling model used. Similarly, the mean age of the younger event ranges from 10 to 13 ka. This implies that (1) the LGM and the onset of deglaciation in southern Peru occurred no earlier than at higher latitudes and (2) that a significant Late-Glacial event occurred, most likely prior to the Holocene, coherent with the glacial record from mid and high latitudes. The time elapsed between the end of the LGM and the Late-Glacial event at Nevado Coropuna is independent of scaling model and matches the period between the LGM termination and Late-Glacial reversal in classic mid-latitude records, suggesting that these events in both tropical and temperate regions were in phase.  相似文献   

7.
Late Quaternary glaciation of Tibet and the bordering mountains: a review   总被引:2,自引:0,他引:2  
Abundant glacial geologic evidence present throughout Tibet and the bordering mountains shows that glaciers have oscillated many times throughout the late Quaternary. Yet the timing and extent of glacial advances is still highly debated. Recent studies, however, suggest that glaciation was most extensive prior to the last glacial cycle. Furthermore, these studies show that in many regions of Tibet and the Himalaya glaciation was generally more extensive during the earlier part of the last glacial cycle and was limited in extent during the global Last Glacial Maximum (marine oxygen isotope stage 2). Holocene glacial advances were also limited in extent, with glaciers advancing just a few kilometers from their present ice margins. In the monsoon-influenced regions, glaciation appears to be strongly controlled by changes in insolation that govern the geographical extent of the monsoon and consequently precipitation distribution. Monsoonal precipitation distribution strongly influences glacier mass balances, allowing glaciers in high altitude regions to advance during times of increased precipitation, which are associated with insolation maxima during glacial times. Furthermore, there are strong topographic controls on glaciation, particular in regions where there are rainshadow effects. It is likely that glaciers, influenced by the different climatic systems, behaved differently at different times. However, more detailed geomorphic and geochronological studies are needed to fully explore regional variations. Changes in glacial ice volume in Tibet and the bordering mountains were relatively small after the global LGM as compared to the Northern Hemisphere ice sheets. It is therefore unlikely that meltwater draining from Tibet and the bordering mountains during the Lateglacial and early Holocene would have been sufficient to affect oceanic circulation. However, changes in surface albedo may have influenced the dynamics of monsoonal systems and this may have important implications for global climate change. Drainage development, including lake level changes on the Tibetan plateau and adjacent regions has been strongly controlled by climatic oscillations on centennial, decadal and especially millennial timescales. Since the Little Ice Age, and particularly during this century, glaciers have been progressively retreating. This pattern is likely to continue throughout the 21st century, exacerbated by human-induced global warming.  相似文献   

8.
Late Pleistocene paleoclimatic history on northeastern Qinghai–Tibetan Plateau (QTP) has been reconstructed mainly from lake sediments; however, data regarding dry–wet climate changes reported in this region are still not clear and controversial. Based on shoreline features and highstand lacustrine sediments around lakes on the QTP, high lake level histories in this paper were summarized and compared with paleoclimatic records from lake sediments, ice core and glaciation evolution surrounding mountains on the NE QTP during late Pleistocene. The results indicate that periods of high lake level occurred at MIS 5, MIS 3 and early-middle Holocene and most likely corresponding to warm and wet climate periods, while periods of low lake level existed in intervening intervals, corresponding to cold and dry climate periods, which most likely coincide with glacial advances surrounding high mountains. With an exception, no wide glacial advance in study area was found during MIS 3, possibly suggesting that effective moisture is lower than that in the other region of NE QTP in this period.  相似文献   

9.
We use 10Be surface exposure dating to construct a high-resolution chronology of glacial fluctuations in the Sierra Nevada, California. Most previous studies focused on individual glaciated valleys, whereas our study compares chronologies developed throughout the range to identify regional patterns in the timing of glacier response to major climate changes. Sites throughout the range indicate Last Glacial Maximum retreat at 18.8 ± 1.9 ka (2σ) that suggests rather consistent changes in atmospheric variables, e.g., temperature and precipitation, throughout the range. The penultimate glacial retreat occurred at ca 145 ka. Our data suggest that the Sierra Nevada landscape is dominated by glacial features deposited during marine isotope stage (MIS) 2 and MIS 6. Deposits of previously recognized glaciations between circa 25 and 140 ka, e.g., MIS 4, Tenaya, early Tahoe, cannot be unequivocally identified. The timing of Sierra Nevada glacial retreat correlates well with other regional paleoclimate proxies in the Sierra Nevada, but differs significantly from paleoclimate proxies in other regions. Our dating results indicate that the onset of LGM retreat occurred several thousand years earlier in the Sierra Nevada than some glacial records in the western US.  相似文献   

10.
The Burhan Budai Shan in NE Tibet represents a key location for examining the variable influence of the mid‐latitude westerly and monsoonal circulations on late Quaternary glaciations in this sector of the Tibetan Plateau. Our study investigates the glacial history of mountains near Lake Donggi Cona (35°17′N, 98°33′E) using field mapping in combination with 10Be surface exposure dating and numerical reconstructions of former glacial equilibrium line altitudes (palaeo‐ELA). A set of 23 new exposure ages, collected from moraines in four glacial valleys, ranges from 45 to 190 ka, indicating ice expansion during the early and middle part of the last glacial cycle, and during the penultimate and possibly an earlier Mid‐Pleistocene glaciation. Ice advances reaching 12–15 km in length occurred at around 190–180 ka (≥MIS 6), between 140–100 ka (late MIS 6/MIS 5), and 90–65 ka (late MIS 5/early MIS 4), with a maximum ELA depression of 400–500 m below the estimated modern snowline. Exposure ages from the valley headwaters further indicate a small glaciation between c. 60–50 ka (late MIS 4/early MIS 3), which was essentially restricted to the cirque areas. Significantly, we find no evidence for any subsequent glaciation in the area during MIS 2 or the Holocene period. These results indicate a diminishing trend of glaciation in the region since at least MIS 4, and corroborate the case of a ‘missing LGM’ in the more interior parts of the northeastern Tibetan Plateau. The emerging pattern suggests that the most favourable conditions for glaciation during the Late Pleistocene correspond to periods of relatively moderate cooling combined with an intermediate or rising East Asian monsoon strength.  相似文献   

11.
The pattern and magnitude of glacier equilibrium-line altitude (ELA) lowerings in the tropics during the last glacial maximum (LGM) are topics of current debate. In the northern tropics, paleo-ELA data are particularly limited, inhibiting the ability to make regional and large-scale paleoclimatic inferences. To improve these records, nine paleo-glaciers in the Venezuelan Andes were reconstructed based on field observations, aerial photographs, satellite imagery and high-resolution digital topographic data. Paleo-glacier equilibrium-line altitudes (ELAs) were estimated using the accumulation-area ratio (AAR) and the area-altitude balance ratio (AABR) methods. During the local LGM in Venezuela (∼ 22,750 to 19,960 cal yr BP), ELAs were ∼ 850 to 1420 m lower than present. Local LGM temperatures were are at least 8.8 ± 2°C cooler than today based on a combined energy and mass-balance equation to account for an ELA lowering. This is greater than estimates using an atmospheric lapse rate calculation, which yields a value of 6.4 ± 1°C cooler. The paleo-glacial data from the Venezuelan Andes support other published records that indicate the northern tropics experienced a greater ELA lowering and possibly a greater cooling than the Southern Hemisphere tropics during the LGM.  相似文献   

12.
Ross River flows through the Townsville/Thuringowa urban area in north Queensland, Australia, which has a dry tropical climate characterized by high inter-annual rainfall variation. Unregulated rivers in the Ross catchment basin deliver freshwater flows to their estuaries during both strong and weak wet seasons. The construction of a series of dams and weirs on Ross River means the wet-dry cycle is accentuated, leading to constant marine salinities throughout the estuary becoming the norm, with a lack of freshwater flow for five or more years at a time. The fish fauna of Ross River estuary was sampled in the post wet and dry seasons during an extremely dry climatic period (1994) and extremely wet climatic period (2000) using a small mesh (6 mm) pocket seine net. The fish fauna seemed to reflect seasonal differences. Catches from 1994 (dry period) were comprised entirely of 88 marine and euryhaline species, while the 69 species captured in 2000 (wet period) included 13 freshwater species. However, the freshwater species in the upper estuary were individuals washed over the weir, rather than part of a functional faunal gradient. During 1994 faunal composition was related more to site identity than to the position of the site along an upstream gradient. In contrast, during 2000 there were clear upstream faunal gradients with compositions in upstream sites heavily influenced by freshwater species, and marine and euryhaline species dominating downstream sites. Patterns of species dominance also varied between years. In contrast, trophic composition showed consistent shifts in both years, from high proportions of herbivores, carnivores and benthoplanktivores in May towards high proportions of benthivores in August. Not only do faunal composition, seasonal faunal change and ecological connectivity seem to be impaired, but ecological processes in the estuary that rely on seasonal freshwater flows are likely to be unable to operate normally in most years. The extreme seasonality in Ross River may serve as a model for many of the changes that will be experienced in dry tropics estuaries under global climate change scenarios of more extreme seasonality.  相似文献   

13.
Links between southern and northern hemisphere climates during the Late Quaternary are poorly known, partly due to the scarcity of continuous climatic records in the southern tropics. Pollen and diatom evidence from Lake Tritrivakely (19°47′S) provides information on vegetational and hydrological changes in the central highlands of Madagascar over the past 40,000 yr. Most of the record reflects natural environmental variability since humans arrived on the island ca. 2000 yr B.P. During glacial times, the migration of mountain plants toward lower altitudes is consistent with a temperature decrease and with reduced atmospheric CO2levels. In the lake, a positive mean annual hydrologic balance, from 38,000 to 36,000 and from 17,500 to 9800 cal yr B.P., coincided with periods of decreasing summer insolation and preceded by several millennia lake rises in the northern tropics. A negative hydrologic budget during periods of maximum seasonal contrast in solar radiation is partly attributed to high summer evaporation rate. The last glacial maximum was cool and dry. The deglacial warming occurred in two steps. The first step, accompanied by an increase in wetness, occurred abruptly at ca. 17,000 cal yr B.P., about two millennia earlier than in the northern hemisphere. It is abundantly documented in southern terrestrial data. The second step, at 15,000 cal yr B.P., was in phase with the first major temperature change in the northern hemisphere.  相似文献   

14.
用树木年轮重建天山中部近350 a来的降水量   总被引:7,自引:5,他引:7  
单相关普查表明,乌鲁木齐河谷树轮年表与上年7月至当年2月降水相关显著.西白杨沟及波尔钦沟两个树轮差值年表可较好地重建出天山中部近350 a来该时段的降水量,解释方差达62%.经用统计参数、独立降水资料、历史气候记载、冰川及其它资料多方面验证,表明近350 a的降水重建序列是可信的.降水特征分析指出:天山中部降水可划分出3个偏湿期(1671(?)一1692年,1716-1794年,1825-1866年)和3个偏干期(1693-1715年,1795-1824年,1867-1969年).其后两个偏湿期与乌鲁木齐河源1号冰川前的第二、第三道终碛垄相对应,经推算,相应年降水量比现今分别偏多约59 mm及30 mm.天山中部上年7月至当年2月的降水具有5、10、53~54、3.7及3.3 a的变化准周期,在1716-1969年间存在着明显的变干趋势,并在1831年发生过突变.重建降水序列对乌鲁木齐、昌吉州天山北坡一带的降水具有较好的代表性.  相似文献   

15.
A high-resolution terrestrial mollusk record from the Loess Plateau of China has been studied to characterize climate variability during the Last Glacial Maximum (LGM). The rapid successions in mollusk taxa in the Weinan loess sequence reveal that climate changes occurred at least four times in this period. In the loess region, millennia-scale climate fluctuations existed, as documented in the grain size and weathering intensity records. Our results show such millennia-scale fluctuations reflecting changes in both temperature and precipitation, rather than a simple cold and warm alternation. Changes in temperature and precipitation were not in phase during the LGM. Temperature varied earlier than precipitation, which could have been the effect of winter and summer monsoon interactions. Our data also reveal that the East Asian summer monsoons could reach the southeast part of the Loess Plateau during the whole of the LGM. The intensification of winter monsoons during the LGM led to short duration of summer monsoons annually impacting on the Loess Plateau, but the intrinsic intensity of summer monsoons would not have changed significantly, thus providing the thermo-hydrological conditions for temperate-humidiphilous mollusks to persistently grow and develop in the glacial age.  相似文献   

16.
Comparisons of palaeo‐equilibrium line altitudes between the Western and Eastern Cordilleras in the Central Andes are commonly based on the assumption that the tall outermost moraines visible in remotely sensed images of the Western Cordillera date to the Last Glacial Maximum (LGM). However, field investigation and geomorphic mapping at Nevado Sajama, Bolivia, indicates the tall moraines are relic features with shorter moraines overlying and in some cases extending beyond them. 36Cl exposure ages from the shorter moraines suggest that they date to Lateglacial times ca. 16.9–10.2 ka. Although Lateglacial deposits have been found throughout the Central Andes, the extent of these deposits relative to LGM deposits varies both between the Western and Eastern Cordilleras and north‐to‐south along the Western Cordillera. In the Western Cordillera in the zone of easterly winds, the Lateglacial appears to be the most extensive glacial advance of the last glacial cycle. Geomorphic evidence also suggests that some Lateglacial moraines were deposited by cold‐based ice, a previously unreported finding in the tropical Andes. Retreat from other glacial features occurred at about 7.0–4.4 ka and 4.7–3.3 ka. These are the first directly dated Holocene glacial deposits in the Western Cordillera of Bolivia, and their presence suggests that the mid Holocene may not have been as warm and dry as previously thought. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Estimates made of lowland precipitation and evaporation in Britain during the last (Devensian) glaciation suggest that during the cold periods of the Devensian precipitation was probably low, between 260 and 370 mm/year, with winter precipitation between 80 and 120 mm, whereas at the thermal maximum of the Upton Warren Interstadial lowland precipitation was probably in the range 450 to 650 mm/year. Two summer precipitation regimes are identified during the cold periods, one with high values and the other with low. The high summer precipitation variant leads to moist conditions with July and August precipitation values similar to those at the present day, and global circulation models suggest that the moist regime may have existed at the time of the maximum advance of the ice sheets. On the other hand, the low summer precipitation variant leads to a dry summer with wind action creating aeolian deposits, and this variant probably existed at earlier times in the glacial period. About 6500 yr B.P., in the Atlantic period, forest conditions probably caused increased evaporation which more than compensated for the increased precipitation of the time, causing low runoff conditions. The clearance of British forests by man since 6500 yr B.P. has probably led to an absolute increase in runoff values even though precipitation values have fallen.  相似文献   

18.
青藏高原冰期环境与冰期全球降温   总被引:36,自引:7,他引:29       下载免费PDF全文
根据青藏高原及其它地区的降温证据和降温条件下的环境变化模拟,讨论了青藏高原冰期环境变化及机制问题。从模拟结果看,在7~9℃降温条件下,高原冰雪带面积可占高原面积的1/5到1/2.考虑到降温条件下雪盖反射引起的高原冷却所起的正反馈作用,冰期高原上并不排除从山谷冰川发育较大冰盖的可能性。不管冰期高原上有无大面积的冰盖,青藏高原冰期环境出现大的变化是无疑问的。这种变化对冰期季风变化乃至全球气候变化的影响可能是深刻的。  相似文献   

19.
南沙海区盛冰期的气候问题   总被引:11,自引:3,他引:11  
南沙海区属于西太平洋暖池区,其盛冰期的表层水温变化涉及暖池在冰期旋回中的稳定性,因而具有全球性意义、本文根据十几个沉积柱状样的氧同位素与微体古生物分析结果,指出南沙海区盛冰期时夏季温度与全新世差别微小,而冬季水温强烈降低,使季节性温差高达6℃,明显超过同纬度的西太平洋开放水域。推测冰期时的冬季风强化,是造成这些变化的主要原因,同时也为热带海区冰期海面温度高、岛屿山地温度低的矛盾提出了一种新的可能解释。  相似文献   

20.
Using data from glacial geomorphology, tephra–soil stratigraphy and mineralogy, palynology, and radiocarbon dating, a sequence of glacial and bioclimatic stades and interstades has been identified for the last ca. 50000 yr in the Ruiz-Tolima massif, Cordillera Central, Colombia. Six Pleistocene cold stades separated by warmer interstades occurred: before 48000, between 48000 and 33000, between 28000 and 21000, from ≥16000 to ca. 14000, ca. 13000–12400, and ca. 11000–10000 yr BP. Although these radiocarbon ages are minimum-limiting ages obtained from tephra layers on top of tills, the tills are not significantly older because most are bracketed by dated tephra sets in measured stratigraphic sections. Two minor moraine stages likely reflect glacier standstill during cold intervals ca. 7400 yr BP and slightly earlier. Finally, glaciers readvanced between the seventeenth and nineteenth centuries. In contrast to the ice-clad volcanoes of the massif, ca. 34 km2 in area above an altitude of ca. 4800 m, the ice cover expanded to 1200 km2 during the Last Glacial Maximum (LGM) and was still 800 km2 during Late-glacial time (LGT). Glacier reconstructions based on the moraines suggest depression of the equilibrium line altitude (ELA) by ca. 1100 m during the LGM and 500–600 m during LGT relative to the modern ELA, which lies at ca. 5100 m in the Cordillera Central. Glaciers in this region apparently reached their greatest extent when the climate was cold and wet, e.g. during stades corresponding to Oxygen Isotope Stage 3; glaciers were still expanding during the LGM ca. 28000–21000 yr BP, but they shrank considerably after 21000 yr BP because of greatly reduced precipitation. © 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号