首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Holocene high-resolution cores from the margin of the Arctic Ocean are rare. Core P189AR-P45 collected in 405-m water depth on the Beaufort Sea slope, west of the Mackenzie River delta (70°33.03′N and 141°52.08′W), is in close vertical proximity to the present-day upper limit of modified Atlantic water. The 5.11-m core spans the interval between ∼6800 and 10,400 14C yr B.P. (with an 800-yr ocean reservoir correction). The sediment is primarily silty clay with an average grain-size of 9 φ. The chronology is constrained by seven radiocarbon dates. The rate of sediment accumulation averaged 1.35 mm/yr. Stable isotopic data (δ18O and δ13C) were obtained on the polar planktonic foraminifera Neogloboquadrina pachyderma (s) and the benthic infaunal species Cassidulina neoteretis. A distinct low-δ18O event is captured in both the benthic and planktonic data at ∼10,000 14C yr B.P.—probably recording the glacial Lake Agassiz outburst flood associated with the North Atlantic preboreal cold event. The benthic foraminifera are dominated in the earliest Holocene by C. neoteretis, a species associated with modified Atlantic water masses. This species decreases toward the core top with a marked environmental reversal occurring ∼7800 14C yr B.P., possibly coincident with the northern hemisphere 8200 cal yr B.P. cold event.  相似文献   

2.
In the southern Argentine Andes, ten advances of valley glaciers were used to reconstruct the late-glacial and Holocene glacier history. The accumulation areas of these glaciers lie in the Precordillera and are thus independent of fluctuations of the South Patagonian Icefield. Like the Viedma outlet glacier, the valley glaciers advanced three times during late-glacial time (14,000–10,000 yr B.P.). The youngest advance correlates with the Younger Dryas Stade, based on two minimum AMS14C dates of 9588 and 9482 yr B.P. The second oldest advance occurred before 11,800 yr B.P. During the first half of the Holocene, (ca. 10,000–5000 yr B.P.), advances culminated about 8500, 8000–7500, and 5800–5500 yr B.P. During the second half of the Holocene, advances occurred between ca. 4500 and 4200 yr B.P., as well as between 3600 and 3300 yr B.P. In the Río Cóndor valley three subsequent advances have been identified.  相似文献   

3.
This article presents a combined pollen and phytolith record of a 1.70-m sediment core from the wetlands of India Muerta (33° 42′ S, 53° 57′ W) in the lowland Pampa (grasslands) of southeastern Uruguay. Six 14C dates and the pollen and phytolith content of the samples permitted the recognition of four distinct climatic periods between 14,850 14C yr B.P. and the present. The Late Pleistocene period (between ca. 14,810 and ca. 10,000 14C yr B.P.) was characterized by drier and cooler conditions indicated by the presence of a C3-dominated grassland. These conditions prevailed until the onset of the warmer and more humid climate of the Holocene around 9450 14C yr B.P. The early Holocene (between around 10,000 and 6620 14C yr B.P.) was characterized by the establishment of wetlands in the region as evidenced by the formation of black peat, the increase in wetland taxa, and the replacement of C3 Pooideae by C4 Panicoideae grasses. During the mid-Holocene, around 6620 14C yr B.P., began a period of environmental change characterized by drier climatic conditions, which resulted in the expansion of halophytic communities in the flat, low-lying areas of the wetlands of India Muerta. About 4020 14C yr B.P. a massive spike of Amaranthaceae/Chenopodiaceae coupled with a radical drop in wetland species indicates another major and more severe period of dryness. After ca. 4000 14C yr B.P., a decrease of halophytic species indicates the onset of more humid and stable climatic conditions, which characterized the late Holocene.The findings reported in this article substantially improve our knowledge of the late Glacial and Holocene climate and vegetation in the region. The data provide a detailed record of the timing and severity of mid-Holocene environmental changes in southeastern South America. Significantly, the mid-Holocene drying trend coincided with major organizational changes in settlement, subsistence, and technology of the pre-Hispanic populations in the region, which gave rise to early Formative societies. This study also represents the first combined pollen and phytolith record for southeastern South America reinforcing the utility of phytoliths as significant indicators of long-term grassland dynamics.  相似文献   

4.
Middle Park, a high‐altitude basin in the Southern Rocky Mountains of north‐central Colorado, contains at least 59 known Paleoindian localities. At Barger Gulch Locality B, an extensive Folsom assemblage (˜10,500 14C yr B.P.) occurs within a buried soil. Radiocarbon ages of charcoal and soil organic matter, as well as stratigraphic positions of artifacts, indicate the soil is a composite of a truncated, latest‐Pleistocene soil and a younger mollic epipedon formed between ˜6000 and 5200 14C yr B.P. and partially welded onto the older soil following erosion and truncation. Radiocarbon ages from an alluvial terrace adjacent to the excavation area indicate that erosion followed by aggradation occurred between ˜10,200 and 9700 14C yr B.P., and that the erosion is likely related to truncation of the latest‐Pleistocene soil. Erosion along the main axis of Barger Gulch occurring between ˜10,000 and 9700 14C yr B.P. was followed by rapid aggradation between ˜9700 and 9550 14C yr B.P., which, along with the erosion at Locality B, coincides with the abrupt onset of monsoonal precipitation following cooling in the region ˜11,000–10,000 14C yr B.P. during the Younger Dryas oscillation. Buried soils dated between ˜9500 and 8000 14C yr B.P. indicate relative landscape stability and soil formation throughout Middle Park. Morphological characteristics displayed by early Holocene soils suggest pedogenesis under parkland vegetation in areas currently characterized by sagebrush steppe. The expansion of forest cover into lower elevations during the early Holocene may have resulted in lower productivity in regards to mammalian fauna, and may partly explain the abundance of early Paleoindian sites (˜11,000–10,000 14C yr B.P., 76%) relative to late Paleoindian sites (˜10,000–8000 14C yr B.P., 24%) documented in Middle Park. © 2005 Wiley Periodicals, Inc.  相似文献   

5.
Pollen stratigraphy of a core taken from a fen at Fundo Nueva Braunau (40°17.49′S, 73°04.83′W), situated 2 km beyond the western border of Llanquihue‐age glacial drift, spans an age range from an estimated 60 000–70 000 BP to about 14 000 14C yr BP (marine Oxygen Isotope Stages 4–2). The location at present is in the contact zone of Valdivian Evergreen Forest and Lowland Deciduous Beech Forest. Early and late in the pollen record, as indicated by assemblages of southern beech (Nothofagus dombeyi type) and grass (Gramineae), the site was located in Subantarctic Parkland. Intervening assemblages represent expansion of Valdivian–North Patagonian Evergreen Forest (> 49 355 to about 40 000 14C yr BP) and North Patagonian Evergreen Forest–Subantarctic Parkland (approximately 40 000 to 30 000 14C yr BP). Climate over the time span was under the storm regime of the Southern Westerlies and apparently uninterruptedly wet. When Subantarctic Parkland expanded, cold conditions with summer temperatures estimated at 8–9°C (7°C lower than present) resulted in episodes of glacier maxima. Climate moderated during the period of forest expansion, at which time glaciers were in a state of recession. Contrasting with the continuously wet climate of the Lake District for the period of record, climate in semi‐arid–arid, subtropical Chile underwent extended intervals of precipitation. Data from both the terrestrial and marine realm implicate the Southern Westerlies as the cause of intensified storm activity at lower latitudes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
We present a new set of 14C ages obtained by accelerator mass spectrometry (AMS) on planktonic foraminifera from a deep-sea core collected off the Iberian Margin (MD952042). This site, at 37°N, is distant from the high-latitude zones where 14C reservoir age is large and variable. Many independent proxies — alkenones, magnetic susceptibility, ice-rafted debris, foraminifera stable isotopes, abundances of foraminifera, pollen, and dinoflagellates — show abrupt changes correlative with Dansgaard-Oeschger and Heinrich events of the last glacial period. The good stratigraphic agreement of all proxies — from the fine to the coarse-size fractions — indicates that the foraminifera 14C ages are representative of the different sediment fractions. To obtain reliable 14C ages of foraminifera beyond 20,000 14C yr B.P., we leached the shells prior to carbonate hydrolysis and subsequent analysis. For a calendar age scale, we matched the Iberian Margin U37K′ profile with that of Greenland Summit δ18O. Both are proxies for temperature, which in models varies synchronously in the two areas. The match creates no spurious jumps in sedimentation rate and requires only a limited number of tie points. Except for ages older than 40,000 14C yr B.P., Greenland's GISP2 and GRIP records yield similar calendars. The 14C and imported calendar ages of the Iberian Margin record are then compared to data — from lacustrine annual varves and from corals and speleothems dated by U-Th — previously used to extend the calibration beyond 20,000 14C yr B.P. The new record follows a smooth pattern between 23,000 and 50,000 cal yr B.P. We find good agreement with the previous data sets between 23,000 and 31,000 cal yr B.P. In the interval between 33,000 and 41,000 cal yr B.P., for which previous records disagree by up to 5000 cal yr, the Iberian Margin record closely follows the polynomial curve that was previously defined by an interpolation of the coral ages and runs between the Lake Suigetsu and the Bahamian speleothem data sets.  相似文献   

7.
Pollen data from two sections from a coastal cliff on the western Yamal Peninsula (69°43.27′N, 66°48.80′E) document the environmental history during the Karginsky (Middle Weichselian) interstadial. Low pollen concentrations, high amounts of redeposited pollen, and relatively high presence of Artemisia pollen characterize sediments deposited at about 33,000 14C yr B.P. Grass-sedge plant associations with few other herbs occupied the area during the late Karginsky interstadial. Artemisia pollen may indicate rather xerophytic vegetation and disturbed soils in the area. The dominance of redeposited pollen reflects scarce (disturbed) vegetation cover and low pollen productivity. The climate was relatively cold and dry. Sediments dated to 32,400 14C yr B.P. contain fewer redeposited pollen and concentration of non-redeposited pollen is significantly higher. Pollen contents indicate the dominance of tundra-like grass-sedge vegetation and more humid conditions. Pollen records dated between 30,100 and 25,100 14C yr B.P. also reflect scarce tundra-like vegetation during this interval. The presence of Betula nana and Salix pollen may reflect limited presence of shrub communities. This suggests that the climate was somewhat warmer during the latter part of the interstadial. However, generally the pollen records show that harsh environmental conditions prevailed on the Yamal Peninsula during the Karginsky interstadial.  相似文献   

8.
Sedimentological, malacological, and pollen analyses from 14C-dated alluvial sections from the Luján River provide a detailed record of environmental changes during the Holocene in the northeastern Pampas of Argentina. From 11,200 to 9000 14C yr B.P., both sedimentary and biological components suggest that the depositional environment was eutrophic, alkaline, and freshwater to brackish shallow water bodies without significant water circulation. During this time, bioclastic sedimentation was dominant and the shallow water bodies reached maximum development as the climate became more humid, suggesting an increase in precipitation. Short-term fluctuations in climate during the last stage of this interval may have been sufficient to initiate changes in the water bodies, as reduction of the volume alternated with periods of flooding. The beginning of the evolution of shallow swamps in the wide floodplain or huge wetlands was contemporaneous with a sea level lower than the present one. From 9000 and 7000 14C yr B.P., mesotrophic, alkaline, brackish, probably anoxic swamps existed. Between 7000 and 3000 14C yr B.P., anoxic calcareous swamps were formed, with subaerial exposure and development of the Puesto Berrondo Soil (3500-2900 14C yr B.P.). A trend to a reduction of water bodies is recorded from 9000 to ca. 3000 14C yr B.P., with a significant reduction after ca. 7000 14C yr B.P. A shift to subhumid-dry climate after 7000 14C yr B.P. appears to be the main cause. During this time, an additional external forcing toward higher groundwater levels was caused by Holocene marine transgression causing changes in the water bodies levels. The climate became drier during the late Holocene (ca. 3000 yr B.P.), when clastic sedimentation increased, under subhumid-dry conditions. Flood events increased in frequency during this time. From ca. A.D. 1790 to present, the pollen record reflects widespread disturbance of the vegetation during the European settlement.  相似文献   

9.
A pollen record from the Huelmo site (ca. 41°30′S) shows that vegetation and climate changed at millennial time‐scales during the last glacial to Holocene transition in the mid‐latitude region of western South America. The record shows that a Nothofagus parkland dominated the landscape between 16 400 and 14 600 14C yr BP, along with Magellanic Moorland and cupressaceous conifers. Evergreen North Patagonian rainforest taxa expanded in pulses at 14 200 and 13 000 14C yr BP, following a prominent rise in Nothofagus at 14 600 14C yr BP. Highly diverse, closed canopy rainforests dominated the lowlands between 13 000 and 12 500 14C yr BP, followed by the expansion of cold‐resistant podocarps and Nothofagus at ca. 12 500 and 11 500 14C yr BP. Local disturbance by fire favoured the expansion of shade‐intolerant opportunistic taxa between 10 900 and 10 200 14C yr BP. Subsequent warming pulses at 10 200 and 9100 14C yr BP led to the expansion of thermophilous, summer‐drought resistant Valdivian rainforest trees until 6900 14C yr BP. Our results suggest that cold and hyperhumid conditions characterised the final phase of the Last Glacial Maximum (LGM), between 16 400 and 14 600 14C yr BP. The last ice age Termination commenced with a prominent warming event that led to a rapid expansion of North Patagonian trees and the abrupt withdrawal of Andean ice lobes from their LGM positon at ca. 147 000 14C yr BP. Hyperhumid conditions prevailed between 16 400 and 13 000 14C yr BP, what we term the ‘extreme glacial mode’ of westerly activity. This condition was brought about by a northward shift and/or intensification of the southern westerlies. The warmest/driest conditions of the last glacial–interglacial transition occurred between 9100 and 6900 14C yr BP. During this period, the westerlies shifted to an ‘extreme interglacial mode’ of activity, via a poleward migration of stormtracks. Our results indicate that a highly variable climatic interval lasting 5500 14C years separate the opposite extremes of vegetation and climate during the last glacial‐interglacial cycle, i.e. the end of the LGM and the onset of the early Holocene warm and dry period. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Pollen analysis on a 9.54-m sediment core from lake Chignahuapan in the upper Lerma basin, the highest intermontane basin in Central Mexico (2570 m asl), documents vegetation and limnological changes over the past ∼23,000 14C yr. The core was drilled near the archaeological site of Santa Cruz Atizapán, a site with a long history of human occupation, abandoned at the end of the Epiclassic period (ca. 900 AD). Six radiocarbon AMS dates and two well-dated volcanic events, the Upper Toluca Pumice with an age of 11,600 14C yr B.P. and the Tres Cruces Tephra of 8500 14C yr B.P., provide the chronological framework for the lacustrine sequence. From ca. 23,000 14C yr B.P. to ca. 11,600 14C yr B.P. the plant communities were woodlands and grasslands based on the pollen data. The glacial advances MII-1 and MII-2 correlate with abundant non-arboreal pollen, mainly grasses, from ca. 21,000 to 16,000 14C yr B.P., and at ca. 12,600 14C yr B.P. During the late Pleistocene, lake Chignahuapan was a shallow freshwater lake with a phase of lower level between 19,000 and 16,000 14C yr B.P. After 10,000 14C yr B.P., tree cover in the area increased, and a more variable lake level is documented. Late Holocene (ca. 3100 14C yr B.P.) deforestation was concurrent with human population expansion at the beginning of the Formative period (1500 B.C.). Agriculture and manipulation of the lacustrine environment by human lakeshore populations appear at 1200 14C yr B.P. (550 A.D.) with the appearance of Zea mays pollen and abundant charcoal particles.  相似文献   

11.
Large glaciers descended western valleys of the Olympic Mountains six times during the last (Wisconsin) glaciation, terminating in the Pacific coastal lowlands. The glaciers constructed extensive landforms and thick stratigraphic sequences, which commonly contain wood and other organic detritus. The organic material, coupled with stratigraphic data, provides a detailed radiocarbon chronology of late Pleistocene ice-margin fluctuations. The early Wisconsin Lyman Rapids advance, which terminated prior to ca. 54,000 14C yr B.P., represented the most extensive ice cover. Subsequent glacier expansions included the Hoh Oxbow 1 advance, which commenced between ca. 42,000 and 35,000 14C yr B.P.; the Hoh Oxbow 2 advance, ca. 30,800 to 26,300 14C yr B.P.; the Hoh Oxbow 3 advance, ca. 22,000–19,300 14C yr B.P.; the Twin Creeks 1 advance, 19,100–18,300 14C yr B.P.; and the subsequent, undated Twin Creeks 2 advance. The Hoh Oxbow 2 advance represents the greatest ice extent of the last 50,000 yr, with the glacier extending 22 km further downvalley than during the Twin Creeks 1 advance, which is correlative with the global last glacial maximum. Local pollen data indicate intensified summer cooling during successive stadial events. Because ice extent was diminished during colder stadial events, precipitation—not summer temperature—influenced the magnitude of glaciation most strongly. Regional aridity, independently documented by extensive pollen evidence, limited ice extent during the last glacial maximum. The timing of glacier advances suggests causal links with North Atlantic Bond cycles and Heinrich events.  相似文献   

12.
A high-resolution macroscopic charcoal record from Lago Melli (42°46′S, 73°33′W) documents the occurrence of forest fires in the lowlands of Isla Grande de Chiloé, southern Chile, over the last 16,000 yr. Our data suggest that fire activity in this region was largely modulated by the position/intensity of the southern westerlies at multi-millennial time scales. Fire activity was infrequent or absent between 16,000-11,000 and 8500-7000 cal yr BP and was maximal between ∼ 11,000-8500 and 3000-0 cal yr BP. A mosaic of Valdivian/North Patagonian rainforest species started at ∼ 6000 cal yr BP, along with a moderate increase in fire activity which intensified subsequently at 3000 cal yr BP. The modern transition between these forest communities and the occurrence of fires are largely controlled by summer moisture stress and variability, suggesting the onset of high-frequency variability in summer precipitation regimes starting at ∼ 5500 cal yr BP. Because negative anomalies in summer precipitation in this region are teleconnected with modern El Niño events, we propose that the onset of El Niño-like variability at ∼ 5700-6200 cal yr BP led to a reshuffling of rainforest communities in the lowlands of Isla Grande de Chiloé and an increase in fire activity.  相似文献   

13.
An ∼8000-cal-yr stratigraphic record of vegetation change from the Sierra de Apaneca, El Salvador, documents a mid-Holocene warm phase, followed by late Holocene cooling. Pollen evidence reveals that during the mid-Holocene (∼8000-5500 cal yr B.P.) lowland tropical plant taxa were growing at elevations ∼200-250 m higher than at present, suggesting conditions about 1.0°C warmer than those prevailing today. Cloud forest genera (Liquidambar, Juglans, Alnus, Ulmus) were also more abundant in the mid-Holocene, indicating greater cloud cover during the dry season. A gradual cooling and drying trend began by ∼5500 cal yr B.P., culminating in the modern forest composition by ∼3500 cal yr B.P. A rise in pollen from weedy plant taxa associated with agriculture occurred ∼5000 cal yr B.P., and pollen from Zea first appeared in the record at ∼4440 cal yr B.P. Human impacts on local vegetation remained high throughout the late Holocene, but decreased abruptly following the Tierra Blanca Joven (TBJ) eruption of Volcán Ilopango at ∼1520 cal yr B.P. The past 1500 years are marked by higher lake levels and periodic depositions of exogenous inorganic sediments, perhaps indicating increased climatic variability.  相似文献   

14.
Radiocarbon-dated pollen records of two adjacent sediment cores from Canal de la Puntilla (40°57′09″S, 72°54′18″W) in the Chilean Lake District reveal that a sparsely vegetated landscape prevailed during the portion of the Last Glacial Maximum between 20200 and about 14800 14C yr BP. Dominating the vegetation was Nothofagus, Gramineae and Compositae, along with taxa commonly found today above the Andean treeline (Perezia-type, Valeriana) and in Magellanic Moorlands (Donatia, Astelia). Nothofagus expanded between 20200 and 15800 14C yr BP, interrupted by a reversal at 19200 14C yr BP and followed by a prominent increase in Gramineae pollen between 15800 and about 14800 14C yr BP. A major increase in Nothofagus started at about 14800 14C yr BP, followed by an abrupt expansion of thermophilous Valdivian/North Patagonian Rain Forest taxa (Myrtaceae, Lomatia/Gevuina, Hydrangea, etc.) at about 14000 14C yr BP. An opening of the rain forest and an expansion of Podocarpus nubigena, Misodendrum, and Maytenus disticha-type subsequently occurred between 11000 and 10000 14C yr BP. These results suggest that mean annual temperature was 6–7°C colder than at present, with twice the modern annual precipitation between 20200 and 14000 14C yr BP, implying a northward shift and intensification of the westerlies storm-tracks. Slight climate warming occurred between 20200 and 15800 14C yr BP, featuring cooling reversals at 19200 14C yr BP, and later at 15800 14C yr BP. The warming of the last termination started at about 14800 14C yr BP, and reached a total temperature rise of ≥5°C by 12400 14C yr BP, followed by cooling between 11000 and 10000 14C yr BP. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
Glaciations of the West Coast Range,Tasmania   总被引:1,自引:0,他引:1  
Geomorphic, stratigraphic, palynologic and 14C evidence indicates that the West Coast Range, Tasmania, was glaciated at least three times during the late Cenozoic. The last or Margaret Glaciation commenced after 30,000 yr B.P., culminated about 19,000 yr B.P., and ended by 10,000 yr B.P. During this period a small ice cap, ca. 250 m thick, and cirque and valley glaciers covered 108 km2. The glacial deposits show little chemical weathering or erosional dissection. The snow line ranged from 690 to 1000 m with an average of 830 m for the ice cap. Mean temperature was 6.5°C below the present temperature. During the preceding Henty Glaciation a 300- to 400-m-thick ice cap and outlet glaciers exceeded 1000 km2. The glacial deposits are beyond 14C assay. They are more weathered chemically and more dissected than Margaret age deposits, and the degree suggests a pre-last interglaciation age (> 130,000 yr B.P.). The snow line of the ice cap lay at 740 m, and annual temperature was reduced by 7°C. Ice of the earliest Linda Glaciation slightly exceeded that of the Henty Glaciation but had a similar distribution. The glacial deposits are intensely weathered, have reversed magnetization, and overlie a paleosol containing pollen of Tertiary type. An early Pleistocene or Tertiary age is indicated.  相似文献   

16.
The organic deposits derived from the mangrove swamps form reliable stratigraphic markers within the Late Quaternary sequence of Kerala–Konkan Basin. Three generations of such deposits have been identified. The older one is dated to around 43,000–40,000 14C yr B.P., with a few dates beyond the range of radiocarbon. The younger ones date from the Middle Holocene to latest Pleistocene (10,760–4540 14C yr B.P.) and the Late Holocene (<4000 14C yr B.P.). Pollen analyses confirm that the deposits are mostly derived from the mangrove vegetation. Peat accumulation during the period 40,000–28,000 14C yr B.P. can be correlated with the excess rainfall, 40–100% greater than modern values, of the Asian summer monsoon. The low occurrence of mangrove between 22,000 and 18,000 14C yr B.P. can be attributed to the prevailing aridity and/or reduced precipitation associated worldwide with Last Glacial Maximum, because exposure surfaces and ferruginous layers are commonly found in intervals representing this period. The high rainfall of 11,000–4000 14C yr B.P. is found to be the most significant as the mangrove reached an optimum growth around 11,000 14C yr B.P. but with periods of punctuated weaker monsoons. From the present and previous studies, it has been observed that after about 5000 or 4000 14C yr B.P., the monsoons became gradually reduced leading to drying up of many of the marginal marine mangrove ecosystems. A case study of Hadi profile provided an insight to the relevance of magnetic susceptibility (χ) to record the ecological shift in Late Holocene.  相似文献   

17.
Preliminary phytolith analysis of ephemeral lake fill sediment at Long Pocket, near Toomba, northeast Queensland, Australia, indicates that a C4-dominated grassland with a minor woody component has been present in the region since ca. 8000 cal yr B.P. Based on the modern distribution of C4 and C3 native grasses in Australia, this suggests that mean summer temperatures of at least 14°C (ca. 10°C cooler than present) were maintained since the early Holocene. This interpretation is comparable with previous studies, which together imply that the establishment of C4-dominated grasses in central and northeast Australia occurred between the last glacial maximum (most likely after ca. 16,000 14C yr B.P.) and ca. 7200 14C yr B.P. (ca. 8000 cal yr B.P.). Taxonomic composition of the grassland appears relatively consistent since the early Holocene at Long Pocket and includes phytoliths comparable with those from modern Arundinoideae, Panicoideae, and Chloridoideae. Rare non-grass phytoliths are also present. A gradual decrease in abundance of saddle phytolith forms (attributed to Chloridoideae grasses) from the base of the record at ca. 6500-7000 cal yr B.P. suggests decreasing aridity throughout the Holocene. This trend could reflect a locally drawn out effect of the end of the postglacial arid period due to the well-drained basalt flow catchment maintaining a local arid habitat for the Chloridoideae grasses.  相似文献   

18.
Seismic stratigraphy, sedimentary facies, pollen stratigraphy, diatom-inferred salinity, stable isotope (δ18O and δ13C), and chemical composition (Sr/Ca and Mg/Ca) of authigenic carbonates from Moon Lake cores provide a congruent Holocene record of effective moisture for the eastern Northern Great Plains. Between 11,700 and 950014C yr B.P., the climate was cool and moist. A gradual decrease in effective moisture occurred between 9500 and 710014C yr B.P. A change at about 710014C yr B.P. inaugurated the most arid period during the Holocene. Between 7100 and 400014C yr B.P., three arid phases occurred at 6600–620014C yr B.P., 5400–520014C yr B.P., and 4800–460014C yr B.P. Effective moisture generally increased after 400014C yr B.P., but periods of low effective moisture occurred between 2900–280014C yr B.P. and 1200–80014C yr B.P. The data also suggest high climatic variability during the last few centuries. Despite the overall congruence, the biological (diatom), sedimentological, isotopic, and chemical proxies were occassionally out of phase. At these times the evaporative process was not the only control of lake-water chemical and isotopic composition.  相似文献   

19.
More than 375 14C dates from 150 fossil sites in North America have been analyzed to evaluate the question of extinction of Late Pleistocene megafauna. When critically evaluated, no 14C ages for any extinct Pleistocene genera are younger than 10,000 yr B.P.  相似文献   

20.
Pollen analysis of a sediment core from Zagoskin Lake on St. Michael Island, northeast Bering Sea, provides a history of vegetation and climate for the central Bering land bridge and adjacent western Alaska for the past ≥30,000 14C yr B.P. During the late middle Wisconsin interstadial (≥30,000-26,000 14C yr B.P.) vegetation was dominated by graminoid-herb tundra with willows (Salix) and minor dwarf birch (Betula nana) and Ericales. During the late Wisconsin glacial interval (26,000-15,000 14C yr B.P.) vegetation was graminoid-herb tundra with willows, but with fewer dwarf birch and Ericales, and more herb types associated with dry habitats and disturbed soils. Grasses (Poaceae) dominated during the peak of this glacial interval. Graminoid-herb tundra suggests that central Beringia had a cold, arid climate from ≥30,000 to 15,000 14C yr B.P. Between 15,000 and 13,000 14C yr B.P., birch shrub-Ericales-sedge-moss tundra began to spread rapidly across the land bridge and Alaska. This major vegetation change suggests moister, warmer summer climates and deeper winter snows. A brief invasion of Populus (poplar, aspen) occurred ca.11,000-9500 14C yr B.P., overlapping with the Younger Dryas interval of dry, cooler(?) climate. During the latest Wisconsin to middle Holocene the Bering land bridge was flooded by rising seas. Alder shrubs (Alnus crispa) colonized the St. Michael Island area ca. 8000 14C yr B.P. Boreal forests dominated by spruce (Picea) spread from interior Alaska into the eastern Norton Sound area in middle Holocene time, but have not spread as far west as St. Michael Island.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号