首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We investigated the oxygen isotope composition (δ18O) of shell striae from juvenile Comptopallium radula (Mollusca; Pectinidae) specimens collected live in New Caledonia. Bottom-water temperature and salinity were monitored in-situ throughout the study period. External shell striae form with a 2-day periodicity in this scallop, making it possible to estimate the date of precipitation for each calcite sample collected along a growth transect. The oxygen isotope composition of shell calcite (δ18Oshell calcite) measured at almost weekly resolution on calcite accreted between August 2002 and July 2003 accurately tracks bottom-water temperatures. A new empirical paleotemperature equation for this scallop species relates temperature and δ18Oshell calcite:
t(°C)=20.00(±0.61)-3.66(±0.39)×(δ18Oshell calcite VPDB18Owater VSMOW)  相似文献   

2.
The oxygen isotope composition of phosphate from tooth enamel of rodents (δ18Op) constitutes a valuable proxy to reconstruct past air temperatures in continental environments. This method has been applied to rodent dental remains from three genera, Arvicola sp., Microtus sp. and Dicrostonyx sp., coming from Taillis-des-Coteaux, Vienne, France. This archaeological site contains an exceptionally preserved sedimentary sequence spanning almost the whole Upper Palaeolithic, including seven stratigraphic layers dated from 35 to 17 cal ka BP. The abundant presence of rodent remains offers the opportunity to quantify the climatic fluctuations coeval of the various stages of human occupation of the site. Differences between δ18Op values of Arvicola sp. and Microtus sp. teeth are interpreted as the result of heterochrony in tooth formation as well as differences in ecology. Mean δ18Op values of Microtus sp. are preferentially used to reconstruct summer air temperatures, which range from 16.0 ± 3.7 to 19.1 ± 3.1°C throughout the sedimentary sequence; however, the highest variability is observed during the last glacial maximum.  相似文献   

3.
Oxygen isotope analyses of water in blood of humans and domestic pigs indicate that the oxygen isotope fractionation effects between ingested water and body water are the same in all specimens of the same species. The δ18O of body water has been shown to vary linearly with the mean δ18O of local meteoric water. This conclusion also holds for the bone phosphate. Thus, δ18O(PO3?4) values of unaltered fossil bones from humans and domestic pigs can be used to reconstruct the δ18O values of local meteoric waters during the life-times of the mammals. Such data can be used for paleohydrological and paleoclimatological studies both on land and at sea.  相似文献   

4.
The middle Paleolithic stratigraphic sequence of Les Pradelles (Charente, France) spans from the end of Marine Isotope Stage (MIS) 4 until the middle of MIS 3. Micromammal remains are present in all the stratigraphic levels, offering a rare opportunity to address the questions of both environmental and climatic fluctuations throughout this period. Climate modes were studied through the taphonomy, biodiversity and oxygen isotope compositions of phosphate (δ18Op) from 66 samples of rodent tooth enamel. The δ18Op values from the lower sedimentary levels provide summer mean air temperatures of 19 ± 2°C (level 2/1) and of 16 ± 2°C (levels 2A, 2B and 4A). Within the middle of sequence (level 4B), a paleobiodiversity change can be identified with an increase of Dicrostonyx torquatus, which is associated with the largest amplitude in δ18Op values and the highest maximal δ18Op values. At the top of the sequence (level 5-2), a biodiversity change is observed with the increase of Microtus arvalis, but without any change in δ18Op values. The association of cold rodent species with unexpected high and large amplitudes in the δ18Op values of their teeth, possibly indicative of aridity, suggests their deposition during a Heinrich event.  相似文献   

5.
Forty-nine aragonitic and calcitic shells from 14 species of marine tropical molluscs (Bivalvia, Gastropoda, Polyplacophora) and ambient waters from Martinique have been analyzed for their carbon and oxygen isotope compositions. Mineralogy of shells was systematically determined by Raman spectroscopy that reveals composite shell structures and early processes of diagenetic alteration. In mangrove, brackish waters result from the mixing between 89±1% of seawater and 11±1% of freshwater, a hydrological budget quantified by both oxygen isotope and salinity mass balance calculations. Mollusc shells from the mangrove environment (S=31‰; δ18O=0.5‰) are characterized by mean δ13C values (−1.2‰) lower than those (+2.6‰) living in the open sea (S=35‰; δ18O=1‰). These low carbon isotope compositions result from the oxidation of organic matter into bicarbonate ions used in the building of mollusc shells. The oxygen isotope compositions of the studied mollusc species are mainly controlled by the temperature and composition of seawater whereas the role of the so-called “vital effects” is negligible. Contrasting with carbon isotopes, variability in the δ18O values among and within species of mollusc shells is very low (1σ=0.15) for a given littoral environment. Using ambient temperatures of seawater (28-30 °C), oxygen isotope fractionations between all studied living species and environmental waters match those extrapolated from the fractionation equation established for molluscs by Grossman and Ku [Chem. Geol., Isot. Geosci. Sect. 59 (1986) 59] in the range 3-20 °C. By analyzing calcite and aragonite layers from the same shell or by comparing shells from different species living in the same environment, there is no evidence that oxygen isotope fractionation between aragonite and water differs from that between calcite and water. On the basis of these results, we conclude that the oxygen isotope compositions of shells from most fossil mollusc species are suitable to estimate past seawater temperatures at any paleolatitude.  相似文献   

6.
Lithological, chemical, and stable isotope data are used to characterize lacustrine tufas dating back to pre-late Miocene and later unknown times, capping different surfaces of a Tertiary carbonate (Sinn el-Kedab) plateau in Dungul region in the currently hyperarid south-western Egypt. These deposits are composed mostly of calcium carbonate, some magnesium carbonate and clastic particles plus minor amounts of organic matter. They have a wide range of (Mg/Ca)molar ratios, from 0.03 to 0.3. The bulk-tufa carbonate has characteristic isotope compositions: (δ13Cmean = −2.49 ± 0.99‰; δ18Omean = −9.43 ± 1.40‰). The δ13C values are consistent with a small input from C4 vegetation or thinner soils in the recharge area of the tufa-depositing systems. The δ18O values are typical of fresh water carbonates. Covariation between δ13C and δ18O values probably is a reflection of climatic conditions such as aridity. The tufas studied are isotopically similar to the underlying diagenetic marine chalks, marls and limestones (δ13Cmean = −2.06 ± 0.84‰; δ18Omean = −10.06 ± 1.39‰). The similarity has been attributed to common meteoric water signatures. This raises large uncertainties in using tufas (Mg/Ca)molar, δ13C and δ18O records as proxies of paleoclimatic change and suggests that intrinsic compositional differences in material sources within the plateau may mask climatic changes in the records.  相似文献   

7.
Understanding past climate change is critical to the interpretation of earth history. Even though relative temperature change has been readily assessed in the marine record, it has been more difficult in the terrestrial record due to restricted taxonomic distribution and isotopic fractionation. This problem could be overcome by the use of multiple paleoproxies. Therefore, the δ18O isotopic composition of five paleoproxies (rodent tooth enamel, δ18OPhosphate = +17.7 ± 2.0‰ n = 74 (VSMOW); fish scale ganoine δ18OPhosphate = +19.7 ± 0.7‰ n = 20 (VSMOW); gastropod shell δ18OCalcite = −1.7 ± 1.3‰ n = 50 (VPDB); charophyte gyrogonite δ18OCalcite = −2.4 ± 0.5‰ n = 20 (VPDB); fish otolith δ18OAragonite = δ18O = −3.6 ± 0.6‰ n = 20 (VPDB)) from the Late Eocene (Priabonian) Osborne Member (Headon Hill Formation, Solent Group, Hampshire Basin, UK) were determined. Because diagenetic alteration was shown to be minimal the phosphate oxygen component of rodent tooth enamel (as opposed to enamel carbonate oxygen) was used to calculate an initial δ18OLocal water value of 0.0 ± 3.4‰. However, a skewed distribution, most likely as a result of the ingestion of evaporating water, necessitated the calculation of a corrected δ18OLocal water value of −1.3 ± 1.7‰ (n = 62). This δ18OLocal water value corresponds to an approximate mean annual temperature of 18 ± 1°C. Four other mean paleotemperatures can also be calculated by combining the δ18OLocal water value with four independent freshwater paleoproxies. The calculated paleotemperature using the fish scale thermometry equations most likely represents the mean temperature (21 ± 2°C) of the entire length of the growing season. This should be concordant with the paleotemperature calculated using the Lymnaea shell thermometry equation (23 ± 2°C). The lack of concordance is interpreted to be the result of diagenetic alteration of the originally aragonitic Lymnaea shell to calcite. The mean paleotemperature calculated using the charophyte gyrogonite thermometry equation (21 ± 2°C), on the other hand, most likely represents the mean temperature of a single month toward the end of the growing season. The fish otolith mean paleotemperature (28 ± 2°C) most likely represents the mean temperature of the warmest months of the growing season. An approximate mean annual temperature of 18 ± 1°C, in addition to a mean growing season paleotemperature of 21 ± 2°C (using fish scale only) with a warmest month temperature of 28 ± 2°C, and high associated standard deviations suggest that a subtropical to warm temperate seasonal climate existed during the deposition of the Late Eocene Osborne Member.  相似文献   

8.
The Reykjanes geothermal system is located on the landward extension of the Mid-Atlantic Ridge in southwest Iceland, and provides an on-land proxy to high-temperature hydrothermal systems of oceanic spreading centers. Previous studies of elemental composition and salinity have shown that Reykjanes geothermal fluids are likely hydrothermally modified seawater. However, δD values of these fluids are as low as −23‰, which is indicative of a meteoric water component. Here we constrain the origin of Reykjanes hydrothermal solutions by analysis of hydrogen and oxygen isotope compositions of hydrothermal epidote from geothermal drillholes at depths between 1 and 3 km. δDEPIDOTE values from wells RN-8, -9, -10 and -17 collectively range from −60 to −78‰, and δ18OEPIDOTE in these wells are between −3.0 and 2.3‰. The δD values of epidote generally increase along a NE trend through the geothermal field, whereas δ18O values generally decrease, suggesting a southwest to northeast migration of the geothermal upflow zone with time that is consistent with present-day temperatures and observed hydrothermal mineral zones. For comparative analysis, the meteoric-water dominated Nesjavellir and Krafla geothermal systems, which have a δDFLUID of ∼ −79‰ and −89‰, respectively, show δDEPIDOTE values of −115‰ and −125‰. In contrast, δDEPIDOTE from the mixed meteoric-seawater Svartsengi geothermal system is −68‰; comparable to δDEPIDOTE from well RN-10 at Reykjanes.Stable isotope compositions of geothermal fluids in isotopic equilibrium with the epidotes at Reykjanes are computed using published temperature dependent hydrogen and oxygen isotope fractionation curves for epidote-water, measured isotope composition of the epidotes and temperatures approximated from the boiling point curve with depth. Calculated δD and δ18O of geothermal fluids are less than 0‰, suggesting that fluids of meteoric or glacial origin are a significant component of the geothermal solutions. Additionally, δDFLUID values in equilibrium with geothermal epidote are lower than those of modern-day fluids, whereas calculated δ18OFLUID values are within range of the observed fluid isotope composition. We propose that modern δDEPIDOTE and δDFLUID values are the result of diffusional exchange between hydrous alteration minerals that precipitated from glacially-derived fluids early in the evolution of the Reykjanes system and modern seawater-derived geothermal fluids. A simplified model of isotope exchange in the Reykjanes geothermal system, in which the average starting δDROCK value is −125‰ and the water to rock mass ratio is 0.25, predicts a δDFLUID composition within 1‰ of average measured values. This model resolves the discrepancy between fluid salinity and isotope composition of Reykjanes geothermal fluids, explains the observed disequilibrium between modern fluids and hydrothermal epidote, and suggests that rock-fluid interaction is the dominant control over the evolution of fluid isotope composition in the hydrothermal system.  相似文献   

9.
The δ18O of ground water (−13.54 ± 0.05 ‰) and inorganically precipitated Holocene vein calcite (+14.56 ± 0.03 ‰) from Devils Hole cave #2 in southcentral Nevada yield an oxygen isotopic fractionation factor between calcite and water at 33.7 °C of 1.02849 ± 0.00013 (1000 ln αcalcite-water = 28.09 ± 0.13). Using the commonly accepted value of ∂(αcalcite-water)/∂T of −0.00020 K−1, this corresponds to a 1000 ln αcalcite-water value at 25 °C of 29.80, which differs substantially from the current accepted value of 28.3. Use of previously published oxygen isotopic fractionation factors would yield a calcite precipitation temperature in Devils Hole that is 8 °C lower than the measured ground water temperature. Alternatively, previously published fractionation factors would yield a δ18O of water, from which the calcite precipitated, that is too negative by 1.5 ‰ using a temperature of 33.7 °C. Several lines of evidence indicate that the geochemical environment of Devils Hole has been remarkably constant for at least 10 ka. Accordingly, a re-evaluation of calcite-water oxygen isotopic fractionation factor may be in order.Assuming the Devils Hole oxygen isotopic value of αcalcite-water represents thermodynamic equilibrium, many marine carbonates are precipitated with a δ18O value that is too low, apparently due to a kinetic isotopic fractionation that preferentially enriches 16O in the solid carbonate over 18O, feigning oxygen isotopic equilibrium.  相似文献   

10.
Recently, a new method has been introduced for the estimation of photosynthetic oxygen production from the triple isotope composition (δ17O and δ18O) of dissolved O2 in the ocean and of air O2 in ice cores. This method is based on the deviations (17Δ) from mass dependent respiratory fractionation, the major process affecting the isotopic composition of air O2. To apply this method, the slope in the 17O/16O vs. 18O/16O relationship used for 17Δ calculation must be known with high accuracy. Using numerical simulations and closed system experiments, we show how the respiratory slope is manifested in the 17Δ of O2 in situations where respiration is the only process affecting oxygen isotopic composition (kinetic slope), and in systems in steady state between photosynthesis and respiration (steady state slope). The slopes of the fractionation line in these two cases are different, and the reasons of this phenomenon are discussed. To determine the kinetic respiratory slope for the dominant O2 consumers in aquatic systems, we have conducted new experiments using a wide range of organisms and conditions and obtained one universal value (0.5179 ± 0.0006) in ln(δ17O + 1) vs. ln(δ18O + 1) plots. It was also shown that the respiratory fractionations under light and dark are identical within experimental error. We discuss various marine situations and conclude that the kinetic slope 0.518 should be used for calculating 17Δ of dissolved O2. In contrast, a steady state fractionation slope should be used in global mass balance calculations of triple isotope ratios of O2 in air records of ice cores.  相似文献   

11.
Kinetic isotope effects related to the breaking of chemical bonds drive sulfur isotope fractionation during dissimilatory sulfate reduction (DSR), whereas oxygen isotope fractionation during DSR is dominated by exchange between intercellular sulfur intermediates and water. We use a simplified biochemical model for DSR to explore how a kinetic oxygen isotope effect may be expressed. We then explore these relationships in light of evolving sulfur and oxygen isotope compositions (δ34SSO4 and δ18OSO4) during batch culture growth of twelve strains of sulfate-reducing bacteria. Cultured under conditions to optimize growth and with identical δ18OH2O and initial δ18OSO4, all strains show 34S enrichment, whereas only six strains show significant 18O enrichment. The remaining six show no (or minimal) change in δ18OSO4 over the growth of the bacteria. We use these experimental and theoretical results to address three questions: (i) which sulfur intermediates exchange oxygen isotopes with water, (ii) what is the kinetic oxygen isotope effect related to the reduction of adenosine phosphosulfate (APS) to sulfite (SO32−), (iii) does a kinetic oxygen isotope effect impact the apparent oxygen isotope equilibrium values? We conclude that oxygen isotope exchange between water and a sulfur intermediate likely occurs downstream of APS and that our data constrain the kinetic oxygen isotope fractionation for the reduction of APS to sulfite to be smaller than 4‰. This small oxygen isotope effect impacts the apparent oxygen isotope equilibrium as controlled by the extent to which APS reduction is rate-limiting.  相似文献   

12.
Oxygen and iron isotope analyses of low-Ti and high-Ti mare basalts are presented to constrain their petrogenesis and to assess stable isotope variations within lunar mantle sources. An internally-consistent dataset of oxygen isotope compositions of mare basalts encompasses five types of low-Ti basalts from the Apollo 12 and 15 missions and eight types of high-Ti basalts from the Apollo 11 and 17 missions. High-precision whole-rock δ18O values (referenced to VSMOW) of low-Ti and high-Ti basalts correlate with major-element compositions (Mg#, TiO2, Al2O3). The observed oxygen isotope variations within low-Ti and high-Ti basalts are consistent with crystal fractionation and match the results of mass-balance models assuming equilibrium crystallization. Whole-rock δ56Fe values (referenced to IRMM-014) of high-Ti and low-Ti basalts range from 0.134‰ to 0.217‰ and 0.038‰ to 0.104‰, respectively. Iron isotope compositions of both low-Ti and high-Ti basalts do not correlate with indices of crystal fractionation, possibly owing to small mineral-melt iron fractionation factors anticipated under lunar reducing conditions.The δ18O and δ56Fe values of low-Ti and the least differentiated high-Ti mare basalts are negatively correlated, which reflects their different mantle source characteristics (e.g., the presence or absence of ilmenite). The average δ56Fe values of low-Ti basalts (0.073 ± 0.018‰, n = 8) and high-Ti basalts (0.191 ± 0.020‰, n = 7) may directly record that of their parent mantle sources. Oxygen isotope compositions of mantle sources of low-Ti and high-Ti basalts are calculated using existing models of lunar magma ocean crystallization and mixing, the estimated equilibrium mantle olivine δ18O value, and equilibrium oxygen-fractionation between olivine and other mineral phases. The differences between the calculated whole-rock δ18O values for source regions, 5.57‰ for low-Ti and 5.30‰ for high-Ti mare basalt mantle source regions, are solely a function of the assumed source mineralogy. The oxygen and iron isotope compositions of lunar upper mantle can be approximated using these mantle source values. The δ18O and δ56Fe values of the lunar upper mantle are estimated to be 5.5 ± 0.2‰ (2σ) and 0.085 ± 0.040‰ (2σ), respectively. The oxygen isotope composition of lunar upper mantle is identical to the current estimate of Earth’s upper mantle (5.5 ± 0.2‰), and the iron isotope composition of the lunar upper mantle overlaps within uncertainty of estimates for the terrestrial upper mantle (0.044 ± 0.030‰).  相似文献   

13.
The sources and petrogenetic processes that generated some of the Earth’s oldest continental crust have been more tightly constrained via an integrated, in situ (U-Pb, O and Hf) isotopic approach. The minerals analysed were representative zircon from four Eoarchaean TTG tonalites and two felsic volcanic rocks, and olivine from one harzburgite/dunite of the Itsaq Gneiss Complex (IGC), southern West Greenland. The samples were carefully chosen from localities with least migmatisation, metasomatism and strain. Zircon was thoroughly characterized prior to analysis using cathodoluminescence, scanning electron, reflected and transmitted light imaging. The zircon from all but one sample showed only minor post-magmatic recrystallisation. 207Pb/206Pb dating of oscillatory-zoned zircon using SHRIMP RG (n = 142) indicates derivation of the felsic igneous rocks from different batches of magma at 3.88, 3.85, 3.81, 3.80 and 3.69 Ga.Analyses of 18O/16O compositions of olivine from a harzburgite/dunite (n = 8) using SHRIMP II in multi-collector mode, indicate that the oxygen isotopic composition of this sample of Eoarchaean mantle (δ18OOl = 6.0 ± 0.4‰) was slightly enriched in 18O, but not significantly different from that of the modern mantle. Zircon δ18O measurements from the six felsic rocks (n = 93) record mean or weighted mean compositions ranging from 4.9 ± 0.7‰ to 5.1 ± 0.4‰, with recrystallised domains showing no indication of oxygen isotopic exchange during younger tectonothermal events. δ18OZr compositions indicate that the primary magmas were largely in equilibrium with the mantle or mantle-derived melts generated at similar high temperatures, while calculated tonalite δ18OWR compositions (6.7-6.9‰) resemble those of modern adakites.LA-MC-ICPMS zircon 176Hf/177Hf analyses were obtained from six samples (n = 122). Five samples record weighted mean initial εHf compositions ranging from to 0.5 ± 0.6 to −0.1 ± 0.7 (calculated using λ176Lu = 1.867 × 10−11 yr−1), while one sample records a composition of 1.3 ± 0.7, indicating the magmas were generated from a reservoir with a time averaged, near chondritic Lu/Hf. The derivation of TTG magmas from a chondritic Lu/Hf source implies either that there was not voluminous continental crustal growth nor major mantle differentiation leading to Lu/Hf fractionation during the Hadean or Eoarchaean, or alternatively that rapid recycling of an early formed crust allowed the early mantle to maintain a chondritic Lu/Hf.Previous studies have demonstrated that ancient TTG rocks were mostly produced by dehydration melting of mafic rocks within the stability field of garnet, probably in flatly-subducted or buried oceanic crust. The oxygen isotopic signatures measured here at high spatial resolution allow the source materials to be better defined. Melting of a mixed mafic source consisting of ∼80% unaltered gabbro (δ18OWR = 5.5‰) with ∼20% hydrothermally altered gabbro/basalt (δ18OWR = 4.0‰) would produce tonalite magmas within the average compositional range observed. 18O-enriched components such as altered shallow basaltic oceanic crust and pelagic or continental sediments were not present in the sources of these TTG melts. The absence of high 18O signatures may indicate either the rarity of low temperature altered sediments, or their effective removal from the down-going slab.  相似文献   

14.
Deuterium and oxygen isotope fractionations between liquid and vapor water were experimentally-determined during evaporation of a NaCl solution (35 g L−1) as a function of water temperature and wind velocity. In the case of a null wind velocity, slopes of δD18O trajectories of residual waters hyperbolically decrease with increasing water temperatures in the range 23-47 °C. For wind velocities ranging from 0.8 to 2.2 m s−1, slopes of the δD18O trajectories linearly increase with increasing wind velocity at a given water temperature. These experimental results can be modeled by using Rayleigh distillation equations taking into account wind-related kinetics effects. Deuterium and oxygen isotope compositions of water inclusions trapped by the precipitated halite crystals were determined by micro-equilibration techniques.These isotopic compositions accurately reflect those of the surrounding residual waters during halite growth. Isotopic compositions of water inclusions in twenty natural halites from the Messinian Realmonte mine in Sicily suggest precipitation temperatures of that match the homogenization temperatures obtained by microthermometry (median = 34 ± 5 °C). The similarity between the measured and experimental slopes of the δD18O evaporation trajectories suggests that the effect of wind was negligible during the genesis of these halite deposits. Hydrogen and oxygen isotope compositions of water inclusions from Realmonte halite also define a linear trend whose extrapolation until intersection with the Mediterranean Meteoric Water Line allows the characterization of the water source with δD and δ18O values of −70 ± 10‰ and −11.5 ± 1.5‰, respectively. These results reveal that the huge amounts of salts deposited in Sicily result from the evaporation of seawater mixed with a dominant fraction (?50%) of meteoric waters most likely deriving from alpine fluvial discharge.  相似文献   

15.
Fossils of megaherbivores from eight late Pleistocene 14C- and OSL-dated doline infillings of Ajoie (NW Switzerland) were discovered along the Transjurane highway in the Swiss Jura. Carbon and oxygen analyses of enamel were performed on forty-six teeth of large mammals (Equus germanicus, Mammuthus primigenius, Coelodonta antiquitatis, and Bison priscus), coming from one doline in Boncourt (~ 80 ka, marine oxygen isotope stage MIS5a) and seven in Courtedoux (51–27 ka, late MIS3), in order to reconstruct the paleoclimatic and paleoenvironmental conditions of the region. Similar enamel δ13C values for both periods, ranging from − 14.5 to − 9.2‰, indicate that the megaherbivores lived in a C3 plant-dominated environment. Enamel δ18OPO4 values range from 10.9 to 16.3‰ with a mean of 13.5 ± 1.0‰ (n = 46). Mean air temperatures (MATs) were inferred using species-specific δ18OPO4–δ18OH2O-calibrations for modern mammals and a present-day precipitation δ18OH2O-MAT relation for Switzerland. Similar average MATs of 6.6 ± 3.6°C for the deposits dated to ~ 80 ka and 6.5 ± 3.3°C for those dated to the interval 51–27 ka were estimated. This suggests that these mammals in the Ajoie area lived in mild periods of the late Pleistocene with MATs only about 2.5°C lower than modern-day temperatures.  相似文献   

16.
Many (bio)geochemical processes that bring about changes in sediment chemistry normally begin at the sediment-water interface, continue at depth within the sediment column and may persist throughout the lifetime of sediments. Because of the differential reactivity of sedimentary phosphate phases in response to diagenesis, dissolution/precipitation and biological cycling, the oxygen isotope ratios of phosphate (δ18OP) can carry a distinct signature of these processes, as well as inform on the origin of specific P phases. Here, we present results of sequential sediment extraction (SEDEX) analyses combined with δ18OP measurements, aimed at characterizing authigenic and detrital phosphate phases in continental margin sediments from three sites (Sites 1227, 1228 and 1229) along the Peru Margin collected during ODP Leg 201. Our results show that the amount of P in different reservoirs varies significantly in the upper 50 m of the sediment column, but with a consistent pattern, for example, detrital P is highest in siliciclastic-rich layers. The δ18OP values of authigenic phosphate vary between 20.2‰ and 24.8‰ and can be classified into at least two major groups: authigenic phosphate precipitated at/near the sediment-water interface in equilibrium with paleo-water oxygen isotope ratios (δ18Ow) and temperature, and phosphate derived from hydrolysis of organic matter (Porg) with subsequent incomplete to complete re-equlibration and precipitated deeper in the sediments column. The δ18OP values of detrital phosphate, which vary from 7.7-15.4‰, suggest two possible terrigenous sources and their mixtures in different proportions: phosphate from igneous/metamorphic rocks and phosphate precipitated in source regions in equilibrium with δ18Ow of meteoric water. More importantly, original isotopic compositions of at least one phase of authigenic phosphates and all detrital phosphates are not altered by diagenesis and other biogeochemical changes within the sediment column. These findings help to understand the origin and provenance of P phases and paleoenvironmental conditions at/near the sediment-water interface, and to infer post-depositional activities within the sediment column.  相似文献   

17.
Laboratory experiments were conducted to simulate chalcopyrite oxidation under anaerobic and aerobic conditions in the absence or presence of the bacterium Acidithiobacillus ferrooxidans. Experiments were carried out with 3 different oxygen isotope values of water (δ18OH2O) so that approach to equilibrium or steady-state isotope fractionation for different starting conditions could be evaluated. The contribution of dissolved O2 and water-derived oxygen to dissolved sulfate formed by chalcopyrite oxidation was unambiguously resolved during the aerobic experiments. Aerobic oxidation of chalcopyrite showed 93 ± 1% incorporation of water oxygen into the resulting sulfate during the biological experiments. Anaerobic experiments showed similar percentages of water oxygen incorporation into sulfate, but were more variable. The experiments also allowed determination of sulfate–water oxygen isotope fractionation, ε18OSO4–H2O, of ~ 3.8‰ for the anaerobic experiments. Aerobic oxidation produced apparent εSO4–H2O values (6.4‰) higher than the anaerobic experiments, possibly due to additional incorporation of dissolved O2 into sulfate. δ34SSO4 values are ~ 4‰ lower than the parent sulfide mineral during anaerobic oxidation of chalcopyrite, with no significant difference between abiotic and biological processes. For the aerobic experiments, a small depletion in δ34SSO4 of ~? 1.5 ± 0.2‰ was observed for the biological experiments. Fewer solids precipitated during oxidation under aerobic conditions than under anaerobic conditions, which may account for the observed differences in sulfur isotope fractionation under these contrasting conditions.  相似文献   

18.
Fluid inclusions found trapped in speleothems (cave deposited travertine) are interpreted as samples of seepage water from which enclosing calcium carbonate was deposited. The inclusions are assumed to have preserved their D/H ratios since the time of deposition. Initial 18O/16O ratios can be inferred from δD because rain- and snow-derived seepage waters fall on the meteoric water line (δD = 8δ18O + 10). Estimates of temperature of deposition of the carbonate can be calculated from inclusion D/H ratios and δ18O of enclosing calcite in Pleistocene speleothems. For most speleothems investigated (0–200,000 yr old) δ18O of calcite appears to have decreased with increasing temperature of deposition indicating that the dominant cause of climate-dependent change in δ18O of calcite was the change in Kcw, the isotope fractionation equilibrium constant, with temperature; δ18O of meteoric precipitation generally increased with increasing temperature, but not sufficiently to compensate for the decrease in Kcw.  相似文献   

19.
The isotopic composition of atmospheric O2 depends on the rates of oxygen cycling in photosynthesis, respiration, photochemical reactions in the stratosphere and on δ17O and δ18O of ocean and leaf water. While most of the factors affecting δ17O and δ18O of air O2 have been studied extensively in recent years, δ17O of leaf water—the substrate for all terrestrial photosynthesis—remained unknown. In order to understand the isotopic composition of atmospheric O2 at present and in fossil air in ice cores, we studied leaf water in field experiments in Israel and in a European survey. We measured the difference in δ17O and δ18O between stem and leaf water, which is the result of isotope enrichment during transpiration. We calculated the slopes of the lines linking the isotopic compositions of stem and leaf water. The obtained slopes in ln(δ17O + 1) vs. ln(δ18O + 1) plots are characterized by very high precision (∼0.001) despite of relatively large differences between duplicates in both δ17O and δ18O (0.02-0.05‰). This is so because the errors in δ18O and δ17O are mass-dependent. The slope of the leaf transpiration process varied between 0.5111 ± 0.0013 and 0.5204 ± 0.0005, which is considerably smaller than the slope linking liquid water and vapor at equilibrium (0.529). We further found that the slope of the transpiration process decreases with atmospheric relative humidity (h) as 0.522-0.008 × h, for h in the range 0.3-1. This slope is neither influenced by the plant species, nor by the environmental conditions where plants grow nor does it show strong variations along long leaves.  相似文献   

20.
Aragonite was precipitated in the laboratory at 0, 5, 10, 25, and 40 °C to determine the temperature dependence of the equilibrium oxygen isotope fractionation between aragonite and water. Forced CO2 degassing, passive CO2 degassing, and constant addition methods were employed to precipitate aragonite from supersaturated solutions, but the resulting aragonite-water oxygen isotope fractionation was independent of the precipitation method. In addition, under the experimental conditions of this study, the effect of precipitation rate on the oxygen isotope fractionation between aragonite and water was almost within the analytical error of ±∼0.13‰ and thus insignificant. Because the presence of Mg2+ ions is required to nucleate and precipitate aragonite from Na-Ca-Cl-HCO3 solutions under these experimental conditions, the influence of the total Mg2+ concentration (up to ∼0.9 molal) on the aragonite-water oxygen isotope fractionation was examined at 25 °C. No significant Mg2+ ion effect, or oxygen isotope salt effect, was detected up to 100 mmolal total Mg2+ but a noticeable isotope salt effect was observed at ∼0.9 molal total Mg2+.On the basis of results of the laboratory synthesis experiments, a new expression for the aragonite-water fractionation is proposed over the temperature range of 0-40 °C:
1000lnαaragonite-water=17.88±0.13(103/T)-31.14±0.46  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号