首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
将伴随同化方法用于渤、黄海NPZD三维浮游生态动力学模型的研究中,利用1998年~2006年的SeaWiFS叶绿素资料作为观测数据进行同化实验,优化难以确定的生态参数.文中对参数在整个计算区域取常数时进行了优化,同时尝试了一种新的参数化方案,即在海区中选取一些点作为独立参数点,其它点的参数由独立参数点的值经过线性插值得到,优化独立点的参数后得到所有计算格点的参数.针对这两种不同的参数化方案做了一系列对比实验,结果表明利用伴随同化方法反演空间分布的参数能有效地提高数值模拟的精度.  相似文献   

2.
本文将伴随同化方法应用于海洋生态系统动力学模型。将一年平均分为72个过程,通过同化每一个过程研究区域(17°N-~45°N,173°E~142°W)内的SeaWiFS表层叶绿素数据,优化影响生态机制的5个关键参数Vm、Dz、e、Gm、Dp(简称KP),得到他们在研究区域内的时空分布。对于KP中的每一个参数,首先,分别将其在时间和空间上求平均,得到参数的空间分布场(KPS)和时间分布序列(KPT);其次,将KPS在空间上求平均,得到一个常数(KPC),并利用KPS、KPT和KPC表示出KP的另一种时空变化形式KPST,它减少了模拟过程中变量个数。结果表明,无论是空间分布还是时间分布,Vm、Dz和e具有相同的分布特征和变化趋势,相关系数可达0.99,Dp和Gm亦然,;而Vm、Dz和e的变化趋势与Dp和Gm的变化趋势呈负相关,相关系数可达-0.99。5个参数的变化趋势符合物理意义和生态机制。将模型中的参数分别按上述5种形式赋值,正向运行模式1年,结果表明,考虑参数时空分布的实验误差最小。说明在海洋生态系统动力学数值模拟中,与只考虑参数的空间分布或者只考虑参数的时间分布相比,考虑参数时空分布更合理,更具有物理意义且符合生态机制;伴随同化技术在优化时空变化的参数方面,是一种有效的,普遍适用的方法。  相似文献   

3.
生物标志物已被广泛应用于重建浮游植物生产力和群落结构变化.该方法假设之一是生标的含量可以反映表层海水的浮游植物生物量,但这个假设还缺乏现场观测的充分验证.对2009年冬季南海北部表层海水颗粒物中主要生标做了分析,利用其含量及比值研究浮游植物的生物量及群落结构的分布.生标含量表明硅藻、甲藻、颗石藻的高值区位于珠江口南部及广东沿岸,在陆坡区也有高值.生标比值显示硅藻在3个类群中的相对比例最高.其中,甲藻/硅藻比值高值区位于陆坡区,这与大洋水(黑潮)的入侵,带来大量暖水性甲藻有很大关系;颗石藻/硅藻比值总体趋势与生物量的分布相反,在近岸少数站位有高值,向外海逐渐增加,主要是因为颗石藻更适于寡营养盐的环境.生标结果所指示的生物量及群落结构的空间分布与前人的调查结果类似,为利用生标重建此区域的浮游植物生产力和群落结构变化提供了依据.  相似文献   

4.
随着海洋生态系统模型的发展,生态变量增多,众多生物过程参数量值的确定成为制约生态环境模拟的瓶颈问题,生态系统结构区域性要求模型中的生态参数具有区域差异。为探究不同海区的关键参数及参数敏感度的空间差异,本研究在渤、黄海建立了ROMS-CoSiNE物理–生物耦合的高分辨率生态系统模型,并对13种生态参数的敏感度空间分布进行分析。结果表明:南黄海中部与渤海及近岸海域的敏感度差异较大。渤海敏感度最大的参数为决定光合速率的浮游植物P-I曲线初始斜率,其次为浮游动物捕食半饱和常数和浮游动物最大捕食率。而南黄海中部敏感度最大的参数为浮游动物最大捕食率,其次为浮游植物死亡率和浮游植物P-I曲线初始斜率。结合敏感度分布及浮游植物生物量收支得出,渤海水体透明度较南黄海偏低、浮游植物生长光限制较强,是引起浮游植物P-I曲线初始斜率敏感度在渤海高于黄海的主要原因。浮游动物最大捕食率及浮游植物死亡率的敏感度空间差异,受渤、黄海浮游植物生物量差异的影响,与生态系统中的高度非线性特征有关。  相似文献   

5.
以气候耦合模式FOAM(Fast Ocean-Atmosphere Model)的气候态为背景场,基于参数的空间分布,定量地研究通过伴随同化方法反演空间变化的参数的能力,探讨影响反演结果的主要因素。通过孪生数值实验同化浮游植物资料,发现在单独反演1个空间变化的参数时,两种给定的参数空间变化都可以被很好地反演出来,参数的平均相对误差在4%以内,说明通过伴随同化方法可以有效地反演出空间变化的参数;而当同时反演作为控制变量的五个参数时,各参数变化趋势的搭配对反演结果影响很大,只有当这种搭配与模型中影响浮游植物生物量变化的生态机制一致时,5个参数才能较准确地得到反演。同化含有10%随机误差的观测数据对反演结果的影响不大,进一步说明了利用伴随同化方法反演参数空间变化的有效性。  相似文献   

6.
2001年7月测定大鹏澳表层叶绿素a含量为2.61—19.87mg·m-3,初级生产力为404.08—1097.25mgC·(m2·d)-1,N∶P值远高于Redfield比值16。回归分析表明,该水域浮游植物的现存量或生长量并不受某个单一因子调控。在营养盐加富试验中,加入含有P系列的浮游植物增殖速度最快,揭示P是此时大鹏澳浮游植物的潜在限制因子。将大鹏澳浮游植物水样置于不同的N∶P值环境中进行实验,结果表明,浮游植物在N∶P值为30的梯度组中生物量最高,浮游植物生物多样性程度也最高,其次是N∶P值为16和8的梯度组。N∶P值为30的梯度组的浮游植物优势种的时间变化最稳定。  相似文献   

7.
基于Cressman客观分析的南海北部海区数据同化实验   总被引:4,自引:0,他引:4       下载免费PDF全文
利用POM模式和空间插值法构造的同化方案对南海北部的航次观测资料进行了数据同化模拟.结果表明,数据同化有效兼顾了模式模拟和航次观测,在一定程度上纠正了模式模拟值相对于真实数据的误差;同化结果与模拟结果相比更接近观测值,在航次断面及其附近海域同化结果误差较小;另一方面,由于航次资料站点相对较少,在无观测数据的海域模式同化不是很理想,有待改进.此方法可为南海大型航次及其他资料同化提供一个再分析资料的实验性参考.  相似文献   

8.
本文基于南海SEATS站的观测资料,利用垂直一维海洋生态系统动力学模式(MEM-1D)模拟了南海北部生态要素垂直结构的季节变化。结果表明,南海北部表层Chla浓度具有明显的季节变化特征,夏季呈现低值(<0.05 mg·m-3),冬季呈现高值,12月为0.38 mg·m-3。春季,风速相对变小,垂直混合变弱,次表层Chla浓度极大值现象形成(80~100 m),并可一直持续到10月末。冬季,海表温度降低,东北季风爆发,垂直混合增强,出现表层水华现象。浮游动物和细菌的垂直结构相似,冬季上层水体中浮游动物和细菌出现最大值,分别为13 mg·m-3和18 mg·m-3。3~10月细菌(12 mg·m-3)同浮游动物(14 mg·m-3)一样出现次表层最大值,其存在深度与浮游动物相似。  相似文献   

9.
根据2005年1,4,7和10月4个季度代表月份在海南岛三亚湾进行的现场综合调查资料,分析了海区浮游植物和浮游细菌生物量的空间分布及季节变异特征,探讨了它们与温度,DIN,PO43-,DO,BOD5等生态环境因子的关系.结果表明,三亚湾海区2005年平均叶绿素a浓度为:(2.48±2.97)mg/m3,浮游植物生物量(C)为:(124.2±148.3)mg/m3,浮游植物生物量秋季最高,其他季节差异不大,除夏季外,浮游植物生物量(C)均表现为:表层大于底层;年平均浮游细菌丰度为(6.90±2.95)×108个/dm3,细菌生物量(C)为(13.79±5.90)mg/m3,细菌生物量夏季最高,往下依次为冬季、春季和秋季,且4个季节均为表层大于底层.4个季节表、底层浮游植物和细菌生物量的空间分布特征明显,均表现为从近岸的三亚河口往外海逐渐降低的趋势,三亚河的陆源输送和入海扩散是造成此分布特征的主要原因.无机营养盐中,DIN是调控浮游植物和细菌生物量的主导因子.位于热带的三亚湾,温度不成为影响二者季节差异的主要因子.浮游细菌生物量和浮游植物生物量的比值BB/PB为:0.06~0.15(平均为0.12),三亚湾浮游植物生物量和浮游细菌生物量间的相关性非常显著(P<0.01),初级生产是影响水域浮游细菌分布的重要因素.  相似文献   

10.
通过修订的VGPM模型,利用南海北部7年平均SeaWiFS和AVHRR遥感资料,分析了该海域河口上升流及反气旋涡等生境表层叶绿素浓度和初级生产力的周年变化,结果表明,季风驱动下的物理一生物海洋学耦合过程是控制研究海域浮游植物生物量和初级生产力时空变化的主导因素.浮游植物生物量和初级生产力随着季风、环流以及中尺度涡等物理...  相似文献   

11.
Predicting the ability of the biosphere to continue to deliver ecosystem services in the face of biodiversity loss and environmental change is a major challenge. The results of short‐term and small‐scale experimental studies are both equivocal and difficult to extrapolate from. In this study we use data on benthic palaeocommunities covering 4,000,000 years (in the Late Jurassic when temperate coastal seas in NW Europe experienced fluctuations in oxygenation). The biological traits associated with each species in the palaeocommunities were combined to index the delivery of ecological functions. Five ecosystem functions were examined: food for large mobile predators, biogenic habitat provision, nutrient recycling/regeneration, inorganic carbon sequestration and food‐web dynamics. In modern systems these ecological functions underpin ecosystem services that are important for human well‐being. Our results show that the supply of food for higher predators was remarkably constant during the 4,000,000 years, suggesting that redundancy amongst species in the assemblage drives the biodiversity–ecosystem function (BEF) relationship. By contrast, the provision of biogenic habitat varied with the occurrence of a relatively few taxa, a pattern consistent with a rivet type model of BEF. For nutrient regeneration, carbon sequestration and food‐web dynamics the patterns were complex and suggestive of an idiosyncratic model of BEF. To our knowledge this is the first study to quantify ecological functioning through deep time and demonstrates the utility of this approach to understanding long‐term patterns of BEF in both ancient and contemporary marine ecosystems. The delivery of all five ecological functions studied became increasingly variable as the regional climate became drier, thus modifying the supply of terrigenous nutrient inputs.  相似文献   

12.
《Ocean & Coastal Management》2003,46(3-4):261-276
Caribbean coastal ecosystems are increasingly being threatened by natural and anthropogenic factors. The scale of these factors is at local, national, regional and global levels. Threats include the effects of fisheries and extraction, eutrophication, siltation, and pollution as well as global climate events such as El Niño and global climate change. Integrated coastal management (ICM) should clearly demonstrate the adverse effects of environmental impacts, thus justifying the need for mitigation and should evaluate the success of management efforts. ICM requires robust indicators that gauge the ‘health’ of the coast in relation to environmental, social and economic activities. Biological indicators (bioindicators) offer a signal of the biological condition in an ecosystem. Using bioindicators as an early warning of pollution or degradation in an ecosystem can help sustain critical resources. Biological indicators in the Caribbean are focused around particular ecosystems, especially coral reefs, seagrass beds and mangrove forests and include a range of biological parameters relating to particular species, groups of species and biological processes. The use of these indicators is critically reviewed and the presence or absence of a relevant framework for their use in Caribbean ICM programs is discussed.  相似文献   

13.
本文以渤海为例,开展海岸带生态系统环境状况综合评价方法研究,在综合分析渤海海岸带生态环境状况与影响因子的基础上,提出适用于区域特点的评价指标与方法,建立具有实用性和综合性的环境状况评价模式,实现对渤海海岸带生态系统环境质量状况的定量评价。借鉴国内外成熟的评价方法和评价标准,以站位评价方法为基础,以点构面,构建大尺度区域多指标综合评价模式,建立由海水水质、沉积物质量、底栖生物、滨海湿地和生物体组织污染物5大类、13个参数指标构成的海岸带生态系统评价指标体系。综合评价结果显示渤海海岸带环境状况为一般到良好,与渤海环境现状基本相符,能综合与客观反映研究区域的环境状况,指标体系及其评价模式具有一定的有效性与实用性。  相似文献   

14.
Two Bering Sea marine research programs collaborated during the final years of the 1990s to forge advances in understanding the southeastern Bering Sea pelagic ecosystem. Southeast Bering Sea Carrying Capacity, sponsored by NOAA Coastal Ocean Program, investigated processes on the middle and outer shelf and the continental slope. The Inner Front Program, sponsored by NSF, investigated processes of the inner domain and the front between the inner and middle domains. The purposes of these programs were to (1) increase understanding of the southeastern Bering Sea ecosystem, including the roles of juvenile walleye pollock, (2) investigate the hypothesis that elevated primary production at the inner front provides a summer-long energy source for the food web, and (3) develop and test annual indices of pre-recruit pollock abundance. The observations occurred during a period of unusually large variability in the marine climate, including a possible regime shift. Sea-ice cover ranged from near zero to one of the heaviest ice years in recent decades. Sea-surface temperatures reached record highs during summer 1997, whereas 1999 was noted for its low Bering Sea temperatures. Moreover, the first recorded observations of coccolithophore blooms on the shelf were realized in 1997, and these blooms now appear to be persistent. The programs’ results include an archive of physical and biological time series that emphasize large year-to-year regional variability, and an Oscillating Control Hypothesis that relates marine productivity to climate forcing. Further investigations are needed of the confluences of interannual and even intra-seasonal variability with low-frequency climate variability as potential producers of major, abrupt changes in the southeastern Bering Sea ecosystem.  相似文献   

15.
本研究以晋江盐场围填海项目为例,针对项目情况和区域环境特征,在收集现有资料和补充调查的基础上,分析评估了围填海工程建设的海洋生态影响,并提出了相应的生态保护修复方案。在此基础上,提出了今后工作的建议:①保护修复应推行整体保护、系统修复的有效机制,实现区域生态系统的恢复与良性发展。②围填多年已经形成相对稳定的生态系统的围填海项目,制定修复对策也应遵循现有的生态条件,充分考虑修复工程的成本与效益,增强修复方案的可操作性,做出最有利的决策。③生态修复模式应以自然恢复为主、人工修复为辅,最大程度恢复生态系统功能。本研究可为类似生态保护修复工作提供借鉴。  相似文献   

16.
在全球气候变化与人类高强度开发的双重影响下,人地复合生态系统和受陆海系统交互影响的海岸带地区生态脆弱性更加明显。如何有效把握人地复合生态系统发展动向,合理规划与调控社会经济活动、促进人地关系协调发展一直是可持续发展领域研究的重点课题。韧性作为系统的内在特征,在防范化解灾害风险、维护区域生态安全中发挥着重要作用,是人地复合生态系统可持续发展能力的重要表现。然而,目前关于人地复合生态系统韧性的内涵、评估方法等方面尚未形成统一的范式,韧性的量化评估方法存在较大差异。通过梳理和归纳现有研究成果认为,韧性经历了从工程韧性、生态韧性到演进韧性的转变,其概念及内涵仍在不断拓展与深化;总结对比了基于过程形成性和状态总结性的韧性评估方法发现,将韧性作为过程与结果的综合评估研究仍较为缺乏;在抵抗扰动、维持稳定和协调发展的韧性理念下,生态系统的保护与修复等将是区域可持续发展应用中人地复合生态系统安全的重要保障。根据人地复合生态系统韧性研究进展的分析结果,结合海岸带生态系统韧性研究的现状及不足,认为未来需要在加强海岸带生态系统韧性内涵挖掘、完善海岸带生态系统韧性评价体系、提高海岸带生态系统韧性监测精度、促进学...  相似文献   

17.
In this paper we present results from dynamic simulations of the Northern California Current ecosystem, based on historical estimates of fishing mortality, relative fishing effort, and climate forcing. Climate can affect ecosystem productivity and dynamics both from the bottom-up (through short- and long-term variability in primary and secondary production) as well as from the top-down (through variability in the abundance and spatial distribution of key predators). We have explored how the simplistic application of climate forcing through both bottom-up and top-down mechanisms improves the fit of the model dynamics to observed population trends and reported catches for exploited components of the ecosystem. We find that using climate as either a bottom-up or a top-down forcing mechanism results in substantial improvements in model performance, such that much of the variability observed in single species models and dynamics can be replicated in a multi-species approach. Using multiple climate variables (both bottom-up and top-down) simultaneously did not provide significant improvement over a model with only one forcing. In general, results suggest that there do not appear to be strong trophic interactions among many of the longer-lived, slower-growing rockfish, roundfish and flatfish in this ecosystem, although strong interactions were observed in shrimp, salmon and small flatfish populations where high turnover and predation rates have been coupled with substantial changes in many predator populations over the last 40 years.  相似文献   

18.
The response of the Gulf of Alaska (GOA) circulation to large-scale North Pacific climate variability is explored using three high resolution (15 km) regional ocean model ensembles over the period 1950-2004. On interannual and decadal timescales the mean circulation is strongly modulated by changes in the large scale climate forcing associated with PDO and ENSO. Intensification of the model gyre scale circulation occurs after the 1976-1977 climate shift, as well as during 1965-1970 and 1993-1995. From the model dynamical budgets we find that when the GOA experiences stronger southeasterly winds, typical during the positive phase of the PDO and ENSO, there is net large-scale Ekman convergence in the central and eastern coastal boundary. The geostrophic adjustment to higher sea surface height (SSH) and lower isopycnals lead to stronger cyclonic gyre scale circulation. The opposite situation occurs during stronger northwesterly winds (negative phase of the PDO).Along the eastern side of the GOA basin, interannual changes in the surface winds also modulate the seasonal development of high amplitude anticyclonic eddies (e.g. Haïda and Sitka eddies). Large interannual eddy events during winter-spring, are phase-locked with the seasonal cycle. The initial eddy dynamics are consistent with a quasi-linear Rossby wave response to positive SSH anomalies forced by stronger downwelling favorable winds (e.g. southwesterly during El Niño). However, because of the fast growth rate of baroclinic instability and the geographical focusing associated with the coastal geometry, most of the perturbation energy in the Rossby wave is locally trapped until converted into large scale nonlinear coherent eddies. Coastally trapped waves of tropical origin may also contribute to positive SSH anomalies that lead to higher amplitude eddies. However, their presence does not appear essential. The model ensembles, which do not include the effects of equatorial coastally trapped waves, capture the large Haïda and Sitka eddy events observed during 1982 and 1997 and explain between 40% and 70% of the tidal gauges variance along the GOA coast.In the western side of the GOA basin, interannual eddy variability located south of the Alaskan Stream is not correlated with large scale forcing and appears to be intrinsic. A comparison of the three model ensembles forced by NCEP winds and a multi-century-long integration forced only with the seasonal cycle, shows that the internal variability alone explains most of the eddy variance. The asymmetry between the eddy forced regime in the eastern basin, and the intrinsic regime in the western basin, has important implications for predicting the GOA response to climate change. If future climate change results in stronger wintertime winds and increased downwelling in the eastern basin, then increased mesoscale activity (perhaps more or larger eddies) might occur in this region. Conversely, the changes in the western basin are not predictable based on environmental forcing. Eastern eddies transport important biogeochemical quantities such as iron, oxygen and chlorophyll-a into the gyre interior, therefore having potential upscale effects on the GOA high-nutrient-low-chlorophyll region.  相似文献   

19.
Decadal-Scale Climate and Ecosystem Interactions in the North Pacific Ocean   总被引:7,自引:0,他引:7  
Decadal-scale climate variations in the Pacific Ocean wield a strong influence on the oceanic ecosystem. Two dominant patterns of large-scale SST variability and one dominant pattern of large-scale thermocline variability can be explained as a forced oceanic response to large-scale changes in the Aleutian Low. The physical mechanisms that generate this decadal variability are still unclear, but stochastic atmospheric forcing of the ocean combined with atmospheric teleconnections from the tropics to the midlatitudes and some weak ocean-atmosphere feedbacks processes are the most plausible explanation. These observed physical variations organize the oceanic ecosystem response through large-scale basin-wide forcings that exert distinct local influences through many different processes. The regional ecosystem impacts of these local processes are discussed for the Tropical Pacific, the Central North Pacific, the Kuroshio-Oyashio Extension, the Bering Sea, the Gulf of Alaska, and the California Current System regions in the context of the observed decadal climate variability. The physical ocean-atmosphere system and the oceanic ecosystem interact through many different processes. These include physical forcing of the ecosystem by changes in solar fluxes, ocean temperature, horizontal current advection, vertical mixing and upwelling, freshwater fluxes, and sea ice. These also include oceanic ecosystem forcing of the climate by attenuation of solar energy by phytoplankton absorption and atmospheric aerosol production by phytoplankton DMS fluxes. A more complete understanding of the complicated feedback processes controlling decadal variability, ocean ecosystems, and biogeochemical cycling requires a concerted and organized long-term observational and modeling effort. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The study of climate impacts on Living Marine Resources (LMRs) has increased rapidly in recent years with the availability of climate model simulations contributed to the assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Collaboration between climate and LMR scientists and shared understanding of critical challenges for such applications are essential for developing robust projections of climate impacts on LMRs. This paper assesses present approaches for generating projections of climate impacts on LMRs using IPCC-class climate models, recommends practices that should be followed for these applications, and identifies priority developments that could improve current projections. Understanding of the climate system and its representation within climate models has progressed to a point where many climate model outputs can now be used effectively to make LMR projections. However, uncertainty in climate model projections (particularly biases and inter-model spread at regional to local scales), coarse climate model resolution, and the uncertainty and potential complexity of the mechanisms underlying the response of LMRs to climate limit the robustness and precision of LMR projections. A variety of techniques including the analysis of multi-model ensembles, bias corrections, and statistical and dynamical downscaling can ameliorate some limitations, though the assumptions underlying these approaches and the sensitivity of results to their application must be assessed for each application. Developments in LMR science that could improve current projections of climate impacts on LMRs include improved understanding of the multi-scale mechanisms that link climate and LMRs and better representations of these mechanisms within more holistic LMR models. These developments require a strong baseline of field and laboratory observations including long time series and measurements over the broad range of spatial and temporal scales over which LMRs and climate interact. Priority developments for IPCC-class climate models include improved model accuracy (particularly at regional and local scales), inter-annual to decadal-scale predictions, and the continued development of earth system models capable of simulating the evolution of both the physical climate system and biosphere. Efforts to address these issues should occur in parallel and be informed by the continued application of existing climate and LMR models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号