首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation, merging and accretion history of massive black holes (MBHs) along the hierarchical build-up of cosmic structures leaves a unique imprint on the background of gravitational waves (GWs) at mHz frequencies. We study here, by means of dedicated simulations of black hole build-up, the possibility of constraining different models of black hole cosmic evolution using future GW space-borne missions, such as LISA . We consider two main scenarios for black hole formation, namely, one where seeds are light (  ≃102 M  , remnant of Population III stars) and one where seeds are heavy (  ≳104 M  , direct collapse). In all the models we have investigated, MBH binary coalescences do not produce a stochastic GW background, but rather, a set of individual resolved events. Detection of several hundreds merging events in a 3-yr LISA mission will be the sign of a heavy seed scenario with efficient formation of black hole seeds in a large fraction of high-redshift haloes. At the other extreme, a low event rate, about a few tens in 3 yr, is peculiar of scenarios where either the seeds are light, and many coalescences do not fall into the LISA band, or seeds are massive, but rare. In this case a decisive diagnostic is provided by the shape of the mass distribution of detected events. Light binaries  ( m < 104 M)  are predicted in a fairly large number in Population III remnant models, but are totally absent in direct collapse models. Finally, a further, helpful diagnostic of black hole formation models lies in the distribution of the mass ratios in binary coalescences. While heavy seed models predict that most of the detected events involve equal-mass binaries, in the case of light seeds, mass ratios are equally distributed in the range 0.1–1.  相似文献   

2.
We study the generation of a stochastic gravitational wave (GW) background produced from a population of core-collapse supernovae, which form black holes in scenarios of structure formation. We obtain, for example, that the formation of a population (Population III) of black holes, in cold dark matter scenarios, could generate a stochastic GW background with a maximum amplitude of   h BG≃10−24  and corresponding closure energy density of  ΩGW∼10−7  , in the frequency band   ν obs≃30–470 Hz  (assuming a maximum efficiency of generation of GWs, namely,   ɛ GWmax=7×10−4)  for stars forming at redshifts   z ≃30–10  . We show that it will be possible in the future to detect this isotropic GW background by correlating the signals of a pair of 'advanced' LIGO observatories (LIGO III) at a signal-to-noise ratio of ≃40. We discuss what astrophysical information could be obtained from a positive (or even a negative) detection of such a GW background generated in scenarios such as those studied here. One of them is the possibility of obtaining the initial and final redshifts of the emission period from the observed spectrum of GWs.  相似文献   

3.
4.
In regions of very high dark matter density such as the Galactic Centre, the capture and annihilation of WIMP dark matter by stars has the potential to significantly alter their evolution. We describe the dark stellar evolution code D ark S tars , and present a series of detailed grids of WIMP-influenced stellar models for main-sequence stars. We describe the changes in stellar structure and main-sequence evolution which occur as a function of the rate of energy injection by WIMPs, for masses of  0.3–2.0 M  and metallicities   Z = 0.0003–0.02  . We show what rates of energy injection can be obtained using realistic orbital parameters for stars at the Galactic Centre, including detailed consideration of the velocity and density profiles of dark matter. Capture and annihilation rates are strongly boosted when stars follow elliptical rather than circular orbits. If there is a spike of dark matter induced by the supermassive black hole at the Galactic Centre, single solar mass stars following orbits with periods as long as 50 yr and eccentricities as low as 0.9 could be significantly affected. Binary systems with similar periods about the Galactic Centre could be affected on even less eccentric orbits. The most striking observational effect of this scenario would be the existence of a binary consisting of a low-mass protostar and a higher mass evolved star. The observation of low-mass stars and/or binaries on such orbits would either provide a detection of WIMP dark matter, or place stringent limits on the combination of the WIMP mass, spin-dependent nuclear-scattering cross-section, halo density and velocity distribution near the Galactic Centre. In some cases, the derived limits on the WIMP mass and spin-dependent nuclear-scattering cross-section would be of comparable sensitivity to current direct-detection experiments.  相似文献   

5.
We present spectroscopic observations from the Spitzer Space Telescope of six carbon-rich asymptotic giant branch (AGB) stars in the Sagittarius dwarf spheroidal galaxy (Sgr dSph) and two foreground Galactic carbon stars. The band strengths of the observed C2H2 and SiC features are very similar to those observed in Galactic AGB stars. The metallicities are estimated from an empirical relation between the acetylene optical depth and the strength of the SiC feature. The metallicities are higher than those of the Large Magellanic Cloud, and close to Galactic values. While the high metallicity could imply an age of around 1 Gyr, for the dusty AGB stars, the pulsation periods suggest ages in excess of 2 or 3 Gyr. We fit the spectra of the observed stars using the dusty radiative transfer model and determine their dust mass-loss rates to be in the range  1.0–3.3 × 10−8 M yr−1  . The two Galactic foreground carbon-rich AGB stars are located at the far side of the solar circle, beyond the Galactic Centre. One of these two stars shows the strongest SiC feature in our present Local Group sample.  相似文献   

6.
We show that collisions with stellar-mass black holes can partially explain the absence of bright giant stars in the Galactic Centre, first noted by Genzel et al. We show that the missing objects are low-mass giants and asymptotic giant branch stars in the range  1–3 M  . Using detailed stellar evolution calculations, we find that to prevent these objects from evolving to become visible in the depleted K bands, we require that they suffer collisions on the red giant branch, and we calculate the fractional envelope mass losses required. Using a combination of smoothed particle hydrodynamic calculations, restricted three-body analysis and Monte Carlo simulations, we compute the expected collision rates between giants and black holes, and between giants and main-sequence stars in the Galactic Centre. We show that collisions can plausibly explain the missing giants in the  10.5 < K < 12  band. However, depleting the brighter  ( K < 10.5)  objects out to the required radius would require a large population of black hole impactors which would in turn deplete the  10.5 < K < 12  giants in a region much larger than is observed. We conclude that collisions with stellar-mass black holes cannot account for the depletion of the very brightest giants, and we use our results to place limits on the population of stellar-mass black holes in the Galactic Centre.  相似文献   

7.
Using the high-resolution spectrometer SPI on board the International Gamma-Ray Astrophysics Laboratory ( INTEGRAL ), we search for a spectral line produced by a dark matter (DM) particle with a mass in the range  40 keV < M DM < 14 MeV  , decaying in the DM halo of the Milky Way. To distinguish the DM decay line from numerous instrumental lines found in the SPI background spectrum, we study the dependence of the intensity of the line signal on the offset of the SPI pointing from the direction toward the Galactic Centre. After a critical analysis of the uncertainties of the DM density profile in the inner Galaxy, we find that the intensity of the DM decay line should decrease by at least a factor of 3 when the offset from the Galactic Centre increases from 0° to 180°. We find that such a pronounced variation of the line flux across the sky is not observed for any line, detected with a significance higher than 3σ in the SPI background spectrum. Possible DM decay origin is not ruled out only for the unidentified spectral lines, having low (∼3σ) significance or coinciding in position with the instrumental ones. In the energy interval from 20 keV to 7 MeV, we derive restrictions on the DM decay line flux, implied by the (non-)detection of the DM decay line. For a particular DM candidate, the sterile neutrino of mass M DM, we derive a bound on the mixing angle.  相似文献   

8.
The mechanism for gamma-ray bursters and the detection of gravitational waves (GWs) are two outstanding problems facing modern physics. Many models of gamma-ray bursters predict copious GW emission, so the assumption of an association between GWs and gamma-ray bursts (GRBs) may be testable with existing bar GW detector data. We consider Weber bar data streams in the vicinity of known GRB times and present calculations of the expected signal after co-addition of 1000 GW/GRBs that have been shifted to a common zero time. Our calculations are based on assumptions concerning the GW spectrum and the redshift distribution of GW/GRB sources that are consistent with current GW/GRB models. We discuss further possibilities of GW detection associated with GRBs in light of future bar detector improvements and suggest that co-addition of data from several improved bar detectors may result in detection of GWs (if the GW/GRB assumption is correct) on a time-scale comparable to the LIGO projects.  相似文献   

9.
We study the gravitational wave emission from the first stars, which are assumed to be very massive objects (VMOs). We take into account various feedback (both radiative and stellar) effects regulating the collapse of objects in the early Universe and thus derive the VMO initial mass function and formation rate. If the final fate of VMOs is to collapse, leaving very massive black hole remnants, then the gravitational waves emitted during each collapse would be seen as a stochastic background. The predicted spectral strain amplitude in a critical density cold dark matter (CDM) universe peaks in the frequency range ν ≈5×10−4–5×10−3 Hz, where it has a value in the range ≈10−20–10−19 Hz−1/2, and might be detected by the Laser Interferometer Space Antenna ( LISA ). The expected emission rate is roughly 4000 event yr−1, resulting in a stationary discrete sequence of bursts, i.e. a shot-noise signal.  相似文献   

10.
The AM Canum Venaticorum (AM CVn) stars are rare interacting white dwarf binaries, whose formation and evolution are still poorly known. The Sloan Digital Sky Survey provides, for the first time, a sample of six AM CVn stars (out of a total population of 18) that are sufficiently homogeneous that we can start to study the population in some detail.
We use the Sloan sample to 'calibrate' theoretical population synthesis models for the space density of AM CVn stars. We consider optimistic and pessimistic models for different theoretical formation channels, which yield predictions for the local space density that are more than two orders of magnitude apart. When calibrated with the observations, all models give a local space density  ρ0= 1–3 × 10−6 pc−3  , which is lower than expected.
We discuss the implications for the formation of AM CVn stars, and conclude that at least one of the dominant formation channels (the double-degenerate channel) has to be suppressed relative to the optimistic models. In the framework of the current models this suggests that the mass transfer between white dwarfs usually cannot be stabilized. We furthermore discuss evolutionary effects that have so far not been considered in population synthesis models, but which could be of influence for the observed population. We finish by remarking that, with our lower space density, the expected number of Galactic AM CVn stars resolvable by gravitational-wave detectors like the Laser Interferometer Space Antenna ( LISA ) should be lowered from current estimates, to about 1000 for a mission duration of 1 yr.  相似文献   

11.
We consider gravitational waves emitted by various populations of compact binaries at cosmological distances. We use population synthesis models to characterize the properties of double neutron stars, double black holes and double white dwarf binaries, and white dwarf–neutron star, white dwarf–black hole and black hole–neutron star systems.
We use the observationally determined cosmic star formation history to reconstruct the redshift distribution of these sources and their merging rate evolution.
The gravitational signals emitted by each source during its early spiralling in phase add randomly to produce a stochastic background in the low-frequency band with spectral strain amplitude between ~10−18 and ~5×10−17 Hz−1/2 at frequencies in the interval ~5×10−6–5×10−5 Hz.
The overall signal, which at frequencies above 10−4 Hz is largely dominated by double white dwarf systems, might be detectable with LISA in the frequency range 1–10 mHz and acts like a confusion-limited noise component, which might limit the LISA sensitivity at frequencies above 1 mHz.  相似文献   

12.
Red clump giant (RCG) stars can be used as distance indicators to trace the mass distribution of the Galactic bar. We use RCG stars from 44 bulge fields from the OGLE-II microlensing collaboration data base to constrain analytic triaxial models for the Galactic bar. We find the bar major-axis is oriented at an angle of 24°–27° to the Sun–Galactic Centre line-of-sight. The ratio of semimajor and semiminor bar axis scalelengths in the Galactic plane   x 0, y 0  , and vertical bar scalelength z 0, is   x 0 :  y 0 :  z 0= 10 : 3.5 : 2.6  , suggesting a slightly more prolate bar structure than the working model of Gerhard which gives the scalelength ratios as   x 0 :  y 0 :  z 0= 10 : 4 : 3  .  相似文献   

13.
The binary confusion noise spectrum in the Laser Interferometer Space Antenna ( LISA ) band depends strongly on the observational period and abundance of Galactic close white dwarf binaries (CWDBs). We have investigated how the number of the resolved Galactic CWDBs varies with the operation period of LISA , and found that the resolved number would typically grow by a factor of 5 when the operation period increases from 1 to 10 yr. We have also made a similar estimation for the number of CWDBs, the chirp signal of which can be measured using matched filtering analysis.  相似文献   

14.
The success of LISA Pathfinder in demonstrating the LISA drag-free requirement paved the way for using space interferometers to detect low-frequency and middle-frequency gravitational waves(GWs). The TAIJI GW mission and the new LISA GW mission propose using an arm length of 3 Gm(1 Gm = 10~6 km) and an arm length of 2.5 Gm respectively. For a space laser-interferometric GW antenna,due to astrodynamical orbit variation, time delay interferometry(TDI) is needed to achieve nearly equivalent equal-arms for suppressing the laser frequency noise below the level of optical path noise, acceleration noise, etc in order to attain the requisite sensitivity. In this paper, we simulate TDI numerically for the TAIJI mission and the new LISA mission. To do this, we work out a set of 2200-day(6-year) optimized science orbits for each mission starting on 2028 March 22 using the CGC 2.7.1 ephemeris framework. Then we use the numerical method to calculate the residual optical path differences of the first-generation TDI configurations and the selected second-generation TDI configurations. The resulting optical path differences of the second-generation TDI configurations calculated for TAIJI, new LISA and eLISA are well below their respective requirements for laser frequency noise cancelation. However, for the first-generation TDI configurations, the original requirements need to be relaxed by 3 to 30 fold to be satisfied. For TAIJI and the new LISA, about one order of magnitude relaxation would be good and recommended; this could be borne on the laser stability requirement in view of recent progress in laser stability, or the GW detection sensitivities of the second-generation TDIs have to be used in the diagnosis of the observed data instead of the commonly used X, Y and Z TDIs.  相似文献   

15.
We present numerical simulations of stellar wind dynamics in the central parsec of the Galactic Centre, studying in particular the accretion of gas on to Sgr A*, the supermassive black hole. Unlike our previous work, here we use state-of-the-art observational data on orbits and wind properties of individual wind-producing stars. Since wind velocities were revised upwards and non-zero eccentricities were considered, our new simulations show fewer clumps of cold gas and no conspicuous disc-like structure. The accretion rate is dominated by a few close 'slow-wind stars' ( v w≤ 750 km s−1), and is consistent with the Bondi estimate, but variable on time-scales of tens to hundreds of years. This variability is due to the stochastic infall of cold clumps of gas, as in earlier simulations, and to the eccentric orbits of stars. The present models fail to explain the high luminosity of Sgr A* a few hundred years ago implied by Integral observations, but we argue that the accretion of a cold clump with a small impact parameter could have caused it. Finally, we show the possibility of constraining the total mass-loss rate of the 'slow-wind stars' using near infrared observations of gas in the central few arcseconds.  相似文献   

16.
Major predictions of General Relativity,unforeseen at the beginning of the preceding century,are now under investigation.The existence of black holes of any mass from tens to billions of solar masses is now established,and the physics around these objects begins to be studied through direct observations in a wide electromagnetic spectrum from visible light to X-rays.General relativity,however,provides an extra medium which carries more information on the regions of intense gravitational field,namely gravitational waves (GWs).Due to their extremely weak coupling to matter,GWs are precisely generated in those regions of spacetime undergoing strong curvature,which is very exciting for modern astrophysics.On the other hand,this weak coupling makes it difficult for GWs to cause appreciable effects in human made instruments.This is why technology of GW detectors took such a long time to reach a sensitivity level consistent with GW amplitudes predicted by theoretical models of sources.In the present status,apart from resonant solid detectors,two large interferometric antennas (LIGO in the USA and the French-Italian Virgo) are beginning to produce data,and a joint ESA-NASA space mission,resulting from a wide effort of European and American groups,is reaching a crucial approval phase.The aim of the present review is to give the theoretical bases of GW detectors using light.  相似文献   

17.
We report the detection of a 5.8 Å– 104 s periodicity in the 0.5–10 keV X-ray light curve of the Seyfert galaxy IRAS 18325–5926, obtained from a 5-d ASCA observation. Nearly nine cycles of the periodic variation are seen; it shows no strong energy dependence and has an amplitude of about 15 per cent. Unlike most other well-studied Seyfert galaxies, there is no evidence for strong power-law red noise in the X-ray power spectrum of IRAS 18325–5926. Scaling from the QPOs found in Galactic black hole candidates suggests that the mass of the black hole in IRAS 18325–5926 is ∼ 6 Å– 106–4 Å– 107 M.  相似文献   

18.
We study the dynamical structure of a self-gravitating disc with coronae around a supermassive black hole. Assuming that the magnetorotational instability responsible for generating the turbulent stresses inside the disc is also the source for a magnetically dominated corona, a fraction of the power released when the disc matter accretes is transported to and dissipated in the corona. This has a major effect on the structure of the disc and its gravitational (in)stability according to our analytical and self-consistent solutions. We determine the radius where the disc crosses the inner radius of gravitational instability and forms the first stars. Not only the location of this radius which may extend to very large distances from the central black hole, but also the mass of the first stars highly depends on the input parameters, notably the viscosity coefficient, the mass of the central object and the accretion rate. For accretion discs around quasi-stellar objects (QSOs) and the Galactic Centre, we determine the self-gravitating radius and the mass of the first clumps. Comparing the cases with a corona and without a corona for typical discs around QSOs or the Galactic Centre, when the viscosity coefficient is around 0.3, we show that the self-gravitating radius decreases by a factor of approximately 2, but the mass of the fragments increases with more or less the same factor. The existence of a corona implies a more gravitationally unstable disc according to our results. The effect of a corona on the instability of the disc is more effective when the viscosity coefficient increases.  相似文献   

19.
Increasing evidence suggests that the Galactic halo is lumpy on kpc scales as a result of the accretion of at least a dozen small galaxies [Large and Small Magellanic Clouds (LMC/SMC), Sgr, Fornax, etc.]. Faint stars in such lumpy structures can significantly microlense a background star with an optical depth of 10−7–10−6, which is comparable to the observed value to the LMC. The observed microlensing events towards the LMC can be explained by a tidal debris tail from the progenitor of the Magellanic Clouds and Magellanic Stream. The LMC stars can either lense stars in the debris tail a few kpc behind the LMC, or be lensed by stars in the part of the debris tail in front of the LMC. The models are consistent with an elementary particle dominated Galactic halo without massive compact halo objects (MACHOs). They also differ from Sahu's LMC-self-lensing model by predicting a higher optical depth and event rate and lower concentration of events to the LMC centre.  相似文献   

20.
The characteristics of gravitational bursts from active galactic nuclei, and globular clusters are obtained for three astrophysical situations:(i) scattering of stars by massive black holes residued at the centers of galaxies and globular clusters; (ii) the close encounters of stars in the nuclear regions of these objects; (iii) scattering of stars by black holes of stellar mass containing in the stellar population of galactic nuclei and clusters. The most effective source of gravitational bursts appears to be a scattering of stars by the massive central black holes which produces the bursts with dimensionless amplitudeh10–19–10–21 and frequencies from 10–1 to 10–5 Hz. The characteristics obtained correspond to the possiblities of a future gravitational-wave experiment with use of laser Doppler tracking of interplanetary spacecrafts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号