首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
海水中硼的快速测定方法   总被引:2,自引:2,他引:2  
海水、卤水及废水等样品中微量硼的测定方法很多,其中姜黄素法是测硼灵敏度最高的一种,现已被列入美国《水和废水标准检验法》第13版中。我们以姜黄素-分光光度法测定海水中微量硼时,在标准曲线中加入了与海水样相当的无硼人工海水,消除了阴阳离子的干扰,在半年多的海水中硼的间断性测定试验方面,获得了较满意的结果,其相对标准偏差为3.1%,测一批样品仅需4小时,因此,该法是测定海水中硼的快速准确的较好方法。  相似文献   

2.
海水中硼的测定方法   总被引:1,自引:0,他引:1  
介绍了海水中硼的测定主要方法,包括容量法,分光光度法、极谱法、光谱法、离子选择电极法等及其研究进展。  相似文献   

3.
胶束增溶增敏分光光度法直接测定海水中的硼   总被引:4,自引:1,他引:3  
首次以含量为15 % 的非离子型乳化剂OP100 胶束体系为介质进行硼的分光光度法测定研究,确定最佳实验条件( 最大吸收波长为555nm ,姜黄素用量为4mL,酸试剂用量为5mL,胶束用量为5mL,显色温度为50 ℃,显色时间为15min) ,改进了现有的姜黄法,此方法适用于海水中硼的水相直接分光光度测定。实验结果表明测定灵敏度显著增加(E= 1 .5 ×105) ,线性范围变宽(0 ~1.2μg/25mL) ,络合物稳定性好,稳定时间长达50h。  相似文献   

4.
海水中硼的示波极谱测定法   总被引:3,自引:0,他引:3  
海水中微量硼的测定.通常是用分光光度法[1]和光谱法。硼在通常条件下不会产生极谱波。因此不能用极谱法直接测定硼。B(Ⅲ)与铍试剂Ⅲ可形成较稳定的配合物。  相似文献   

5.
目前国外对碱式碳酸锌吸附海水中铀的报导较少,对其吸附海水中铀的反应级数及活化能测定的报导尚未见到。本文试图用三颈瓶反应器及分光光度法,测定海水中铀与碱式碳酸锌的反应级数及活化能,并获得较满意的实验结果。  相似文献   

6.
采用作者研究的OP- 乳化剂增敏姜黄素分光光度法测定海水中的溶解硼,用ICP- AES法测海水中的硼和锶。发现在珠江口海水盐度2.686 ~25 .722 ,氯度1 .440 ~14 .136 为0.215 ~0 .229mg·kg- 1 ,平均值为0 .224±0 .005mg·kg- 1 mg·kg- 17 .64 ,Sr(mg·kg- 1)/Cl 比值为0.380 ~0 .663,平均值为0 .404 ±0 .016 ,两者皆在大洋海水自然变动范围之内。珠江口海水中的硼和锶浓度与海水盐度或氯度均有很好的线性关系。珠江口外南海海水盐度32 .923 ~33.446, 氯度18 .241 ~18.558 ,B浓度为4 .02 ~4 .24mg·kg- 1 ,Sr 浓度为7.64 ~7 .70mg·kg- 1 。珠江口海水实验数据统计回归线与理论释线比较后表明,珠江口海水中硼与锶均具有良好的保守性质,珠江口海水中的硼和锶主要来自湾外海海水潮汐输入。  相似文献   

7.
海洋中二氧化碳含量增加,使得海洋生态环境发生变化。海洋碳循环及海洋酸化的监测数据是评估生态环境变化的重要指标,p H作为一项碳循环监测重要指标,其测量的精度指标要求达到千分之五,传统意义上的敏感电极法测量海水中p H测量精度为±0.2,已不能满足海水碳循环监测的要求,分光光度法测定海水p H无需校正,精密度±0.005,该方法可用于碳循环船基监测和岸基监测。分光光度法测定海水p H,测量环境和样品恒温于25℃,一般商用分光光度计无恒温功能,本研究通过恒温水循环系统,对分光光度计舱内侧壁及比色皿架外壁进行恒温设计,准确控制温度。结果表明,标准缓冲溶液在24.0℃,24.5℃,25.0℃,25.5℃和26.0℃下,p H随温度呈线性变化、5组实测p H值与公式计算理论值差值无显著差异。在25.0℃测定5个不同海水样本p H,均得到了稳定数值。  相似文献   

8.
pH是海洋碳循环体系的重要参数之一,测量海水pH的标准方法有电极法和分光光度法,其中电极法已应用到海水pH的现场原位测量中,但准确度相对较低,限制了其在碳循环体系中的应用。文中采用人工海水pH标准缓冲溶液代替传统的NBS标准缓冲溶液对pH电极进行定标,探索了提高海水pH测量准确度的方法,并以分光光度法为标准方法,进行了实验研究和分析比对。结果表明:采用人工海水缓冲溶液定标后,电极法测量结果与分光光度法的测量结果偏差明显减小,测量准确度显著提高。该人工海水标准缓冲溶液可应用到pH传感器的现场标定中,从而提高海水pH现场测量的准确度,为海洋碳循环、海洋酸化等研究提供更为准确的基础数据。  相似文献   

9.
海水中低浓度亚硝酸盐和硝酸盐测定方法综述   总被引:1,自引:0,他引:1  
海水中低浓度的亚硝酸盐和硝酸盐的测定方法主要有4种,即分光光度法(富集分光光度法和液芯波导分光光度法)、高效液相色谱法、荧光法和化学发光法。这些测定方法比传统的分光光度测定法有更高的灵敏度和更低的检测限,可以对海水中纳摩尔级低浓度的亚硝酸盐和硝酸盐进行测定。化学发光法和液芯波导分光光度法的自动化程度高,测定时对样品的需求量少,后者还实现了多个参数的实时现场测定,因而成为目前海水中低浓度亚硝酸盐和硝酸盐测定的主流方法,具有广阔的应用前景。  相似文献   

10.
首次把 SDS:OP乳化剂复配微乳的增溶增敏性应用于海水中硼的分光光度法测定研究中 ,确定了最佳实验条件 ,改进了现有的姜黄法。该方法的精密度为 8.9× 10 -3 ,回收率为 10 4 % ,硼浓度在 0~ 1.2 0μg/m L范围内遵守比耳定律。摩尔吸光系数为 1.5 9× 10 5,检出限为 0 .0 0 6 9μgm L-1。结果表明该方法可广泛应用于海水及其它水体中硼的水相直接显色分光光度测定  相似文献   

11.
杭州湾海水中的硼和锶的研究   总被引:1,自引:0,他引:1  
采用作者研究的OP- 乳化剂增敏姜黄素分光光度法测定海水中的溶解硼,用ICP- AES法测定海水中的溶解锶。发现在杭州湾海水盐度5 .563 ~26 .397 ,氯度3.022 ~14 .582 范围内,硼浓度为0 .68 ~3.24mg/kg,锶浓度为1 .29~5 .88mg/kg,B(mg/kg)/Cl 比值为0 .219~0 .245,平均值为0.232±0 .007 ,Sr(mg/kg)/Cl 比值范围为0.398 ~0.440 ,平均值为0.417 ±0.011 。结果表明,湾内海水中的硼和锶浓度与海水盐度或氯度均有很好的线性正相关关系,丰水期与枯水期水样数据关系相同,不因采水时间不同而变化。实验数据统计回归线与理论稀释线比较后表明,湾内海水中锶与硼均具有良好保守性质;湾内海水中的硼和锶主要来自湾外潮汐输入。湾东北沿岸海水高的B/Cl比值,暗示着此处有含硼工业废水排入湾内,认为B/Cl 比可作为近岸河口海水硼污染的一种指标。杭州湾海水中未检测到硼有机络合物。  相似文献   

12.
海水pH值直接指征海洋酸化程度,是对生物地球化学循环具有重要意义的海水碳酸盐体系进行定量描述的重要指标之一。文章概述pH值的定义及其发展,解析不同pH标度的换算和选取;详述采用电极电位法和分光光度法测定海水pH值的原理和特点;根据目前国际海洋酸化监测和研究的新要求以及我国近海海域海洋酸化形势,提出我国现行标准存在的问题,基于此提出全程恒温测样和从NIST标度向总氢离子浓度标度转化的优化建议,以提高我国海水pH值测定的准确度。  相似文献   

13.
氟是海洋环境保护中的监测元素之一。通常采用茜素络合剂分光光度法进行测定。氟离子选择电极问世后,已在海洋化学研究中得到广泛应用。本文应用氟离子选择电极研究了连云港近海不同站位表面海水中的氟含量,以及海洋底质与河口区域的氟含量,同时以硫一银离子选择电极和第二种离子选择电极组成无液界电势测量体系,测定了海水氯度并计算了F/Cl比值,并且对试样酸化和未酸化测定的结果进行了比较。  相似文献   

14.
目前,测定海洋底质中的痕量钴多用中子活化法和原子吸收分光光度法陆,前者仪器昂贵,需中子源,难以普及;后者则需分离干扰元素,手续较烦。分光光度法设备简单,易于推广,但因底质组成复杂,尚未见有这方面的报道。故研究海洋底质中痕量钻的分光光度法对于海洋污染调查具有重要意义。吡啶偶氮类试剂为钴之灵敏显色剂,  相似文献   

15.
一、前言 铜是海洋污染调查监测重要项目之一。火焰原子吸收分光光度法测定海水中痕量铜的报导较多,一般采用APDC/MIBK萃取富集,有机相直接由原子吸收分光光度计测定,此法应用比较普遍。但不足之处是由于MIBK在水中溶解度较大,试样盐度的不同造成萃取后有机相体积不一致,容易引起测定误差。本文在前人工作基础上,探讨验证了在酒石酸铵介  相似文献   

16.
为要准确测得海水中总汞含量,从分析方法上看必须解决以下几个问题:提高汞的测定方法的灵敏度和降低方法的检出限,使其能简单、快速的进行测定;寻找可靠的海水样品消化和水样贮存方法。 我们曾对汞的测定方法进行了研究,建立了可测出海水本底值的方法。 曾采用于作大量调查和报导过的海水中总汞测定的消化方法有酸消化法、硫酸—高锰酸钾消化法、过硫酸钾消化法、高锰酸钾—过硫酸钾混合消化剂消化法、溴氧化法、重铬酸钾氧化、酸高压釜消化以及光氧化法等。文献中大都只引用这些消化方法,而对它们应用于海水中总汞的测定在消化效果、对有关有机汞化合物的  相似文献   

17.
离子选择电极,是近代迅速发展起来的电化学传感器,已被广泛的应用于各个领域。应用氟硼酸根电极测定钢铁和水中的硼已有报导,但海洋沉积物中电极法测定微量硼的报导甚少。本文研究了同一份试样分取试液,分别应用氟硼酸根电极和氟电极直接电位法  相似文献   

18.
海水中铅、镉、铜和锌的测定,国外一般用无火焰原子吸收分光光度法和示差脉冲阳极溶出伏安法[1-3],但此二种设备目前尚不易普及,为满足一般海洋调查和研究的需要,我们自制了旋转玻碳电极和直流线性电压扫描装置,与X-Y记录仪组成简易的伏安仪,用它测定了沿岸海水中的镉、铅、铜和锌,旋转玻碳电极比静止汞膜电极检测灵敏度较高,且可在较强的酸性溶液中使用。  相似文献   

19.
用次溴酸钠氧化法测定海水中氨氮的研究   总被引:8,自引:0,他引:8  
氨在海水中主要以铵离子形式存在,也含有适量的水合氨分子和游离氨分子,其比例随海水PH、温度而不同。海洋化学上所称氨含量或铵氮量是指三者含氮量的总和。海水中氨的含量甚微,年变化约在5~50毫克/立方米之间。一般采用比色法和分光光度法进行测定。氨—氮为海水中生原要素之一、是海藻类的主要氮素营养盐,它的  相似文献   

20.
海水中超低含量活性磷酸盐的Mg(OH)2共沉淀法测定研究   总被引:1,自引:0,他引:1  
朱赖民  李犇 《海洋学报》2008,30(3):148-152
活性磷(正磷酸盐)是海洋浮游植物生长所必需的物质基础[1-8],磷的生物可利用性直接影响全球的初级生产力水平.磷在特定的海洋环境中还可能限制固氮作用,成为限制海洋初级生产力的重要因素[1,3,6].海水中磷酸盐含量的测定也是海洋污染调查的重要指标之一[4,9].农业和工业废水中磷的过度排放导致河口和近岸海水富营养化,引起浮游植物异常繁殖,造成“赤潮”现象[4].因此,海水中磷的准确测定对深入理解生物地球化学过程及海洋环境保护具有重要理论和实际意义[4-6,9].磷钼蓝分光光度法是海水中活性磷的经典测定方法,检测限为324 nmo1/dm3[5],但在一些寡营养盐海域,例如在南海、地中海  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号