共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The extensive territory of the ancient (Hellenistic to Byzantine) city of Sagalassos (SW Turkey) offered a rich variety in natural mineral resources. The frequent occurrence of iron slag in the excavations at the site proved the local working of metal. A geochemical prospection campaign was done in the territory of the ancient city in order to identify or discard the city and its territory as a self-sustaining metallurgical centre. Secondly, the geochemical impact of ancient metallurgy was investigated. Geochemical anomalies identified in stream sediments are explained by the presence of mineralised deposits and ancient metal working. Mg, Cr, Co and Ni anomalies point to chromite and chrysotile-magnetite deposits related to the basic rocks of the Lycian nappes in the area. Fe, V and Ti anomalies indicate the presence of iron mineralisations, which have been worked for iron production in ancient times. Finally, the association of P, Cu, Pb, Mn, As and Ag anomalies are an indicator of human activity at archaeological sites. Within the framework of this geochemical prospection, a metal working site apart from the city of Sagalassos was identified. Here, ore was both extracted and processed to workable iron. 相似文献
3.
The Baza Fault: a major active extensional fault in the central Betic Cordillera (south Spain) 总被引:2,自引:0,他引:2
P. Alfaro J. Delgado C. Sanz de Galdeano J. Galindo-Zaldívar F. J. García-Tortosa A. C. López-Garrido C. López-Casado C. Marín-Lechado A. Gil M. J. Borque 《International Journal of Earth Sciences》2008,97(6):1353-1365
In the Guadix-Baza Basin (Betic Cordillera) lies the Baza Fault, a structure that will be described for the first time in
this paper. Eight gravity profiles and a seismic reflection profile, coupled with surface studies, indicate the existence
of a NE-dipping normal fault with a variable strike with N-S and NW-SE segments. This 37-km long fault divides the basin into
two sectors: Guadix to the West and Baza to the East. Since the Late Miocene, the activity of this fault has created a half-graben
in its hanging wall. The seismic reflection profile shows that the fill of this 2,000–3,000 m thick asymmetric basin is syntectonic.
The fault has associated seismicity, the most important of which is the 1531 Baza earthquake. Since the Late Tortonian to
the present, i.e. over approximately the last 8 million years, extension rates obtained vary between 0.12 and 0.33 mm/year
for the Baza Fault, being one of the major active normal faults to accommodate the current ENE–WSW extension produced in the
central Betic Cordillera. The existence of this fault and other normal faults in the central Betic Cordillera enhanced the
extension in the upper crust from the Late Miocene to the present in this regional compressive setting. 相似文献
4.
AbstractThe Karasu Rift (Antakya province, SE Turkey) has developed between east-dipping, NNE-striking faults of the Karasu fault zone, which define the western margin of the rift and westdipping, N-S to N20°-30°E-striking faults of Dead Sea Transform fault zone (DST) in the central part and eastern margin of the rift. The strand of the Karasu fault zone that bounds the basin from west forms a linkage zone between the DST and the East Anatolian fault zone (EAFZ). The greater vertical offset on the western margin faults relative to the eastern ones indicates asymmetrical evolution of the rift as implied by the higher escarpments and accumulation of extensive, thick alluvial fans on the western margins of the rift. The thickness of the Quaternary sedimentary fill is more than 465 m, with clastic sediments intercalated with basaltic lavas. The Quaternary alkali basaltic volcanism accompanied fluvial to lacustrine sedimentation between 1.57 ± 0.08 and 0.05 ± 0.03 Ma. The faults are left-lateral oblique-slip faults as indicated by left-stepping faulting patterns, slip-lineation data and left-laterally offset lava flows and stream channels along the Karasu fault zone. At Hacilar village, an offset lava flow, dated to 0.08 ± 0.06 Ma, indicates a rate of leftlateral oblique slip of approximately 4.1 mm?year?1. Overall, the Karasu Rift is an asymmetrical transtensional basin, which has developed between seismically active splays of the left-lateral DST and the left-lateral oblique-slip Karasu fault zone during the neotectonic period. © 2001 Éditions scientifiques et médicales Elsevier SAS 相似文献
5.
Antonio Jabaloy Jun-Carlos Balany Antonio Barnolas Jesús Galindo-Zaldívar F. Javier Hernndez-Molina Andrs Maldonado Jos-Miguel Martínez-Martínez Jos Rodríguez-Fernndez Carlos Sanz de Galdeano Luis Somoza Emma Suriach Jun Toms Vzquez 《Tectonophysics》2003,366(1-2):55-81
The lateral ending of the South Shetland Trench is analysed on the basis of swath bathymetry and multichannel seismic profiles in order to establish the tectonic and stratigraphic features of the transition from an northeastward active to a southwestward passive margin style. This trench is associated with a lithospheric-scale thrust accommodating the internal deformation in the Antarctic Plate and its lateral end represents the tip-line of this thrust. The evolutionary model deduced from the structures and the stratigraphic record includes a first stage with a compressional deformation, predating the end of the subduction in the southwestern part of the study area that produced reverse faults in the oceanic crust during the Tortonian. The second stage occurred during the Messinian and includes distributed compressional deformation around the tip-line of the basal detachment, originating a high at the base of the slope and the collapse of the now inactive accretionary prism of the passive margin. The initial subduction of the high at the base of the slope induced the deformation of the accretionary prism and the formation of another high in the shelf—the Shelf Transition High. The third stage, from the Early Pliocene to the present-day, includes the active compressional deformation of the shelf and the base-of-slope around the tip-line of the basal detachment, while extensional deformations are active in the outer swell of the trench. 相似文献
6.
Akın Kürçer Volkan Özaksoy Selim Özalp Çağıl Uygun Güldoğan Ersin Özdemir Tamer Y. Duman 《Geodinamica Acta》2017,29(1):42-61
The Manyas fault zone (MFZ) is a splay fault of the Yenice Gönen Fault, which is located on the southern branch of the North Anatolian Fault System. The MFZ is a 38 km long, WNW–ESE-trending and normal fault zone comprised of three en-echelon segments. On 6 October 1964, an earthquake (Ms = 6.9) occurred on the Salur segment. In this study, paleoseismic trench studies were performed along the Salur segment. Based on these paleoseismic trench studies, at least three earthquakes resulting in a surface rupture within the last 4000 years, including the 1964 earthquake have been identified and dated. The penultimate event can be correlated with the AD 1323 earthquake. There is no archaeological and/or historical record that can be associated with the oldest earthquake dated between BP 3800 ± 600 and BP 2300 ± 200 years. Additionally, the trench study performed to the north of the Salur segment demonstrates paleoliquefaction structures crossing each other. The surface deformation that occurred during the 1964 earthquake is determined primarily to be the consequence of liquefaction. According to the fault plane slip data, the MFZ is a purely normal fault demonstrating a listric geometry with a dip of 64°–74° to the NNE. 相似文献
7.
A study of microearthquake seismicity and focal mechanisms within the Sea of Marmara (NW Turkey) using ocean bottom seismometers (OBSs) 总被引:1,自引:0,他引:1
Toshinori Sato Junzo Kasahara Tuncay Taymaz Masakazu Ito Aya Kamimura Tadaaki Hayakawa Onur Tan 《Tectonophysics》2004,391(1-4):303
We have carried out seismological observations within the Sea of Marmara (NW Turkey) in order to investigate the seismicity induced after Gölcük–İzmit (Kocaeli) earthquake (Mw 7.4) of August 17, 1999, using ocean bottom seismometers (OBSs). High-resolution hypocenters and focal mechanisms of microearthquakes have been investigated during this Marmara Sea OBS project involving deployment of 10 OBSs within the Çınarcık (eastern Marmara Sea) and Central-Tekirdağ (western Marmara Sea) basins during April–July 2000. Little was known about microearthquake activity and their source mechanisms in the Marmara Sea. We have detected numerous microearthquakes within the main basins of the Sea of Marmara along the imaged strands of the North Anatolian Fault (NAF). We obtained more than 350 well-constrained hypocenters and nine composite focal mechanisms during 70 days of observation. Microseismicity mainly occurred along the Main Marmara Fault (MMF) in the Marmara Sea. There are a few events along the Southern Shelf. Seismic activity along the Main Marmara Fault is quite high, and focal depth distribution was shallower than 20 km along the western part of this fault, and shallower than 15 km along its eastern part. From high-resolution relative relocation studies of some of the microearthquake clusters, we suggest that the western Main Marmara Fault is subvertical and the eastern Main Marmara Fault dips to south at 45°. Composite focal mechanisms show a strike-slip regime on the western Main Marmara Fault and complex faulting (strike-slip and normal faulting) on the eastern Main Marmara Fault. 相似文献
8.
玉树断裂带左旋走滑活动标志及其几何学
与运动学特征 总被引:1,自引:1,他引:1
玉树断裂带位于甘孜-玉树断裂带北西段,是一条总体呈NWW向展布的左旋走滑活动断裂带.沿断裂带发育错断水系与冲沟、拉分盆地、地震地表破裂与断裂破碎带等一系列反映玉树断裂带左旋走滑活动的典型地质-地貌标志.在室内遥感解译的基础上,结合最新的野外实地调查成果,对沿玉树断裂带上反映其左旋走滑活动的地质-地貌标志进行了总结,并对断裂带的几何学与运动学特征进行了综合分析.结果表明,玉树断裂带总长约150km,总体走向120~130°,自西向东可划分为呈左阶雁列分布的陇蒙达-结隆段、结隆-结古段和结古-查那扣段3段.沿该断裂带发育的串珠状拉分断陷盆地规模的大小反映出玉树断裂带自西向东拉张效应逐渐减弱、挤压效应逐渐增强的特点.玉树2010年7.1级地震的宏观震中处于晚第四纪活动性最为显著的中段,而仪器震中恰好处于该断裂带的不连续部位,进一步证明雁列走滑活动断裂带上的不连续部位通常是强震活动的初始破裂区域. 相似文献
9.
10.
Temporal variation in the geometry of a strike–slip fault zone: Examples from the Dead Sea Transform
The location of the active fault strands along the Dead Sea Transform fault zone (DST) changed through time. In the western margins of Dead Sea basin, the early activity began a few kilometers west of the preset shores and moved toward the center of the basin in four stages. Similar centerward migration of faulting is apparent in the Hula Valley north of the Sea of Galilee as well as in the Negev and the Sinai Peninsula. In the Arava Valley, seismic surveys reveal a series of buried inactive basins whereas the current active strand is on their eastern margins. In the central Arava the centerward migration of activity was followed by outward migration with Pleistocene faulting along NNE-trending faults nearly 50 km west of the center. Largely the faulting along the DST, which began in the early–middle Miocene over a wide zone of up to 50 km, became localized by the end of the Miocene. The subsidence of fault-controlled basins, which were active in the early stage, stopped at the end of the Miocene. Later during the Plio-Pleistocene new faults were formed in the Negev west of the main transform. They indicate that another cycle has begun with the widening of the fault zone. It is suggested that the localization of faulting goes on as long as there is no change in the stress field. The stresses change because the geometry of the plates must change as they move, and consequently the localization stage ends. The fault zone is rearranged, becomes wide, and a new localization stage begins as slip accumulates. It is hypothesized that alternating periods of widening and narrowing correlate to changes of the plate boundaries, manifest in different Euler poles. 相似文献
11.
The left-lateral Amanos Fault follows a 200-km-long and up to 2-km-high escarpment that bounds the eastern margin of the Amanos mountain range and the western margin of the Karasu Valley in southern Turkey, just east of the northeastern corner of the Mediterranean Sea. Regional kinematic models have reached diverse conclusions as to the role of this fault in accommodating relative motion between either the African and Arabian, Turkish and African, or Turkish and Arabian plates. Local studies have tried to estimate its slip rate by K–Ar dating Quaternary basalts that erupted within the Amanos Mountains, flowed across it into the Karasu Valley, and have since become offset. However, these studies have yielded a wide range of results, ranging from 0.3 to 15 mm a−1, which do not allow the overall role and significance of this fault in accommodating crustal deformation to be determined. We have used the Cassignol K–Ar method to date nine Quaternary basalt samples from the vicinity of the southern part of the Amanos Fault. These basalts exhibit a diverse chemistry, which we interpret as a consequence varying degrees of partial melting of their source combined with variable crustal contamination. This dating allows us to constrain the Quaternary slip rate on the Amanos fault to 1.0 to 1.6 mm a−1. The dramatic discrepancies between past estimates of this slip rate are partly due to technical difficulties in K–Ar dating of young basalts by isotope dilution. In addition, previous studies at the key locality of Hacılar have unwittingly dated different, chemically distinct, flow units of different ages that are juxtaposed. This low slip rate indicates that, at present, the Amanos Fault takes up a small proportion of the relative motion between the African and Arabian plates, which is transferred southward to the Dead Sea Fault Zone. It also provides strong evidence against the long-standing view that its slip continues offshore to the southwest along a hypothetical left-lateral fault zone located south of Cyprus. 相似文献
12.
During Late Palaeozoic time a wide ocean, known as Palaeotethys, separated the future Eurasian and African continents. This ocean closed in Europe in the west during the Variscan orogeny, whereas in Asia further east it remained open and evolved into the Mesozoic Tethys, only finally closing during Late Cretaceous–Early Cenozoic.Three Upper Palaeozoic lithological assemblages, the Chios Melange (on the Aegean Greek island), the Karaburun Melange (westernmost Aegean Turkey) and the Teke Dere Unit (Lycian Nappes, SW Turkey) provide critical information concerning sedimentary and tectonic processes during closure of Palaeotethys. The Chios and Karaburun melanges in the west are mainly terrigenous turbidites with blocks and dismembered sheets of Silurian–Upper Carboniferous platform carbonate rocks (shallow-water and slope facies) and poorly dated volcanic rocks. The Teke Dere Unit to the southeast begins with alkaline, within-plate-type volcanics, depositionally overlain by Upper Carboniferous shallow-water carbonates. This intact succession is overlain by a tectonic slice complex comprising sandstone turbidites that are intersliced with shallow-water, slope and deep-sea sediments (locally dated as Early Carboniferous). Sandstone petrography and published detrital mineral dating imply derivation from units affected by the Panafrican (Cadomian) and Variscan orogenies.All three units are interpreted as parts of subduction complexes in which pervasive shear zones separate component parts. Silurian–Lower Carboniferous black cherts (lydites) and slope carbonates accreted in a subduction trench where sandstone turbidites accumulated. Some blocks retain primary depositional contacts, showing that gravitational processes contributed to formation of the melange. Detached blocks of Upper Palaeozoic shallow-water carbonates (e.g. Chios) are commonly mantled by conglomerates, which include water-worn clasts of black chert. The carbonate blocks are restored as one, or several, carbonate platforms that collided with an active margin, fragmenting into elongate blocks that slid into a subduction trench. This material was tectonically accreted at shallow levels within a subduction complex, resulting in layer-parallel extension, shearing and slicing. The accretion mainly took place during Late Carboniferous time.Alternative sedimentary-tectonic models are considered in which the timing and extent of closure of Palaeotethys differ, and in which subduction was either northwards towards Eurasia, or southwards towards Gondwana (or both). Terrane displacement is also an option. A similar (but metamorphosed) accretionary unit, the Konya Complex, occurs hundreds of kilometres further east. All of these units appear to have been assembled along the northern margin of Gondwana by Permian time, followed by deposition of overlying Tauride-type carbonate platforms. Northward subduction of Palaeotethys beneath Eurasia is commonly proposed. However, the accretionary units studied here are more easily explained by southward subduction towards Gondwana. Palaeotethys was possibly consumed by long-lived (Late Palaeozoic) northward subduction beneath Eurasia, coupled with more short-lived (Late Carboniferous) southward subduction near Gondwana, during or soon after closure of Palaeotethys in the Balkan region to the west. 相似文献
13.
E. V. Deev I. V. Turova A. P. Borodovskiy I. D. Zolnikov L. Oleszczak 《International Geology Review》2017,59(3):293-310
Palaeoseismological and archaeoseismological studies in the Kurai fault zone, along which the Kurai Range is thrust onto Cenozoic deposits of the Chuya intramontane basin, led to the identification of a long reverse fault scarp 8.0 m high. The scarp segments are primary seismic deformations of large ancient earthquakes. The scarp’s morphology, results of trenching investigations, and deformations of Neogene deposits indicate a thrusting of the piedmont plain onto the Kurai Range, which is unique for the Gorny Altai. Similarly for Northern Tien Shan, we explain this by the formation of both a thrust transporting the mountain range onto the depression and a branching thrust dislocation that forms the detected fault scarp. In a trench made in one of the scarp segments, we identified the parameters of the seismogenic fault – a thrust with a 30° dipping plane. The reconstructed displacement along the fault plane is 4.8 m and the vertical displacement is 2.4 m, which indicates a 7.2–7.6 magnitude of the ancient earthquake. The 14C age of the humus-rich loamy sand from the lower part of the colluvial wedge constrains the age of the earthquake at 3403–3059 years BP. Younger than 2500 years seismogenic displacements along the fault scarp are indicated by deformations of cairn structures of the Turalu–Dzhyurt-III burial mound, which was previously dated as iron age between the second half of I BC and I AD. 相似文献
14.
E. Aldanmaz 《Geological Journal》2012,47(1):59-76
Ophiolites exposed across the western Tauride Belt in SW Turkey represent tectonically emplaced fragments of oceanic lithosphere incorporated into continental margin following the closure of the Neotethys Ocean during the Late Cretaceous. The mantle sections of the ophiolites contain peridotites with diverse suites of geochemical signatures indicative of residual origin by melt depletion in both mid‐ocean ridge (MOR) and supra‐subduction zone (SSZ) settings. This study uses a laser‐ablation inductively‐coupled plasma‐mass spectrometry (LA‐ICP‐MS) for in situ measurements of trace elements in primary mantle phases in order to identify the upper mantle petrogenetic processes effective during variable stage of melt extraction in these discrete tectonic settings and to discriminate between the effects of reaction with chemically distinct mantle melts migrating through the solid residues. Trace element signatures in pyroxenes suggest small‐length scales of compositional variations which may be interpreted to be a result of post‐melting petrogenetic processes. Relative distribution of rare earth elements and Li between coexisting orthopyroxene‐clinopyroxene pairs in the peridotites suggests compositional disequilibrium in sub‐solidus conditions, which possibly reflects differential effects of diffusive exchange during melting and melt transport or interaction with subduction melts/fluids. On the basis of Ga abundances and Ga–Ti–Fe+3# [Fe+3/(Fe+3 + Cr + Al)] relationships of chrome‐spinels it is documented that the peridotites have experienced the combined effects of partial melting and variable extent of melt‐solid interaction. The MOR peridotites have spinels with geochemical signatures indicative of melt‐depleted residual origin with subsequent incompatible element enrichment through melt impregnation, while the Ga–Ti–Fe+3# relationships of chrome‐spinels in SSZ peridotites indicate that these highly depleted peridotites are not simple melt residues, but have been subject to significant compositional modification by interaction with subduction related melts/fluids. The observed compositional variations, which are related to long‐term tectonic reorganisation of oceanic lithosphere, provide evidence for a time integrated evolution from a mid‐ocean ridge to a supra‐subduction zone setting and may be a possible analogue to explain the coexistence of geochemically diverse MOR–SSZ suites in other Tethyan ophiolites. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
15.
A paleo-seismological study was conducted at Jaflong, Sylhet, Bangladesh, which is on the eastern part of the Dauki fault. The geomorphology around Jaflong is divided into the Shillong Plateau, the foothills, the lower terraces, and the alluvial plain from north to south. Because the foothills and lower terraces are considered to be uplifted tectonically, an active fault is inferred to the south of the lower terraces. This fault, which branches from the Dauki fault as a foreland migration, is known as the Jaflong fault in this paper. The trench investigation was conducted at the southern edge of the lower terrace. The angular unconformity accompanied by folding, which is thought to be the top of the growth strata, was identified in the trench. An asymmetric anticline with a steep southern limb and gentle northern limb is inferred from the back-tilted lower terrace and the folding of the gravel layer parallel to the lower terrace surface. The timing of the seismic event which formed the folding and unconformity is dated to between AD 840 and 920.The trench investigation at Gabrakhari, on the western part of the Dauki fault, revealed that the Dauki fault ruptured in AD 1548 (Morino et al., 2011). Because the 1897 great Indian earthquake (M ⩾ 8.0; Yeats et al., 1997) was caused by the rupture of the Dauki fault (Oldham, 1899), it is clear that the Dauki fault has ruptured three times in the past one thousand years. The timing of these seismic events coincides with that of the paleo-liquefactions confirmed on the Shillong Plateau. It is essential for the paleo-seismological study of the Dauki fault to determine the surface ruptures of the 1897 earthquake. The Dauki fault might be divided into four rupture segments, the western, central, eastern, and easternmost segments. The eastern and western segments ruptured in AD 840–920 and in 1548, respectively. The 1897 earthquake might have been caused by the rupture of the central segment. 相似文献
16.
A low-angle extensional fault system affecting the non metamorphic rocks of the carbonate dominated Tuscan succession is exposed in the Lima valley (Northern Apennines, Italy). This fault system affects the right-side-up limb of a kilometric-scale recumbent isoclinal anticline and is, in turn, affected by superimposed folding and late-tectonic high-angle extensional faulting.The architecture of the low-angle fault system has been investigated through detailed structural mapping and damage zone characterization. Pressure-depth conditions and paleofluid evolution of the fault system have been studied through microstructural, mineralogical, petrographic, fluid inclusion and stable isotope analyses. Our results show that the low-angle fault system was active during exhumation of the Tuscan succession at about 180°C and 5 km depth, with the involvement of low-salinity fluids. Within this temperature - depth framework, the fault zone architecture shows important differences related to the different lithologies involved in the fault system and to the role played by the fluids during deformation. In places, footwall overpressuring influenced active deformation mechanisms and favored shear strain localization.Our observations indicate that extensional structures affected the central sector of the Northern Apennines thrust wedge during the orogenic contractional history, modifying the fluid circulation through the upper crust and influencing its mechanical behavior. 相似文献
17.
Special consolidation tests were run on undisturbed samples to study the ability of Quaternary soils adjacent to the Meers fault in southwestern Oklahoma to record and remember the maximum effective (preconsolidation) stresses they experienced during the faulting process. The results show that the soils record >60% of the applied total stresses as preconsolidation stresses in 2 s of loading time, indicating that these stresses could have been recorded during an earthquake faulting event. To record all of the applied total stresses as preconsolidation stresses (100% recording or memory), the loading needs to last at least 4–5 min. 相似文献
18.
19.
徐州城区是岩溶塌陷地质灾害危害严重的区域,已发生的塌陷均展布在废黄河断裂带内,有明显的规律性,为断裂带地下水富集区过量抽水所造成。研究表明,废黄河断裂带内岩溶发育,发育有向上开口的溶洞和裂隙,断裂带沟通了不同时代的含水层,形成了地下水强径流带或富集带;地堑式断裂带构成的负地形形成了晚更新世和全新世古河道,古河道区域形成"单一透水型盖层"和"透-阻型盖层",使黄河泛滥沉积的砂性土直接覆盖在岩溶含水层上,为过量抽水发生岩溶塌陷提供了重要水动力条件。因此,废黄河断裂带及其伴生断裂控制了岩溶塌陷的形成条件,特别是岩溶发育强度、岩溶水文地质结构和地下水富集规律。 相似文献
20.
Lineament analysis is applied to map the pattern of the Obruchev fault system in the Buguldeika Village area, where several fault zones (Olkhon, Primorsky, Prikhrebtovyi, Buguldeika, and Kurtun) make up a junction. As inferred from the predominant directions of genetically related lineaments, the Olkhon, Primorsky, and Prikhrebtovyi faults originated under NW-SE extension and compression. The extension and compression settings within these zones are reconstructed by analysis of lineaments that have prominent and poor geomorphic expression, respectively. However, the pattern of lineaments well expressed in the surface topography within a weakly deformed block corresponds to reverse slip, while that of poorly pronounced lineaments corresponds to left-lateral strike slip. The study confirms the idea that the latest extension (rifting) stage in the Baikal region reactivated fault zones but did not deform blocks. The blocks store record of residual deformation produced by previous settings of regional compression and shear. The obtained results agree with earlier tectonophysical analysis of faults and fractures in the area and prove the applicability of the suggested approach to map the fault patterns and reconstruct their respective stress settings in areas that underwent multiple deformation events of different ages. 相似文献