首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we purposed to investigate the edge of geostructures and position of existing faults of the Shamakhy–Gobustan and Absheron hydrocarbon containing regions in Azerbaijan. For this purpose, the horizontal gradient, analytic signal, tilt angle, and hyperbolic of tilt angle methods were applied to the first vertical derivative of gravity data instead of Bouguer gravity data. We obtained the maps that show the previous lineaments which were designated by considering the maximum contours of horizontal gradient, analytic signal maps, and zero values of tilt angle, hyperbolic of tilt angle maps. The geometry of basement interface was also modeled utilizing the Parker–Oldenburg algorithm to understand the sediment thickness and coherency or incoherency between the gravity values and basement topography. The lineaments were held a candle to most current tectonic structure map of the study area. It was seen that the techniques used in this study are very effective to determine the old and new lineaments in the Shamakhy–Gobustan and Absheron regions. The epicenter distribution of earthquakes within the study area supports the new lineaments which are extracted by our interpretation. We concluded that better comprehension of Azerbaijan geostructures and its effect on the large scale works will be provided by means of this study.  相似文献   

2.
Introduction Rayleigh wave is a kind of seismic wave propagating along the surface of the Earth, its propagation speed depends chiefly on the S-wave velocity structure of the Earth. Rayleigh wave energy of different periods concentrated in different depth ranges. The layered structure of the Earth causes the phenomenon of dispersion of surface waves, that is, surface waves of different periods are propagated with different speeds. By measuring the dispersion curves of surface waves the S-wav…  相似文献   

3.
We propose a fast method for imaging potential field sources. The new method is a variant of the “Depth from Extreme Points,” which yields an image of a quantity proportional to the source distribution (magnetization or density). Such transformed field is here transformed into source‐density units by determining a constant with adequate physical dimension by a linear regression of the observed field versus the field computed from the “Depth from Extreme Points” image. Such source images are often smooth and too extended, reflecting the loss of spatial resolution for increasing altitudes. Consequently, they also present too low values of the source density. We here show that this initial image can be improved and made more compact to achieve a more realistic model, which reproduces a field consistent with the observed one. The new algorithm, which is called “Compact Depth from Extreme Points” iteratively produces different source distributions models, with an increasing degree of compactness and, correspondingly, increasing source‐density values. This is done through weighting the model with a compacting function. The compacting function may be conveniently expressed as a matrix that is modified at any iteration, based on the model obtained in the previous step. At any iteration step the process may be stopped when the density reaches values higher than prefixed bounds based on known or assumed geological information. As no matrix inversion is needed, the method is fast and allows analysing massive datasets. Due to the high stability of the “Depth from Extreme Points” transformation, the algorithm may be also applied to any derivatives of the measured field, thus yielding an improved resolution. The method is investigated by application to 2D and 3D synthetic gravity source distributions, and the imaged sources are a good reconstruction of the geometry and density distributions of the causative bodies. Finally, the method is applied to microgravity data to model underground crypts in St. Venceslas Church, Tovacov, Czech Republic.  相似文献   

4.
The shear wave velocity is one of the important parameters in seismic engineering.The common mathematical models of relationship between shear wave velocity and depth of soil-layers are linear function model,quadratic function model,power function model,cubic function model,and quartic function model.It is generally believed that the regression formulae based on aforementioned mathematical models are mainly used for preliminary estimation of the local shear wave velocity.In order to increase the value of test data of wave speed in boreholes,the calculation formulae for the thickness of ground cover layer are derived based on the aforementioned mathematical models and their fitting parameters.The calculation formulae for the mean shear wave velocity of soil-layers are derived by integral mean value theorem.Accordingly,the calculation formulae for the equivalent shear wave velocity of soil-layers are derived.The calculation formulae for the depth of reflective waves in time-depth conversion of the reflection seismic exploration are derived.Through the statistical analysis of test data of shear wave velocity of soil layers in Changyuan County,Henan Province,regression formulae and their fitting parameters of aforementioned mathematical models are obtained.The results show that in the determination of the quality of these regression formulae and their fitting parameters,the adjusted R-square,root mean square error and residual error,the matching on the statistical range between the geometry of function of mathematical models used and the scattergram of the measured data,the application purpose and the simplicity of the regression formulae should be considered.With the aforementioned new formulae,the results show that the calculated values of equivalent shear wave velocity of soil-layers and thickness of ground cover layer meet the engineering needs.The steps for statistics and applications of the relationship between shear wave velocity and depth of soil-layers for a new area are as follows:(1) Analyze the relevant data about the site such as the drilling and wave speed test data,etc.and divide the site into seismic engineering geological units;(2) In a single seismic engineering geological unit,make statistical analysis of the data of borehole wave speed test,comprehensively identify and select mathematical models and their fitting parameters of the relationship between shear wave velocity and depth of soil-layers;(3) Substitute the selected fitting parameters into the formulae,based on their mathematical models for the thickness of ground cover layer,or the equivalent shear wave velocity of soil-layers,or the depth of reflective wave,then the thickness of ground covering layer,equivalent shear wave velocity,and depth of reflective wave are obtained.  相似文献   

5.
Measurements of the splitting or birefringence of seismic shear waves that have passed through the Earth’s mantle yield constraints on the strength and geometry of elastic anisotropy in various regions, including the upper mantle, the transition zone, and the D″ layer. In turn, information about the occurrence and character of seismic anisotropy allows us to make inferences about the style and geometry of mantle flow because anisotropy is a direct consequence of deformational processes. While shear wave splitting is an unambiguous indicator of anisotropy, the fact that it is typically a near-vertical path-integrated measurement means that splitting measurements generally lack depth resolution. Because shear wave splitting yields some of the most direct constraints we have on mantle flow, however, understanding how to make and interpret splitting measurements correctly and how to relate them properly to mantle flow is of paramount importance to the study of mantle dynamics. In this paper, we review the state of the art and recent developments in the measurement and interpretation of shear wave splitting—including new measurement methodologies and forward and inverse modeling techniques,—provide an overview of data sets from different tectonic settings, show how they help us relate mantle flow to surface tectonics, and discuss new directions that should help to advance the shear wave splitting field.  相似文献   

6.
Constructing detailed models for postseismic and coseismic deformations of the Earth’s surface has become particularly important because of the recently established possibility to continuously monitor the tectonic stresses in the source zones based on the data on the time variations in the tidal tilt amplitudes. Below, a new method is suggested for solving the inverse problem about the coseismic and postseismic deformations in the real non-ideally elastic, radially and horizontally heterogeneous, self-gravitating Earth with a hydrostatic distribution of the initial stresses from the satellite data on the ground surface displacements. The solution of this problem is based on decomposing the parameters determining the geometry of the fault surface and the distribution of the dislocation vector on this surface and elastic modules in the source in the orthogonal bases. The suggested approach includes four steps: 1. Calculating (by the perturbation method) the variations in Green’s function for the radial and tangential ground surface displacements with small 3D variations in the mechanical parameters and geometry of the source area (i.e., calculating the functional derivatives of the three components of Green’s function on the surface from the distributions of the elastic moduli and creep function within the volume of the source area and Burgers’ vector on the surface of the dislocations); 2. Successive orthogonalization of the functional derivatives; 3. Passing from the decompositions of the residuals between the observed and modeled surface displacements in the system of nonorthogonalized functional derivatives to their decomposition in the system of orthogonalized derivatives; finding the corrections to the distributions of the sought parameters from the coefficients of their decompositions in the orthogonalized basis; and 4. Analyzing the ambiguity of the inverse problem solution by constructing the orthogonal complement to the obtained basis. The described approach has the following advantages over the method of steepest descent which was used in our previous works: 1. Application of the perturbation method significantly reduces the volume of the computations in the real problems of coseismic and postseismic deformations (by three to four orders of magnitude when the data from a few dozens of observation points are used); 2. In contrast to the method of steepest descent, the suggested method always provides stable results. This means that adding the new satellite data does not alter the previously calculated coefficients in the low-order harmonics of the distributions of the sought parameters in the orthogonalized basis; this only changes the coefficients of the increasingly higher harmonics which determine the smallscale details in the sought distributions. 3. In contrast to the method of steepest descent, the suggested method is not only capable of constructing stable partial solutions of the inverse problem but also estimating the ambiguity of these solutions. The ambiguity is represented in terms of the superposition of the known functions contained in the orthogonal complement and, hence, with the growth of the amount of the analyzed data it is determined by the linear combination of the increasingly higher harmonics. In the second part of the paper, we present the results of the model numerical computations of Green’s function for the elastic displacements of the ground surface, which correspond to the case of the arbitrary geometry of the dislocation surface and arbitrary orientation of the dislocation vector for the real model of the radially heterogeneous gravitating Earth with the hydrostatic distribution of the initial stresses. The numerical calculations of the creep function in the upper mantle for the coseismic deformations and the ambiguity of the models of postseismic deformations in the vicinity of the source of the Great Tohoku earthquake (Japan) of March 11, 2011 are illustrated by the examples.  相似文献   

7.
Surface wave methods are based on the inversion of observed Rayleigh wave phase‐velocity dispersion curves. The goal is to estimate mainly the shear‐wave velocity profile of the investigated site. The model used for the interpretation is 1D, hence results obtained wherever lateral variations are present cannot be considered reliable. In this paper, we study four synthetic models, all with a lateral heterogeneity. When we process the entire corresponding seismograms with traditional fk approach, the resulting 1D profiles are representative of the subsurface properties averaged over the whole length of the receivers lines. These results show that classical analysis disregards evidences of sharp lateral velocity changes even when they show up in the raw seismograms. In our research, we implement and test over the same synthetic models, a novel robust automated method to check the appropriateness of 1D model assumption and locate the discontinuities. This new approach is a development of the recent multi‐offset phase analysis with the following further advantages: it does not need previous noise evaluation and more than one shot. Only once the discontinuities are clearly identified, we confidently perform classical f‐k dispersion curve extraction and inversion separately on both sides of the discontinuity. Thus the final results, obtained by putting side by side the 1D profiles, are correct 2D reconstructions of the discontinuous S‐wave distributions obtained without any additional ad‐hoc hypotheses.  相似文献   

8.
The lithospheric structure of the Sinai Peninsula is shown by means of nine shear velocity profiles for depths ranging from zero to 50 km, determined from the Rayleigh wave analysis. The traces of 30 earthquakes, which occurred from 1992 to 1999 in and around the study area, have been used to obtain Rayleigh wave dispersion. These earthquakes were registered by a broadband station located in Egypt (KEG station). The dispersion curves were obtained for periods between 3 and 40 s, by digital filtering with a combination of MFT and TVF filtering techniques. After that, all seismic events were grouped in source zones to obtain a dispersion curve for each source-station path. These dispersion curves were inverted according to generalized inversion theory, to obtain shear wave velocity models for each source-station path, which is the main goal of this study. The shear velocity structure obtained for the Sinai Peninsula is shown through the shear velocity distributions with depth. These results agree well with the geology and other geophysical results, previously obtained from seismic and gravity data. The obtained velocity models suggest the existence of lateral and vertical heterogeneity. The shear velocity increases generally with depth for all paths analyzed in the study area. Nevertheless, in some paths a small low velocity channel in the upper or lower crust occurs. Along these profiles, it is found that the crustal structure of the Sinai Peninsula consists of three principal layers: upper crust with a sedimentary layer and lower crust. The upper crust has a sedimentary cover of 2 km thick with an average S-velocity of 2.53 km/s. This upper crust has a variable thickness ranging from 12 to 18 km, with S-wave velocity ranging from 3.24 to 3.69 km/s. The Moho discontinuity is located at a depth of 30 km, which is reflected by a sharp increase in the S-velocity values that jump from 3.70–4.12 to 4.33–4.61 km/s.  相似文献   

9.
Within the context of a warming climate, there are wide and increasing concerns about the way beaches respond to different wave energy environments. However, behavioural differences in changes in beach elevation contours (including shorelines) in different wave energy environments remain unknown. Thus, it is unilateral to evaluate the changes in beaches based on a single elevation contour (e.g. shoreline) in coastal engineering and management applications. In this study, based on the collected shoreline and wave energy data of two international beaches, as well as the measured beach elevation contour data from Yintan Beach and the corresponding wave energy data simulated by Xbeach, our results show that frequency distributions of beach elevation contour changes exhibit distinct features under different wave energy environments. Under high wave energy environments, the frequency distributions of beach elevation contour changes show a Gaussian distribution. However, frequency distributions of beach elevation contour changes present a power law, intermediate between the logarithmic and Gaussian distributions under low and moderate wave energy environments, respectively. Furthermore, the conceptual model of beach elevation contour changes constructed by this study indicates that the relative importance of the wave energy and sediment resistance determines this phenomenon. © 2020 John Wiley & Sons Ltd  相似文献   

10.
We advance a principle directed to assigning numerical values to free parameters usually present in inversion methods. It may be formulated as: ‘Optimum estimates of free parameters in an inversion procedure must lead, in tests using synthetic data, to solutions whose geometrical expression reflects the main qualitative or semiquantitative geological characteristic of the study area.’ To this end, the interpreter should (i) specify a typical anomalous source geometry which incorporates the most relevant geological information for the study area, (ii) compute the corresponding gravity anomaly and (iii) invert the anomaly for the source geometry finding the numerical values of the free parameters that lead to a solution closest to the typical source. Application of the above methodology to synthetic and real data from the basement relief of a rift basin has asserted its efficacy.  相似文献   

11.
2001 年11月14日昆仑山口西MS8.1地震是有现代仪器记录以来发生在青藏高原区域最大地震之一,对研究青藏高原的运动学模式具有重要意义.从地震发生至今,不同研究者运用不同资料和方法获取的地震破裂分布还存在一定差异.基于此,本文采用GPS和InSAR资料数据,参考最新研究成果,构建更为合理的断层几何模型,运用SDM方法反演本次地震的破裂分布.在反演中充分考虑不同数据权重的影响及InSAR数据中存在的整体偏移.结果显示本次地震断层性质以左旋走滑为主,最大破裂位错为~6.9 m,分布在35.76°N、93.40°E附近,地震较大破裂区域主要分布在地下20 km以内.同时,反演的位错分布在断层浅部与地质考察得到的地表破裂分布较为吻合.在与前人相关研究的对比中,显示本文结果的可靠性是较高的,例如,近地表破裂包络线与地表考察结果相近,地下破裂分布特征与前人提出的3次子地震事件相一致等,再一次佐证了此次地震由多次子地震事件组成的研究结论.  相似文献   

12.
中国大陆及海域Love波层析成像   总被引:8,自引:8,他引:8       下载免费PDF全文
收集了研究区域(68°-150°E,5°-55°N)内33个数字地震台站记录的面波资料,利用多重滤波技术提取了4000余条路径上的Love波群速度频散曲线. 将研究区域划分成1°×1°网格,采取Occam反演方法得到了7.3-184s共43个周期的Love波群速度分布图;然后对网格结点进行S波速度结构反演,得出研究区域内420km深度内的地壳上地幔三维速度结构. 并采用Checkerboard方法对分辨率进行检验,得到横向的分辨率约为3°-5°. 研究结果表明:中国大陆地壳上地幔结构的横向不均匀性非常明显,内部结构与地表特征的相关性可以达到0-150km深度. 大陆地区东西分带、南北分块,块体的边界反映比较清晰.  相似文献   

13.
淀山湖风浪场的数值模拟   总被引:1,自引:0,他引:1  
对淀山湖的风场和风浪场进行了观测,根据所观测的风场利用SWAN模型计算了湖区的风浪场.通过将计算的波高和观测值进行比较,说明计算结果的变化趋势和观测结果的变化趋势相吻合;观测结果的波动幅度较大,而计算结果比较平滑.总体说来,基于SWAN模型所计算的波高可信、可靠.在此基础上,利用SWAN模型较为系统地计算了不同水位和不...  相似文献   

14.
The identification and characterization of target areas at former bombing ranges is the first step in investigating these sites for residual unexploded ordnance. Traditionally, magnetometer surveys along transects are used in identifying areas with high densities of magnetic anomalies, which are likely former target areas. Combining magnetometer survey data with other data sources may reduce the level of survey data required for site characterization, increasing characterization efficiency. Here, several techniques for incorporating secondary information into kriging estimates of magnetic anomaly density are investigated for a former bombing range located near Pueblo, Colorado. In particular, kriging with external drift, collocated ordinary cokriging, and simple kriging with local means (SKLM) are used to incorporate information from a secondary variable. The secondary variable consists of a grid of crater density values derived from a topographic light detection and ranging (LIDAR) analysis. The craters, which are clearly identifiable in the LIDAR data, were generated through munitions use at the site and are therefore related to the target locations. The results from this study indicate that the inclusion of the secondary information in the kriging estimates does benefit target area characterization and provides a means of elucidating target area details from only limited magnetometer transect data. For the Pueblo site, the use of SKLM with the crater density as a secondary variable and only limited magnetometer transect data, provided results comparable to those obtained from using much larger magnetometer transect data sets.  相似文献   

15.
土壤的剪切波速(VS),是抗震设计的一个重要参数,但有关澳门土层的相关资料则十分稀少。研究的主要目的是根据近期野外测试的结果,探讨澳门土层的VS与标准贯入试验的打击锤数(N)的关系,并以简单之幂函数建立VS与N值的关系式。作为澳门轻轨交通系统之勘察计划,研究进行了五组下孔法(DH),地震波圆锥触探试验(S-CPT)以及标准贯入试验(SPT)的测试。根据试验结果所得的关系式估算剪切波速高于较澳门轻轨设计大纲的建议值,而使用另一有关澳门土层的数据库来验证新的关系式,亦可获得合理的决定系数。  相似文献   

16.
《Advances in water resources》2007,30(6-7):1680-1695
Bacterial adhesion and motility are studied at the pore scale by focusing on two interrelated aspects of transport: wall attachment/detachment (reversible sorption) and the role of convection and pore geometry on adhesion. Motility is also examined through use of Brownian dynamics. Bacteria motility and reversible attachment/detachment are incorporated with a numerical laminar flow solver. Since individual bacteria are modeled, the results apply to low concentrations/coverage. Pore geometries consistent with a microflow cell of variable cross sectional area are used. This exploratory modeling work precedes an ongoing microflow cell experimental study and more detailed Lévy particle models. Adsorption reactions occurring over different time scales are modeled as multimodal distributions with power law tails. Computations show the relative magnitude of bacterial motility to advection controls the average number of collisions against solid walls. Variable cross section in pore geometry changes hydrodynamic conditions for deposition (e.g., variable shear stress). In regions of reduced cross sectional area, the ratio of bacteria motility to average velocity is smaller and results in less collisions and reduced retardation. Additionally, reduced cross sectional area increases both wall shear stress and vorticity which should be considered in adhesive models. While the shear forces acting on a particle deposited at the wall work on a spatial scale of the microbe’s size, adhesive forces may be confined to tens of nanometers. Multimodal adhesion causes the first passage time distributions to have long tails.  相似文献   

17.
Three‐dimensional seismic survey design should provide an acquisition geometry that enables imaging and amplitude‐versus‐offset applications of target reflectors with sufficient data quality under given economical and operational constraints. However, in land or shallow‐water environments, surface waves are often dominant in the seismic data. The effectiveness of surface‐wave separation or attenuation significantly affects the quality of the final result. Therefore, the need for surface‐wave attenuation imposes additional constraints on the acquisition geometry. Recently, we have proposed a method for surface‐wave attenuation that can better deal with aliased seismic data than classic methods such as slowness/velocity‐based filtering. Here, we investigate how surface‐wave attenuation affects the selection of survey parameters and the resulting data quality. To quantify the latter, we introduce a measure that represents the estimated signal‐to‐noise ratio between the desired subsurface signal and the surface waves that are deemed to be noise. In a case study, we applied surface‐wave attenuation and signal‐to‐noise ratio estimation to several data sets with different survey parameters. The spatial sampling intervals of the basic subset are the survey parameters that affect the performance of surface‐wave attenuation methods the most. Finer spatial sampling will reduce aliasing and make surface‐wave attenuation easier, resulting in better data quality until no further improvement is obtained. We observed this behaviour as a main trend that levels off at increasingly denser sampling. With our method, this trend curve lies at a considerably higher signal‐to‐noise ratio than with a classic filtering method. This means that we can obtain a much better data quality for given survey effort or the same data quality as with a conventional method at a lower cost.  相似文献   

18.
Hydrological modelling depends highly on the accuracy and uncertainty of model input parameters such as soil properties. Since most of these data are field surveyed, geostatistical techniques such as kriging, classification and regression trees or more sophisticated soil‐landscape models need to be applied to interpolate point information to the area. Most of the existing interpolation techniques require a random or regular distribution of points within the study area but are not adequate to satisfactorily interpolate soil catena or transect data. The soil landscape model presented in this study is predicting soil information from transect or catena point data using a statistical mean (arithmetic, geometric and harmonic mean) to calculate the soil information based on class means of merged spatial explanatory variables. A data set of 226 soil depth measurements covering a range of 0–6·5 m was used to test the model. The point data were sampled along four transects in the Stubbetorp catchment, SE‐Sweden. We overlaid a geomorphology map (8 classes) with digital elevation model‐derived topographic index maps (2–9 classes) to estimate the range of error the model produces with changing sample size and input maps. The accuracy of the soil depth predictions was estimated with the root mean square error (RMSE) based on a testing and training data set. RMSE ranged generally between 0·73 and 0·83 m ± 0·013 m depending on the amount of classes the merged layers had, but were smallest for a map combination with a low number of classes predicted with the harmonic mean (RMSE = 0·46 m). The results show that the prediction accuracy of this method depends on the number of point values in the sample, the value range of the measured attribute and the initial correlations between point values and explanatory variables, but suggests that the model approach is in general scale invariant. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
While seismic imaging for crustal and mantle structures has traditionally relied on surface wave and refraction data, the use of reflection data for crustal-scale targets has been largely limited to the common midpoint (CMP) stack techniques. The rapid increase in the number of seismograph array deployments in recent years in crustal and mantle seismology has reached a level such that a re-examination of the imaging techniques is becoming necessary. In this paper we show the advantage of prestack depth imaging for crustal reflection studies, based on data from two reflection surveys of the Los Angeles Regional Seismic Experiment (LARSE) to map faults and crustal-scale structures. Our analysis indicates that the quality of the previous images of these surveys is limited by the CMP stack technique. For comparison, we present here depth images of the same LARSE data using wave equation prestack depth imaging and a tomographic velocity model based on first arrivals of the LARSE surveys and local earthquakes. Our new images are considerably improved over previous images in terms of resolution and reflector continuity. The new images show reflectors throughout the crust and suggest truncations in the Moho associated with the San Andreas Fault. A series of bright reflector segments, which are associated with the San Gabriel and San Andreas faults have been identified and might represent reflections from the fault zones. Our results suggest that the presence of high noise level, strong lateral velocity heterogeneity and wide angle geometry argue for, rather than against, the use of prestack depth imaging over the simple CMP stack techniques. As demonstrated in this study, it is now viable to conduct prestack depth imaging of crustal reflection data using a velocity model based on earthquake first arrivals thanks to the dense acquisition deployment.  相似文献   

20.
川西坳陷孝泉地区深层须家河组致密砂岩气藏属于典型非常规裂缝性气藏,储层识别、裂缝检测、含气性识别是气藏研究的重点和难点.转换波3D3C勘探可同时获得反映岩石骨架和各向异性特性的C波资料及反映骨架及流体特性的P波资料,因而适用于川西孝泉深层超致密裂缝性气藏.在3D3C地震勘探中,三维三分量地震采集方法是采集到高质量多分量原始资料的技术保障,本文重点研究这种采集方法.首先根据地球物理参数,结合地质任务要求,分析了三维三分量观测系统设计的方法及观测系统参数,然后根据分析结果和勘探目的层的实际情况设计了同时适合纵波勘探和转换波勘探的面元尺寸、最大和最小炮检距、接收线距、束间滚动距等参数并确定了三维三分量观测系统.该观测系统在孝泉地区资料采集中,获得的三分量资料波组特征清楚,同相轴连续,反射信息丰富;Z分量剖面和R分量剖面反射层次清楚,目的层反射特征明显,具有非常好的构造形态一致性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号