首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Annually laminated sediments in Lake Xiaolongwan, northeast China, contain a suite of n-alkanes (C17–C33) with a strong odd over even carbon number predominance. Biomarker n-alkane proxies (average chain length, Paq ratio, grass/tree ratio, carbon preference index and compound-specific δ13C values) were used to reconstruct climate changes that occurred over the last millennium. Compound-specific δ13C values show large differences between the distinctive chain length groups of n-alkanes that originate from algae, aquatic macrophytes and terrestrial plants. Long-chain n-alkanes (C27–C33) are predominantly derived from leaf wax lipids in the forest. Variations in long-chain n-alkane δ13C values may mainly record water-use efficiency, inasmuch as the contribution from C4 plants is negligible in the Lake Xiaolongwan catchment. Short- and middle-chain n-alkanes are mainly from algae and aquatic plants. They are strongly depleted in 13C. This feature may be linked to a methane-derived, negative δ13C pool and lake overturn, which regulates dinoflagellate blooms. Parallel fluctuations are observed in δ13C27–31 values, Paq, and the grass/tree ratio throughout the record. Variations in δ13C27–31 values and Paq are in agreement with historical documents on summer and winter climate conditions. They support earlier suggestions that δ13C values in the long-chain n-alkanes and Paq may be useful indicators of effective precipitation or drought stress in this forested area. The δ13C27–31 index and Paq show distinct decadal variations. Periods with high δ13C27–31 values and a low Paq index correspond with the warm phases of the Pacific Decadal Oscillation (PDO). Values are reversed during PDO cool phases. At the decadal timescale, summer monsoon rainfall in northeast China over the last millennium may have been regulated mainly by the PDO.  相似文献   

2.
We used seven annually laminated (varved) sediment cores from Nylandssjön, a lake in northern Sweden, to assess between-core variation and diagenetic changes at annual resolution. By using several cores, multiple elements and employing principal components analysis (PCA), we also studied how the geochemical composition changed over time, and assessed to what extent these changes were related to variations in the weather. There are between-core differences for aluminum, silica, lead, titanium, zirconium and dry-mass accumulation rate. Diagenesis causes a decrease in bromine, as well as carbon, nitrogen and varve thickness, as reported in previous publications. In spite of anoxic bottom waters phosphorus is not lost from the sediment. In fact, there is an increase in phosphorus concentrations with time. The PCA identified four principal components (PCs). PC-1 accounts for the relative content of mineral and organic material; PC-2 represents mineral-particle grain size; PC-3 reflects phosphorus loading and PC-4 reflects atmospheric pollution. Variations in the weather partly explain the temporal patterns in PC-1 and PC-2: cold winters, i.e. more accumulation of snow, resulted in more mineral than organic matter (i.e. higher PC-1 scores), and increased the relative amount of coarse-grained mineral particles in the sediment (i.e. lower PC-2 scores). Increased spring precipitation had a weak positive effect on the PC-2 scores by promoting the transport of fine-grained material. However, the influence of weather is weak, explaining at most 30 % of the variance, and hence, other factors, e.g. land use and its effect on soil erosion, seem to be more important for the sediment geochemical composition. The importance of land use is also exemplified by an increase in PC-3 scores in the late 1970s, which can be attributed to a shift in agricultural practices that resulted in increased phosphorus loading to the lake. In summary, our findings show that down-core trends are reproducible between cores, but between-core variability and diagenesis need to be considered when interpreting some elements. We also conclude that there is a need to constrain temporal changes in land use before using lake sediments to study changes in weather or climate.  相似文献   

3.
We reported a special type of lamination formed in the sediments of Lake Xiaolongwan, northeastern China. The lamination consists of light- and brown-colored laminate couplets in the thin sections. The brown-colored layer is composed mainly of dinoflagellate cysts. The grey-colored layer consists of other organic and siliceous matter (plant detritus, diatoms, chrysophyte cysts) and clastics. Preliminary sediment trap results show that a distinct peak of dinocyst flux occurred in November. The dinocyst flux maximum also corresponds to the peaks of diatom flux and chrysophyte stomatocyst flux. These suggest that "red tide blooms" occur in this freshwater lake. We speculate that the dinocyst flux maximum could be related to autumn overturn due to increased nutrients, and the availability of cysts for germination from the lake bottom. Additionally, it may also reflect increasing dissolved organic matter after leaf fall. An independent chronology derived from 137Cs and 210Pb shows a good agreement with counted laminations. From the sediment trap data and the independent chronology data, the dinocyst microlaminae appear to be annually laminated, and probably could be called dinocyst varves. Although vegetative (thecate stage) cells of Peridinium volzii and Ceratium furcoides are found in the water samples, it is not possible to relate the dinocysts to these two dinoflagellate species. Based on morphological and ecological analyses, we suggested that they have affinities with species of Peridinium (sensu lato), most probably to P. inconspicuum. Detailed investigations should be carried out to understand the red tide history in this freshwater lake. Annually laminated dinocyst microlayers in freshwater and marine sediments not only provide an uncommon archive for understanding the history of red tides and harmful algal blooms, and why and how certain species periodically bloom over several thousands years, but also provide important records of paleoenvironmental and paleoclimatic changes at seasonal to annual resolution.  相似文献   

4.
Sediments in Lower Murray Lake, northern Ellesmere Island, Nunavut Canada (81°21′ N, 69°32′ W) contain annual laminations (varves) that provide a record of sediment accumulation through the past 5000+ years. Annual mass accumulation was estimated based on measurements of varve thickness and sediment bulk density. Comparison of Lower Murray Lake mass accumulation with instrumental climate data, long-term records of climatic forcing mechanisms and other regional paleoclimate records suggests that lake sedimentation is positively correlated with regional melt season temperatures driven by radiative forcing. The temperature reconstruction suggests that recent temperatures are ~2.6°C higher than minimum temperatures observed during the Little Ice Age, maximum temperatures during the past 5200 years exceeded modern values by ~0.6°C, and that minimum temperatures observed approximately 2900 varve years BC were ~3.5°C colder than recent conditions. Recent temperatures were the warmest since the fourteenth century, but similar conditions existed intermittently during the period spanning ~4000–1000 varve years ago. A highly stable pattern of sedimentation throughout the period of record supports the use of annual mass accumulation in Lower Murray Lake as a reliable proxy indicator of local climatic conditions in the past.
Pierre FrancusEmail:
  相似文献   

5.
6.
A ~106-cm sediment core from the eastern basin of Lake Erie was examined to investigate biogeochemical processes in this large lake during its cultural eutrophication over the last century. We measured stable carbon isotopes of total organic carbon and calcium carbonate (δ13CTOC and d13 \textC\textCaCO 3 \delta^{13} {\text{C}}_{{{\text{CaCO}}_{ 3} }} ) as well as the concentrations of total organic carbon (TOC) and calcium carbonate (CaCO3). δ13CTOC and TOC show a strong positive correlation throughout the core and record changes in phytoplankton productivity and nutrient loading. CaCO3 and TOC concentrations display a negative correlation throughout the core, suggesting that CaCO3 concentrations are controlled primarily by decomposition of TOC in the hypolimnion and the sediments, although temperature and invasive mussels are also potential controlling factors. d13 \textC\textCaCO 3 \delta^{13} {\text{C}}_{{{\text{CaCO}}_{ 3} }} values show a positive correlation with δ13CTOC between 1909 and 1969, indicating phytoplankton productivity was the primary control for d13 \textC\textCaCO 3 \delta^{13} {\text{C}}_{{{\text{CaCO}}_{ 3} }} values during eutrophication. However, a negative correlation between d13 \textC\textCaCO 3 \delta^{13} {\text{C}}_{{{\text{CaCO}}_{ 3} }} and δ13CTOC from 1970 to 2002 suggests that these two proxies tracked different aspects of the carbon cycle in the lake in more recent times. The cause for the negative correlation is not yet known, but it is perhaps associated with temperature variations and seasonal differences in productivity.  相似文献   

7.
Analysis of a 3.5 m vibracore from the Olson buried forest bed in the southern Lake Michigan basin provides new paleolimnological data for the early Holocene. The core records a rise in lake level from the Chippewa low water phase toward the Nipissing high water phase. Deepening of the water level at the core site is suggested by a trend toward decreasing organic carbon content up core that is interpreted as a response to increasing distance between terrestrial debris sources and the core site.Published data from deep water cores from the southern Lake Michigan basin suggest there had been an inflow of isotopically light water from glacial Lake Agassiz into the southern basin between 10.5-11 ka (A1 event). The data also indicate a second flood of isotopically light water between 8-9 ka (A2 event).Three new 14C dates from the Olson site core suggest that most of the sediment was deposited between 8.45 ka and 8.2 ka, an interval roughly coeval with the second pulse of 18O-depleted water (A2) from Lake Agassiz into the southern basin. Oxygen isotope ratio analysis of shell aragonite from the gastropods Probythinella lacustris and Marstonia deceptashows increasingly negative values up core. This trend in18O values suggests that 18O - depleted water entered the southern basin about 8.4 ka. The Olson site core thus provides a chronology of events in the southern Lake Michigan basin associated with the draining of glacial Lake Agassiz.  相似文献   

8.
A high resolution sediment record spanning the entire time since the ice retreat after the Last Glacial Maximum has been recovered from Lac d'Annecy. The main focus of this study is to develop a reliable chronology of the record and to evaluate the environmental variability during the period of Late Würmian ice retreat. Most of the record is laminated. These laminations are of different structure, composition, and thickness. On the basis of varve stratigraphy five sedimentation units were identified which correspond to particular stages in the deglaciation of the region. Except for one each facies type has been related to an annual cycle of deposition. Varve counting in combination with radiocarbon dating provides the time control of the record and dates the base of lacustrine deposits to 16,600 varve yrs BP. The beginning of the Late Glacial is marked by a shift from clastic to endogenic carbonate varves caused by the climatic warming. Clastic varves have been further subdivided into a succession of complex and standard varve types. These variations of clastic varve formation are triggered by the ice retreat and related hydrological variations in the watershed of the lake. Sedimentological, mineralogical and isotopic data help identify different sediment sources of the sub-layers. Proximal sediments originate from local carbonaceous bedrock whereas distal sediments have characteristics of the molassic complex of the outer Alps. The alternation of proximal and distal sediments in the varve sequence reflects the deglaciation of the Annecy area with a changing influence of local and regional glaciers. The melting of the Alpine ice sheet is the driving force for regional environmental changes which in turn control the sediment transport and deposition processes in Lac d'Annecy.  相似文献   

9.
Total organic carbon (TOC) content, total nitrogen (TN) content, stable nitrogen isotope (δ15N) and stable organic carbon isotope (δ13Corg) ratios were continuously analysed on a high resolution sediment profile from Lake Sihailongwan (SHL), covering the time span between 16,500 and 9,500 years BP. Strong variations of the investigated proxy parameters are attributed to great climatic fluctuations during the investigated time period. Variations in organic carbon isotope ratios and the ratio of TOC/TN (C/N ratio) are discussed with respect to changing proportions of different organic matter (OM) sources to bulk sedimentary OM. Phases of high TOC content, high TN content, depleted δ13Corg values and high δ15N values are interpreted as times with increased productivity of lacustrine algae in relation to input of terrigenous organic matter. Two distinct phases of enriched nitrogen isotope ratios from 14,200 to 13,700 and 11,550 to 11,050 years BP point towards a reduced phytoplankton discrimination against 15N due to a diminished dissolved inorganic nitrogen pool. The combination of geochemical (TOC, TN, C/N ratio) and isotopic (δ13Corg, δ15N) proxy parameters points to a division of climate development into four stages. A cold and dry stage before 14,200 years BP, a warm optimum stage with high phytoplankton productivity from 14,200 to 12,450 BP, a colder and drier stage from 12,450 to 11,600 BP and a stage of climatic amelioration with high variability in TOC and TN contents after 11,600 BP. These results are discussed in relation to monsoon variability and Northern Hemisphere climate development of the late glacial.  相似文献   

10.
A series (N = 12) of short (< 1 m) sediment cores were collected from meromictic Green Lake in Fayetteville, New York to investigate potential anthropogenic impacts on the watershed during historic time and environmental change over the past ~ 2,500 years. Stratigraphic data document an abrupt basinwide change during the early 1800's A.D. from brown laminated sediments to grey varved sediments separated by a transition zone rich in aquatic moss. Deforestation of the region by European settlers during the early 1800's A.D. resulted in a flux of nutrients and increased biological productivity followed by a 7fold increase in sediment accumulation rates. Elemental geochemical data document the anthropogenic loading of lead to the to the lake basin via atmospheric fallout. Stable oxygen isotope (18O calcite) data also provide evidence for an abrupt shift in the isotopic composition of lake water ~ 150–200 years ago. This isotopic shift could have been a local phenomenon related to an increased supply of summer enriched precipitation following removal of forest vegetation, or it might have reflected broader scale climatic changes. We hypothesize that the 18O calcite shift was the result of the polar front jet stream migrating from a more southerly prehistoric position to a contracted, northerly configuration ~ 150–200 years ago. Such a shift could have been natural, associated with the end of the Little Ice Age or it may have been anthropogenically forced.  相似文献   

11.
Previous studies of sediments and molluscs recovered from vibracores at Cowles Bog, a fen located in the Indiana Dunes National Lakeshore, along the south shore of Lake Michigan, reveal long and short term water level fluctuations during the last 6000 years. Low water events are indicated by zones of organic detritus, in which occasionally, iron oxide and calcium carbonate nodules, as well as selenite crystals have been precipitated. Oxygen isotope data from aragonitic shells of the gastropod Amnicola limosa (Say) collected from a sediment core provide a record of Middle to Late Holocene environmental changes for the fen. These data are in good agreement with previous interpretations of water level fluctuations based on changes in lithology and molluscan faunal abundance and composition. Below 366 cm the molluscan record is either absent or represented by shell fragments. The condition of shells in this interval suggests that the molluscs may have been exposed to subaerial weathering and reworking of older Holocene lake sediments, possibly during the low water Chippewa phase in the Lake Michigan basin (10000 YBP to 6000 YBP). Above 366 cm the core is characterized by a well preserved molluscan fauna. Relatively light isotopic values for the interval between 366 cm to 300 cm correlate with the transition from non-fossiliferous sands, peat and diamict to silty marl and calcareous sand, with a molluscan fauna dominated by taxa associated with permanent water bodies. The event producing these alterations, the Nipissing Transgression, marks a change from subaerial to permanent lacustrine conditions that were not characterized by high net evaporation. Evidence for another series of environmental changes occurs between 284 cm and 198 cm. This evidence includes the: (1) appearance of aquatic molluscs at 280 cm that are associated with water bodies subject to significant seasonal water level changes; (2) intermittent accumulations of iron oxide nodules, calcium carbonate nodules, and organic layers interbedded with crudely horizontal layers of fine, calcareous, sand, suggesting periodic water level oscillations; (3) onset of major excursions in the oxygen isotopic values between 260 cm to 198 cm. Relatively high 18O (PDB) values, possibly indicating evaporative enrichment of the water, correlate with a prominent shell debris layer at a depth of about 235 cm. Taken together, this evidence suggests that the core site was in the process of becoming isolated from Lake Michigan. This isolation occurred during a series of low water events during the later part of the Nipissing Transgression.  相似文献   

12.
Summary. A palaeomagnetic record of the geomagnetic secular variation during the last 10000 years has been obtained from 10 cores of sediment from Loch Lomond, Scotland, Lake Windermere, North England, and Llyn Geirionydd, North Wales. A time-scale is provided by 30 radiocarbon age determinations and pollen analyses on several of the cores. The main swings and much fine detail of both declination and inclination records repeat well between cores and between lakes, and the overall record is much more detailed than previous European records.
The new record shows that neither declination nor inclination swings have been periodic over the past 10000 years, but that the main swings have become progressively shorter in duration during that time. Each swing is characterized by fine detail which enables use of the record as a secondary method of dating other European sediments.
The motion of the geomagnetic vector has been predominantly clockwise throughout the time period spanned, but confirms a period of anticlockwise motion from 1100 to 600 bp first discovered by British archaeomagnetic investigations. The record agrees with British and Czechoslovakian archaeomagnetic records, but not with Japanese archaeomagnetic or North American lake sediment records. This suggests that the secular changes are controlled by local growing and decaying, drifting sources, rather than by wobbling of the main geomagnetic dipole.  相似文献   

13.
The recent sediment record of Lake Belau (Schleswig–Holstein, Germany), deposited in the period 1945–2002, was compared with instrumental meteorological and limnological data. The sediments deposited during this period are annually laminated. A varve chronology was established and supported by 137Cs measurements. Micro-facies and diatom assemblage composition analyses were confirmed in thin sections and compared statistically with limnological and meteorological data. Comparison of phytoplankton data with diatom assemblage data from the sediment for the time interval from 1988 to 1999 proved that the sediments reflect limnological processes in the lake and record seasonal changes in the primary producer communities. Among the climatological data, the number of contiguous ice days (days with maximal temperatures ≤0 °C) and the state of the winter NAO are strong predictors for micro-facies development and diatom assemblage composition. Furthermore, solar and local (nutrient input) influences are visible in the diatom assemblage compositions. Our study illustrates the high potential for using analyses of micro-facies and diatom assemblages to reconstruct past weather conditions in varved sediments of Lake Belau.  相似文献   

14.
Analyses of down-core variations in pollen and charcoal in two short cores of lake sediment and wood samples taken from the in situ remains of Nuxia congesta from Lake Emakat, a hydrologically-closed volcanic crater lake occupying the Empakaai Crater in northern Tanzania, have generated evidence of past vegetation change and lake level fluctuations. Eight AMS radiocarbon (14C) dates on bulk samples of lake sediment provide a chronological framework for the two cores and indicate that the sediment record analysed incorporates the last c. 1200 years. The in situ remains of a Nuxia congesta tree, now standing in deep water, were dated with three additional AMS 14C dates, suggesting tree growth within the interval ∼1500–1670 AD. Down-core variations in pollen from terrestrial taxa, particularly the montane forest trees Hagenia abyssinica and Nuxia congesta, indicate a broad period of generally more arid conditions in the catchment to c. 1200 AD and at a prolonged period between c. 1420 and 1680 AD. Variations in pollen from plants in lake margin vegetation indicate low lake levels, presumably as a result of reduced effective precipitation, contemporary with indications of relatively dry conditions mentioned above, but also during the late 18th and the late 19th centuries. The presence of charcoal throughout both cores indicates the frequent occurrence of vegetation fires. An increase in burning, evident in the charcoal data and dated to the early to mid second millennium AD, could relate to an expansion of human population levels and agricultural activity in the region.  相似文献   

15.
Geochemistry of a sediment core from Lake Hovsgol, northwest Mongolia provides a continuous, 27-kyr history of the response of the lake and the surrounding catchment to climate change. Principle component (PC) analysis of 19 major and trace elements, total inorganic carbon (TIC), and total organic carbon (TOC) in the bulk sediment samples revealed that the 21 chemical components can be grouped into four assemblages—group-1: Na, Mg, Ca, Sr, and TIC, hosted in carbonate minerals (calcite, dolomite, and magnesian calcite); group-2: Ni, Cu, and Zn, recognized as biophilic trace metals, and TOC; group-3: Al, K, Ti, V, Fe, Rb, Cs, Ba, and Pb, composed of rock-forming minerals; and group-4: Cr, Mn, and As, sensitive to the redox condition of the sediment. The four element assemblages originated from three relevant processes. Group-1 and group-2 components are authigenic products and comprise the end member on the PC-1 score, whose variation reflects changes in the water volume, i.e. the balance between precipitation and evaporation (P/E). Group-3 components from detrital materials of the catchment contribute to the PC-2 score, whose variability indicates erosion/weathering intensity in the drainage basin, which might be controlled by the amount of vegetation cover associated with moisture change. The group-4 components of redox-sensitive elements contribute to the PC-3 score and are not an end member because of their small amount. The first two PC scores suggest a sequential record of paleo-moisture evolution in central Asia. The P/E balance in the Lake Hovsgol region, inferred from the PC-1 score, gradually increased during the glacial/interglacial transition. This resembles climate change of the North Atlantic region on the glacial–interglacial scale, but does not reflect the abrupt climate shifts such as the warm Bølling-Allerød and the cold Younger Dryas of the North Atlantic on the millennial scale. A periodic variation of ~8.7 kyr was observed in the PC-2 score profile of detrital input to Lake Hovsgol over the last glacial and Holocene. The decrease in detrital input coincided with the copious supply of moisture from the Asian monsoon regime and the North Atlantic westerly winds to the Baikal drainage basin, which includes Lake Hovsgol. Our geochemical records from Lake Hovsgol demonstrate that the climate system of interior continental Asia was strongly influenced by change on both Milankovitch and sub-Milankovitch scales.  相似文献   

16.
Analyses of lithology, organic-matter content, magnetic susceptibility, and pollen in a sediment core from Okpilak Lake, located in the northeastern Brooks Range, provide new insights into the history of climate, landscape processes, and vegetation in northern Alaska since 14,500?cal?year BP. The late-glacial interval (>11,600?cal?year BP) featured sparse vegetation cover and the erosion of minerogenic sediment into the lake from nearby hillslopes, as evidenced by Cyperaceae-dominated pollen assemblages and high magnetic susceptibility (MS) values. Betula expanded in the early Holocene (11,600?C8,500?cal?year BP), reducing mass wasting on the landscape, as reflected by lower MS. Holocene sediments contain a series of silt- and clay-dominated layers, and given their physical characteristics and the topographic setting of the lake on the braided outwash plain of the Okpilak River, the inorganic layers are interpreted as rapidly deposited fluvial sediments, likely associated with intervals of river aggradation, changes in channel planform, and periodic overbank flow via a channel that connects the river and lake. The episodes of fluvial dynamics and aggradation appear to have been related to regional environmental variability, including a period of glacial retreat during the early Holocene, as well as glacial advances in the middle Holocene (5,500?C5,200?cal?year BP) and during the Little Ice Age (500?C400?cal?year BP). The rapid deposition of multiple inorganic layers during the early Holocene, including thick layers at 10,900?C10,000 and 9,400?C9,200?cal?year BP, suggests that it was a particularly dynamic interval of fluvial activity and landscape change.  相似文献   

17.
Lake Ohrid is probably of Pliocene age, and the oldest extant lake in Europe. In this study climatic and environmental changes during the last glacial-interglacial cycle are reconstructed using lithological, sedimentological, geochemical and physical proxy analysis of a 15-m-long sediment succession from Lake Ohrid. A chronological framework is derived from tephrochronology and radiocarbon dating, which yields a basal age of ca. 136 ka. The succession is not continuous, however, with a hiatus between ca. 97.6 and 81.7 ka. Sediment accumulation in course of the last climatic cycle is controlled by the complex interaction of a variety of climate-controlled parameters and their impact on catchment dynamics, limnology, and hydrology of the lake. Warm interglacial and cold glacial climate conditions can be clearly distinguished from organic matter, calcite, clastic detritus and lithostratigraphic data. During interglacial periods, short-term fluctuations are recorded by abrupt variations in organic matter and calcite content, indicating climatically-induced changes in lake productivity and hydrology. During glacial periods, high variability in the contents of coarse silt to fine sand sized clastic matter is probably a function of climatically-induced changes in catchment dynamics and wind activity. In some instances tephra layers provide potential stratigraphic markers for short-lived climate perturbations. Given their widespread distribution in sites across the region, tephra analysis has the potential to provide insight into variation in the impact of climate and environmental change across the Mediterranean.  相似文献   

18.
Geophysical data and sampling of the Golo Basin (East Corsica margin) provide the opportunity to study mass balance in a single drainage system over the last 130 kyr, by comparing deposited sediments in the sink and the maximum eroded volume in the source using total denudation proxies. Evaluation of the solid sediments deposited offshore and careful integration of uncertainties from the age model and physical properties allow us to constrain three periods of sedimentation during the last climatic cycle. The peak of sedimentation initiated during Marine Isotopic Stage (MIS) 3 (ca. 45 ka) and lasted until late in MIS 2 (ca. 18 ka). This correlates with Mediterranean Sea palaeoclimatic records and the glaciation in high altitude Corsica. The yield of solid sediment into the Golo Basin drops in the observed present day Mediterranean basins (gauging stations), whereas the palaeo‐denudation estimate derived from the sediments over the last glacial period is one to ten times higher than that predicted using cosmogenic or thermochronometer estimates of exhumation. The catchment‐wide denudation rate calculated from deposited solid sediment ranges from 47 to 219 mm kyr?1, which is higher than the estimate from palaeosurface ablation in the proximal part of the source (9–140 mm kyr?1) and lower than the distal, narrow, incised channel of the Golo River (160–475 mm kyr?1). This mismatch raises questions about the investigation of denudation at millennial‐time scale (kyr) and at higher integrating times (Myr) as a reliable tool for determining the effect of climate change on mountain building and on sedimentary basin models.  相似文献   

19.
Based on analysis of parameters of cores taken from Gaoyou Lake, including magnetic susceptibility, grain-size characteristics and sedimentary rate, environmental changes during the modern period were examined with the assistance of historical records and Gaoyou Lake water level materials. It is concluded that during the modern period a higher value of magnetic susceptibility and a lower sediment grain size coincided with a wet climate, while a lower value of magnetic susceptibility and a higher grain size were related with a dry climate. The results indicate that the climate in the 123 years period from 1880 to 2003AD can be divided into four stages: two low water level stages (1880-1915AD, 1948-1981AD) and two high water level stages (1915-1948AD, 1981-2003AD). It appears that the regional climate generally underwent a dry-wet-dry-wet pattern in 30-year cycles. At present, it is at the end of a wet period, so the regional climate is expected to become dry in the near future. This conclusion corresponds with the climate records in the historical literature of the Gaoyou area, and it also matches with the climatic changes in North Jiangsu area.  相似文献   

20.
1 Introduction Gaoyou Lake is the third largest lake in Jiangsu Province. It lies in central Jiangsu Province, lower reaches of the Huaihe River, and west of the Jing–Hang (Beijing–Hangzhou) Grand Canal. Previous research on environmental changes of the…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号