首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Flow mapping and physical volcanology of 15 basaltic lavas exposed in three critical road pass sections (ghats) in the Koyna-Warna region of the western Deccan Traps is presented in this paper. Transitional lavas like rubbly pahoehoe are most common morpho-type exposed in these ghat sections. Sinking of rubbly breccia into flow interiors and formation of breccia-cored rosette are common in some lava flows. Few rubbly lavas exhibit slabby tendencies. The amount and nature of the associated rubble is variable and result from the mechanical fracturing and auto-brecciation of the upper vesicular crust in response to distinctive stages in the cooling, crystallization and emplacement history of individual lava flows. Occurrence of aa and pahoehoe morpho-types in the lava flow sequence is subordinate. Three prominent pahoehoe flows separated by red bole horizons are seen in the upper parts of the Kumbharli ghat. These are thick, P-type sheet pahoehoe. The pahoehoe lavas represent compound flow fields that grew by budding, endogenous lava transfer and inflation. Presence of pahoehoe lavas in the Koyna-Warna region hints at possible hitherto unrecorded southern extension of Bushe-like flow fields. This study reconfirms the existence of pahoehoe-slabby-rubbly-aa flow fields and transitions even in the upper echelons of the Deccan Trap stratigraphy. The study of morphology and internal structure of lava flows exposed at the ghat sections in the Koyna-Warna region could guide subsurface core-logging that is critical in deciphering the physical volcanology and emplacement dynamics of basaltic lava flows penetrated by drill holes sunk under the scientific deep drilling programme.  相似文献   

2.
Unlike pahoehoe, documentation of true a′a lavas from a modern volcanological perspective is a relatively recent phenomenon in the Deccan Trap (e.g. Brown et al., 2011, Bull. Volcanol. 73(6): 737–752) as most lava flows previously considered to be a′a (e.g. GSI, 1998) have been shown to be transitional (e.g. Rajarao et al., 1978, Geol. Soc. India Mem. 43: 401–414; Duraiswami et al., 2008 J. Volcanol. Geothermal. Res. 177: 822–836). In this paper we demonstrate the co-existence of autobrecciation products such as slabby pahoehoe, rubbly pahoehoe and a′a in scattered outcrops within the dominantly pahoehoe flow fields. Although volumetrically low in number, the pattern of occurrence of the brecciating lobes alongside intact ones suggests that these might have formed in individual lobes along marginal branches and terminal parts of compound flow fields. Complete transitions from typical pahoehoe to ‘a′a lava flow morphologies are seen on length scales of 100–1000 m within road and sea-cliff sections near Uruli and Rajpuri. We consider the complex interplay between local increase in the lava supply rates due to storage or temporary stoppage, local increase in paleo-slope, rapid cooling and localized increase in the strain rates especially in the middle and terminal parts of the compound flow field responsible for the transitional morphologies. Such transitions are seen in the Thakurwadi-, Bushe- and Poladpur Formation in the western Deccan Traps. These are similar to pahoehoe–a′a transitions seen in Cenozoic long lava flows (Undara ∼160 km, Toomba ∼120 km, Kinrara ∼55 km) from north Queensland, Australia and Recent (1859) eruption of Mauna Loa, Hawaii (a′a lava flow ∼51 km) suggesting that flow fields with transitional tendencies cannot travel great lengths despite strong channelisation. If these observations are true, then it arguably limits long distance flow of Deccan Traps lavas to Rajahmundry suggesting polycentric eruptions at ∼65 Ma in Peninsular India.  相似文献   

3.
This study focuses on the compound pahoehoe lava flow fields of the 2000 eruption on Mount Cameroon volcano, West Africa and it comprehensively documents their morphology. The 2000 eruption of Mount Cameroon took place at three different sites (sites 1, 2 and 3), on the southwest flank and near the summit that built three different lava flow fields. These lava flow fields were formed during a long‐duration (28th May–mid September) summit and flank eruption involving predominantly pahoehoe flows (sites 2 and 3) and aa flows (site 1). Field observations of flows from a total of four cross‐sections made at the proximal end, midway and at the flow front, have been supplemented with data from satellite imagery (SRTM DEM, Landsat TM and ETM+) and are used to offer some clues into their emplacement. Detailed mapping of these lava flows revealed that site 1 flows were typically channel‐fed simple aa flows that evolved as a single flow unit, while sites 2 and 3 lava flow fields were fed by master tubes within fissures producing principally tube‐fed compound pahoehoe flows. Sites 2 and 3 flows issued from ∼ 33 ephemeral vents along four NE–SW‐trending faults/fissures. Pahoehoe morphologies at sites 2 and 3 include smooth, folded and channelled lobes emplaced via a continuum of different mechanisms with the principal mechanism being inflation. The dominant structural features observed on these flow fields included: fissures/faults, vents, levees, channels, tubes and pressure ridges. Other structural features present were pahoehoe toes/lobes, breakouts and squeeze‐ups. Slabby pahoehoe resulting from slab‐crusted lava was the transitionary lava type from pahoehoe to aa observed at all the sites. Transition zones correspond to slopes of > 10°. Variations in flow morphology and textures across profiles and downstream were repetitive, suggesting a cyclical nature for the responsible processes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Rubbly pahoehoe lava flows are abundant in many continental flood basalts including the Deccan Traps. However, structures with radial joint columns surrounding cores of flow-top breccia (FTB), reported from some Deccan rubbly pahoehoe flows, are yet unknown from other basaltic provinces. A previous study of these Deccan “breccia-cored columnar rosettes” ruled out explanations such as volcanic vents and lava tubes, and showed that the radial joint columns had grown outwards from cold FTB inclusions incorporated into the hot molten interiors. How the highly vesicular (thus low-density) FTB blocks might have sunk into the flow interiors has remained a puzzle. Here we describe a new example of a Deccan rubbly pahoehoe flow with FTB-cored rosettes, from Elephanta Island in the Mumbai harbor. Noting that (1) thick rubbly pahoehoe flows probably form by rapid inflation (involving many lava injections into a largely molten advancing flow), and (2) such flows are transitional to ‘a’ā flows (which continuously shed their top clinker in front of them as they advance), we propose a model for the FTB-cored rosettes. We suggest that the Deccan flows under study were shedding some of their FTB in front of them as they advanced and, with high-eruption rate lava injection and inflation, frontal breakouts would incorporate this FTB rubble, with thickening of the flow carrying the rubble into the flow interior. This implies that, far from sinking into the molten interior, the FTB blocks may have been rising, until lava supply and inflation stopped, the flow began solidifying, and joint columns developed outward from each cold FTB inclusion as already inferred, forming the FTB-cored rosettes. Those rubbly pahoehoe flows which began recycling most of their FTB became the ‘a’ā flows of the Deccan.  相似文献   

5.
The Paraná-Etendeka Volcanic Province records the volcanism of the Early Cretaceous that precedes the fragmentation of the South-Gondwana supercontinent. Traditionally, investigations of these rocks prioritized the acquisition of geochemical and isotopic data, considering the volcanic stack as a monotonous succession of tabular flows. Torres Syncline is a tectonic structure located in southern Brazil and where the Parana-Etendeka basalts are well preserved. This work provides a detailed analysis of lithofacies and facies architecture, integrated to petrographic and geochemical data. We identified seven distinct lithofacies grouped into four facies associations related to different flow morphologies. The basaltic lava flows in the area can be divided into two contrasting units: Unit I - pahoehoe flow fields; and Unit II - simple rubbly flows. The first unit is build up by innumerous pahoehoe lava flows that cover the sandstones of Botucatu Formation. These flows occur as sheet pahoehoe, compound pahoehoe, and ponded lavas morphologies. Compound lavas are olivine-phyric basalts with intergranular pyroxenes. In ponded lavas and cores of sheet flows coarse plagioclase-phyric basalts are common. The first pahoehoe lavas are more primitive with higher contents of MgO. The emplacement of compound pahoehoe flows is related to low volume eruptions, while sheet lavas were emplaced during sustained eruptions. In contrast, Unit II is formed by thick simple rubbly lavas, characterized by a massive core and a brecciated/rubbly top. Petrographically these flows are characterized by plagioclase-phyric to aphyric basalts with high density of plagioclase crystals in the matrix. Chemically they are more differentiated lavas, and the emplacement is related to sustained high effusion rate eruptions. Both units are low TiO2 and have geochemical characteristics of Gramado magma type. The Torres Syncline main valley has a similar evolution when compared to other Large Igneous Provinces, with compound flows at the base and simple flows in the upper portions. The detailed field work allied with petrography and geochemical data are extremely important to identify heterogeneities inside the volcanic pile and allows the construction of a detailed lithostratigraphical framework.  相似文献   

6.
Geochemical and geochronological data for rocks from the Rajahmundry Traps, are evaluated for possible correlation with the main Deccan province. Lava flows are found on both banks of the Godavari River and contain an intertrappean sedimentary layer. Based on40Ar/39 Ar age data, rocks on the east bank are post K-T boundary, show normal magnetic polarity, and belong to chron 29N. Their chemistry is identical to lavas in the Mahabaleshwar Formation in the Western Ghats, ∼1000km away. It was suggested earlier that the genetic link between these geographically widely separated rocks resulted from lava flowing down freshly incised river canyons at ∼ 64 Ma. For the west bank rocks, recent paleomagnetic work indicates lava flows below and above the intertrappean (sedimentary) layer show reversed and normal magnetic polarity, respectively. The chemical composition of the west bank flow above the intertrappean layer is identical to rocks on the east bank. The west bank lava lying below the sedimentary layer, shows chemistry similar to Ambenali Formation lava flows in the western Deccan.40Ar/39 Ar dating and complete chemical characterization of this flow is required to elucidate its petrogenesis with respect to the main Deccan Province.  相似文献   

7.
Many tholeiitic dyke-sill intrusions of the Late Cretaceous Deccan Traps continental flood basalt province are exposed in the Satpura Gondwana Basin around Pachmarhi, central India. We present field, petrographic, major and trace element, and Sr–Nd–Pb isotope data on these intrusions and identify individual dykes and sills that chemically closely match several stratigraphically defined formations in the southwestern Deccan (Western Ghats). Some of these formations have also been identified more recently in the northern and northeastern Deccan. However, the Pachmarhi intrusions are significantly more evolved (lower Mg numbers and higher TiO2 contents) than many Deccan basalts, with isotopic signatures generally different from those of the chemically similar lava formations, indicating that most are not feeders to previously characterized flows. They appear to be products of mixing between Deccan basalt magmas and partial melts of Precambrian Indian amphibolites, as proposed previously for several Deccan basalt lavas of the lower Western Ghats stratigraphy. Broad chemical and isotopic similarities of several Pachmarhi intrusions to the northern and northeastern Deccan lavas indicate petrogenetic relationships. Distances these lava flows would have had to cover, if they originated in the Pachmarhi area, range from 150 to 350 km. The Pachmarhi data enlarge the hitherto known chemical and isotopic range of the Deccan flood basalt magmas. This study highlights the problems and ambiguities in dyke-sill-flow correlations even with extensive geochemical fingerprinting.  相似文献   

8.
Fortyone successive flows of the Deccan Traps have been investigated at Mahabaleshwar, India, and the rocks from the twenty two different flows have been newly analysed. All of these basalts are silica-saturated tholeiites; and the series shows minor gradual variation with the order of eruption. These seem to be a result of magmatic differentiation somewhat similar to that shown in the Skaergaard intrusion.  相似文献   

9.
Olivine Compositions in Picrite Basalts and the Deccan Volcanic Cycle   总被引:13,自引:0,他引:13  
Olivine phenocryst compositions and whole-rock chemical compositionsare used to identify primitive picrite basalts from widely separatedparts of the Deccan flood basalt province. Overall, primitivepicrites constitute a significant volume of rocks within theprovince. Most were probably emplaced along deep faults in theCambay graben and Narmada rift regions. We combine mineral compositiondata on previously described samples from boreholes at Dhandhuka,Wadhwan and Botad with information on new finds of picriticbasalts at Paliad, Anila, Pawagarh, Kawant and Ambadongar tohelp delineate the petrogenesis of these mafic rocks, and wealso examine the nature and probable origin of picrite basaltsfrom other regions of the Deccan, such as the Western Ghats.The combined data suggest that the incidence of high-MgO lavasdecreased with time during the Deccan volcanic cycle. KEY WORDS: Deccan Traps; olivine composition; picrite basalts; volcanic cycle  相似文献   

10.
Summary Major element, trace element, Sr- and Nd-isotopes and mineral chemical data are reported for alkaline rocks (lamprophyres, tephrites, melanephelinites, nephelinites and nepheline syenites) cross-cutting the Deccan Trap lava flows south (Murud-Janjira area) and north of Mumbai (Bassein). These rocks range from sodic to potassic and have a large span in MgO (12–2 wt%). The lamprophyres have high content of incompatible elements (e.g., TiO2 > 3.8 wt%, Nb > 130 ppm, Zr > 380 ppm, Ba > 1200 ppm), and relatively high initial (at 65 Ma) 143Nd/144Nd (0.5128) and low 87Sr/86Sr (0.7038–0.7042). They are likely to be small-degree melts (2–3%) of volatile- and incompatible element-enriched mantle sources, similar to other alkaline rocks in the northern Deccan, though slightly more potassium-rich. The nepheline-rich rocks have highly porphyritic textures (up to 57% phenocrysts of diopside ± olivine), and anomalously low contents of incompatible elements (e.g., TiO2 < 1.3 wt%, Nb < 24 ppm, Zr < 100 ppm) indicating that they could not represent liquid compositions. Moreover, their very low initial 143Nd/144Nd ratios (0.5116–0.5120), at 87Sr/86Sr = 0.7045–0.7049, are unusual in the rocks related to the Deccan Traps and identify a new end-member in this province, that could be identified as “Lewisian-type” lower crust and/or enriched mantle. The melting episode that generated these alkaline rocks likely occurred close to the base of the ca. 100 km-thick Indian lithosphere, very shortly after the main eruption of the Deccan tholeiites. Received January 14, 2000; revised version accepted September 28, 2001  相似文献   

11.
The Deccan Traps or the basalts of western India are the largest exposure of basic lava flows covering about 500,000 km2. Groundwater occurrence in the Deccan Traps is in phreatic condition in the weathered zone above the hard rock and in semi-confined condition in the fissures, fractures, joints, cooling cracks, lava flow junctions and in the inter-trappean beds between successive lava flows, within the hard rock. Dug wells, dug-cum-bored wells and boreholes or bore wells are commonly used for obtaining groundwater. The yield is small, usually in the range of 1–100 m3/day. The average land holding per farming family is only around 2 ha. Recently, due to the ever increasing number of dug wells and deep bore wells, the water table has been falling in several watersheds, especially in those lying in the semi-arid region of the traps, so that now the emphasis has shifted from development to sustainable management. Issues like climatic change, poverty mitigation in villages, sustainable development, rapid urbanization of the population, and resource pollution have invited the attention of politicians, policy makers, government agencies and non-governmental organizations towards watershed management, forestation, soil and water conservation, recharge augmentation and, above all, the voluntary control of groundwater abstraction in the Deccan Traps terrain.  相似文献   

12.
Generation of Deccan Trap magmas   总被引:1,自引:0,他引:1  
Deccan Trap magmas may have erupted through multiple centers, the most prominent of which may have been a shield volcano-like structure in the Western Ghats area. The lavas are predominantly tholeiitic; alkalic mafic lavas and carbonatites are rare. Radioisotope dating, magnetic chronology, and age constraints from paleontology indicate that although the eruption started some 68 Ma, the bulk of lavas erupted at around 65–66 Ma. Paleomagnetic constraints indicate an uncertainty of ± 500,000 years for peak volcanic activity at 65 m.y. in the type section of the Western Ghats. Maximum magma residence times were calculated in this study based on growth rates of “giant plagioclase” crystals in lavas that marked the end phase of volcanic activity of different magma chambers. These calculations suggest that the > 1.7 km thick Western Ghats section might have erupted within a much shorter time interval of ∼ 55,000 years, implying phenomenal eruption rates that are orders of magnitude larger than any present-day eruption rate from any tectonic environment. Other significant observations/conclusions are as follows: (1) Deccan lavas can be grouped into stratigraphic subdivisions based on their geochemistry; (2) While some formations are relatively uncontaminated others are strongly contaminated by the continental crust; (3) Deccan magmas were produced by 15–30% melting of a Fe-rich lherzolitic source at ∼ 3–2 GPa; (4) Parent magmas of the relatively uncontaminated Ambenali formation had a primitive composition with 16%MgO, 47%SiO2; (5) Deccan magmas were generated much deeper and by significantly more melting than other continental flood basalt provinces; (6) The erupted Deccan tholeiitic lavas underwent fractionation and magma mixing at ∼ 0.2 GPa. The composition and origin of the crust and crust/mantle boundary beneath the Deccan are discussed with respect to the influence of Deccan magmatic episode.  相似文献   

13.
The Rajahmundry Traps of the Krishna Godavari Basin (K-G Basin) consist of three distinct basalt flows interbedded with two intertrappean sedimentary horizons, which in turn are underlain by the late Cretaceous fossiliferous limestone bed (infratrappean) and overlain by the Cenozoic Rajahmundry Formation (conglomerate/sandstone). Among the three, the lower flow is characterized by the presence of the physical volcanological features such as rootless cones, tumuli and dyke like forms along with single to multitier columnar and radial jointing. The middle and upper flows are simple, massive and vesicular and exhibit spheroidal weathering. Physical volcanological features and lithological attributes indicate that the lower flow was formed by an explosive volcanic activity in hydrous environment, followed by sub aerial eruption to form the middle and upper flows. The fossiliferous limestone bed is a representative horizon for the K-T boundary mass extinction caused due to intense volcanism. Intertrappean sediments exhibit weathered soil profiles (palaeosols) with limestone beds denoting a distinct time gap during various phases of lava eruption. Evaluation of the palaeogeographic scenario of the Krishna and Godavari Rivers does not provide any evidence for the existence of Cretaceous palaeovalley which would have provided pathway for lava transportation from the Deccan volcanic province of western India to the K-G Basin situated along the east coast. The present study opens up an alternative approach to explain the origin of basalt flows at Rajahmundry. In all probability the lavas could be intrabasinal. NW-SE and NESW faults or their intersection zones are probable pathways for lava eruption in the K-G Basin.  相似文献   

14.
A review of the scenarios for the Cretaceous/Tertiary (K/T) boundary event is presented and a coherent hypothesis for the origin of the event is formulated. Many scientists now accept that the event was caused by a meteorite impact at Chicxulub in the Yucatan Peninsula, Mexico. Our investigations show that the oceans were already stressed by the end of the Late Cretaceous as a result of the long-term drop in atmospheric CO2, the long-term drop in sea level and the frequent development of oceanic anoxia. Extinction of some marine species was already occurring several million years prior to the K/T boundary. The biota were therefore susceptible to change. The eruption of the Deccan Traps, which began at 66.2 Ma, coincides with the K/T boundary events. It erupted huge quantities of H2SO4, HCl, CO2, dust and soot into the atmosphere and led to a significant drop in sea level and marked changes in ocean temperature. The result was a major reduction in oceanic productivity and the creation of an almost dead ocean. The volcanism lasted almost 0.7 m.y.. Extinction of biological species was graded and appeared to correlate with the main eruptive events. Elements such as Ir were incorporated into the volcanic ash, possibly on soot particles. This horizon accumulated under anoxic conditions in local depressions and became the marker horizon for the K/T boundary. An oxidation front penetrated this horizon leading to the redistribution of elements. The eruption of the Deccan Traps is the largest volcanic event since the Permian-Triassic event at 245 Ma. It followed a period of 36 m.y. in which the earth’s magnetic field failed to reverse. Instabilities in the mantle are thought to be responsible for this eruption and therefore for the K/T event. We therefore believe that the K/T event can be explained in terms of the effects of the Deccan volcanism on an already stressed biosphere. The meteorite impact at Chicxulub took place after the onset of Deccan volcanism. It probably played a regional, rather than a global, role in the K/T extinctions.  相似文献   

15.
Most Large igneous provinces (LIPs) are emplaced within <10 Ma, with a main pulse of the magmatism in<1 Ma[1]. For example, the Siberian Traps [2] and the Deccan Traps [3] were probably erupted within one million years. Many events, such as the Columbia River event, feature a single pulse of magmatism, followed by a protrac-ted period of magmatism at a much lower rate that is linked to a plume tail[4].  相似文献   

16.
The lava sequence of the central-western Deccan Traps (from Jalgaon towards Mumbai) is formed by basalts and basaltic andesites having a significant variation in TiO2 (from 1.2 to 3.3 wt%), Zr (from 84 to 253 ppm), Nb (from 5 to 16ppm) and Ba (from 63 to 407 ppm), at MgO ranging from 10 to 4.2 wt%. Most of these basalts follow a liquid line of descent dominated by low pressure fractionation of clinopyroxene, plagioclase and olivine, starting from the most mafic compositions, in a temperature range from 1220° to 1125°C. These rocks resemble those belonging to the lower-most formations of the Deccan Traps in the Western Ghats (Jawhar, Igatpuri and Thakurvadi) as well as those of the Poladpur formation. Samples analyzed for87Sr/86Sr give a range of initial ratios from 0.70558 to 0.70621. A group of flows of the Dhule area has low TiO2 (1.2–1.5 wt%) and Zr (84–105 ppm) at moderate MgO (5.2–6.2 wt%), matching the composition of low-Ti basalts of Gujarat, low-Ti dykes of the Tapti swarm and Toranmal basalts, just north of the study area. This allows chemical correlations between the lavas of central Deccan, the Tapti dykes and the north-western outcrops. The mildly enriched high field strength element contents of the samples with TiO2 > 1.5 wt% make them products of mantle sources broadly similar to those which generated the Ambenali basalts, but their high La/Nb and Ba/Nb, negative Nb anomalies in the mantle normalized diagrams, and relatively high87Sr/86Sr, make evident a crustal input with crustally derived materials at less differentiated stages than those represented in this sample set, or even within the sub-Indian lithospheric mantle.  相似文献   

17.
A scientific challenge is to assess the role of Deccan volcanism in the Cretaceous-Tertiary boundary (KTB) mass extinction. Here we report on the stratigraphy and biologic effects of Deccan volcanism in eleven deep wells from the Krishna-Godavari (K-G) Basin, Andhra Pradesh, India. In these wells, two phases of Deccan volcanism record the world’s largest and longest lava mega-flows interbedded in marine sediments in the K-G Basin about 1500 km from the main Deccan volcanic province. The main phase-2 eruptions (∼80% of total Deccan Traps) began in C29r and ended at or near the KTB, an interval that spans planktic foraminiferal zones CF1–CF2 and most of the nannofossil Micula prinsii zone, and is correlative with the rapid global warming and subsequent cooling near the end of the Maastrichtian. The mass extinction began in phase-2 preceding the first of four mega-flows. Planktic foraminifera suffered a 50% drop in species richness. Survivors suffered another 50% drop after the first mega-flow, leaving just 7 to 8 survivor species. No recovery occurred between the next three mega-flows and the mass extinction was complete with the last phase-2 mega-flow at the KTB. The mass extinction was likely the consequence of rapid and massive volcanic CO2 and SO2 gas emissions, leading to high continental weathering rates, global warming, cooling, acid rains, ocean acidification and a carbon crisis in the marine environment.  相似文献   

18.
Compositional studies on different forms of magnetite, ulvospinel, ilmenite and hematite mineral phases occurring in 37 lava flows and 6 dykes of the Mandla lobe are presented in this paper. Ilmenite (0001) in equilibrium with titanomanetite show high values of temperature of equilibration, ranging from 1172–974°C, for high alumina quartz normative tholeiitic lava flows of Chemical Type - A; 1129–1229°C for low alumina quartz normative tholeiitic lava flows of Chemical Type - B; 1283–1124°C for tholeiitic lava flows of Chemical Type - F and 1243°C and 99O°C for two diopside olivine normative tholeiite flows of Chemical Type D. High olivine normative flows of Chemical Type - G and H show 1095°C and 1092°C respectively. Whereas, high hypersthene normative tholeiite flow of Chemical me C shows temperature of 1187°C. Data plots disposition over iron-titanium oxide equilibration temperature vs – logfo2, diagram for Mandla lava flows and other parts of the Deccan (Igatpuri, Mahabaleshwer, Nagpur and Sagar areas) revealed that tholeiitic (evolved) basalt of the eastern Deccan volcanic province formed at high temperatures whereas, picritic (primitive) lavas of Igatpuri and tholeiitic basalt of Mahabaleshwar areas were formed at low temperatures. Mahabaleshwer basalts follow FMQ (fayalite-magnetite-quartz) buffer curve but, plots of the Mandla basalts lie above this curve indicating higher temperatures of crystallisation of ilmenite-titanomagnetite than that of the lava flows from other parts of Deccan 'Raps. The eastern Deccan Traps are most evolved types of lava as characterised by its low Mg-number and Ni content whereas, Igatpuri lava flows are picritic (primitive), having high Mg-number and Ni contents. Temperature vs FeO + Fe2O3 / FeO + Fe2O3 + MgO ratio data plots for Mandla and other Deccan lava flows and liquidus data for Hawaiian tholeiites, indicated that Igatpuri basalts lie parallel to the liquidus line of Hawaiian tholeiite but at lower temperatures. Large data plots of Mandla lava flows lie along the liquidus line of the Hawaiian lava. The highly vesicular nature of compound lava flows having large amount of volatile is responsible for low temperature values whereas, lava flows represented by high temperatures show high modal values of glass and opaque minerals.  相似文献   

19.
Zircons of 10–100μm size and monazites of up to 10μm size are present in rhyolite and trachyte dikes associated with Deccan basalts around Rajula in the southern Saurashtra Peninsula of Gujarat. On the basis of structural conformity of the felsic and basaltic dikes, K-Ar ages and trace element considerations, a previous study concluded that the felsic rocks are coeval with the Deccan Volcanics and originated by crustal anatexis. The felsic rocks contain two populations of zircons and monazites, one that crystallized from the felsic melt and the other that contains inherited crustal material. Trace element variations in the rhyolites and trachytes indicate that zircons and monazites crystallized from the felsic melts, but compositional analysis of a zircon indicates the presence of a small core possibly inherited from the crust. Hf compositional zoning profile of this zircon indicates that it grew from the host rhyolitic melt while the melt differentiated, and Y and LREE contents suggest that this zircon crystallized from the host melt. Pb contents of some monazites also suggest the presence of inherited crustal cores. Hence, any age determination by the U-Th-Pb isotopic method should be interpreted with due consideration to crustal inheritance. Temperatures estimated from zircon and monazite saturation thermometry indicate that the crust around Rajula may have been heated to a maximum of approximately 900°C by the intruding Deccan magma. Crustal melting models of other workers indicate that a 1–2 million year emplacement time for the Deccan Traps may be appropriate for crustal melting characteristics observed in the Rajula area through the felsic dikes.  相似文献   

20.
The Mandla lobe is a 900 m thick lava pile that forms a 29,400 km2 northeastern extension of the Deccan Traps. Earlier, combined field, petrographic, and major element studies have shown that this lobe comprises 37 lava flows. Using a combination of trace elements (Ba, Ti, Zr, Rb, Sr) and Nb/Zr values, we group the flows into six chemical types (A–F) that are separated stratigraphically. Combined trace element and Nd-Pb-Sr isotopic data, document the presence of lavas resembling those of the Poladpur Formation and less abundantly, the Ambenali Formation of the southwestern Deccan are in conformity with the earlier reconnaissance work. In addition, our data reveal several flows similar to those of the Mahabaleshwar Formation, the type sections of which are located?~?900 km to the southwest. Based on the isotopic data the superposition of Mahabaleshwar-like flows over flows with Ambenali- and Poladpur-like characteristics is in the same stratigraphic order seen in the southwestern Deccan type section. However, from the stratigraphy indicated by the Discriminant Function Analysis (DFA) results and the serious discrepancy between the DFA and isotopic data, it seems that few Mandla lobe flows are different and not in the same stratigraphic order as in the southwestern part of the province. To some extent the differences may be explained by faulting along four large post-Deccan normal faults near Nagapahar, Kundam, Deori, and Dindori areas across which offsets of ~150 m have been measured. This post-emplacement faulting accounts for the presence of several chemically Mahabaleshwar-like lavas at the base of the ~900 m thick Mandla lobe pile, at a lower elevation than a thick sequence dominated by chemically Poladpur-like flows. However, presence of common signature lavas (similar to that in the northeastern Deccan) cannot be ruled out in this area. They are similar to Poladpur-type lavas both chemically and isotopically. They appear in different formations and erupted at different times other than Poladpur Formation. Close similarities in petrogenetic processes between the two regions are indicated, although it is not clear whether any of the Mandla lobe lavas are far-traveled counterparts of flows cropping out in the southwestern Deccan, or whether some magma migrated laterally in dike systems over great distances. Feeder dykes have not been found in the study area except for Chakhla-Delakhari Intrusive Complex (CDIC) in Satpura region that shows major and trace elemental similarities with the Seoni lavas, although, long distance transport of magma is yet to be proved. The Poladpur-like Mandla lobe flows appear to be different flows from those of the Poldapur Formation in the southwest, as they are somewhat different in isotopic (higher 206Pb/204Pb) composition. They also differ from any known flows in the other southwestern formations, but are broadly similar to flows found in sections across the northern Deccan west of the Mandla lobe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号