首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We developed an empirical model integrating nonpoint source (NPS) runoff, point sources (PS), and reservoir management to predict watershed discharges of water, sediment, organic carbon, silicate, nitrogen, and phosphorus to the Patuxent River in Maryland. We estimated NPS discharges with linear models fit to measurements of weekly flow and 10 material concentrations from 22 study watersheds. The independent variables were the proportions of cropland and developed land, physiographic province (Coastal Plain or Piedmont), and time (week). All but one of the NPS models explained between 62% and 83% of the variability among concentration or flow measurements. Geographic factors (land cover and physiographic province) accounted for the explained variability in largely dissolved material concentrations (nitrate [NO3], silicate [Si], and total nitrogen [TN]), but the explained variability in flow and particulates (sediment and forms of phosphorus) was more strongly related to temporal variability or its interactions with land cover and province. Average concentrations of all materials increased with cropland proportion and also with developed land (except Si), but changes in cropland produced larger concentration shifts than equivalent changes in developed land proportion. Among land cover transitions, conversions between cropland and forest-grassland cause the greatest changes in material discharges, cropland and developed land conversions are intermediate, and developed land and forest-grassland conversions have the weakest effects. Changing land cover has stronger effects on NO3 and TN in the Piedmont than in the coastal Plain, but for all other materials, the effects of land-use change are greater in the Coastal Plain. We predicted the changes in nutrient load to the estuary under several alternate land cover configurations, including a state planning scenario that extrapolates current patterns of population growth and land development to the year 2020. In that scenario, declines in NPS discharges from reducing cropland are balanced by NPS discharge increases from developing an area almost six times larger than the lost cropland. When PS discharges are included, there are net increases in total water, total phosphorus, and TN discharges.  相似文献   

2.
In the rocky mountain area of North China, soil fertility has decreased with severe soil and water losses under various land uses. Land use has been proven to affect soil fertility spatial distribution patterns at larger scales. However, less information is available about these effects in field scale plots. Soil samples were collected at 2-m intervals by grid sampling from an area (18?×?18 m) within three land use types (poplar woodland, rotation cropland with peanut and sweet potato, and peach orchard). Soil properties including soil particle composition, soil organic matter, total nitrogen (TN), nitrate nitrogen (NO3 ?-N), total phosphorus (TP), and available phosphorus (AP) were measured for each sample. The spatial variability and spatial pattern of the soil properties were assessed for the three contrasting land use types. NH4 +-N, NO3 ?-N, and AP in the peach orchard and NO3 ?-N in the poplar woodland exhibited strong variation (coefficient of variance >100 %). Other properties showed moderate variations. With annual plowing and fertilization, soil properties in the rotation cropland had less variability and greater spatial autocorrelated ranges. The spatial dependences of sand content, TN, NO3 ?-N, and SWC in both the peach orchard and the rotation cropland were weaker than those in the poplar woodland, but the spatial dependences of TP and AP in the peach orchard were stronger than those in either the rotation cropland or the poplar woodland. Human activities such as plowing, fertilization, and harvesting had obvious effects on the spatial variability and spatial pattern of soil properties.  相似文献   

3.
In this paper we assemble and analyze quantitative annual input-export budgets for total nitrogen (TN) and total phosphorus (TP) for Chesapeake Bay and three of its tributary estuaries (Potomac, Patuxent, and Choptank rivers). The budgets include estimates of TN and TP sources (point, diffuse, and atmospheric), internal losses (burial in sediments, fisheries yields, and denitrification), storages in the water column and sediments, internal cycling rates (zooplankton excretion and net sediment-water flux), and net downstream exchange. Annual terrestrial and atmospheric inputs (average of 1985 and 1986 data) of TN and TP ranged from 4.3 g TN m?2 yr?1 to 29.3 g TN m?2 yr?1 and 0.32 g TP m?2 yr?1 to 2.42 g TP m?2 yr?1, respectively. These rates of TN and TP input represent 6-fold to 8-fold and 13-fold to 24-fold increases in loads to these systems since the precolonial period. A recent 11-yr record for the Susquehanna River indicates that annual loads of TN and TP have varied by about 2-fold and 4-fold, respectively. TN inputs increased and TP inputs decreased during the 11-yr period. The relative importance of nutrient sources varied among these estuaries: point sources of nutrients delivered about half the annual TN and TP load to the Patuxent and nearly 60% of TP inputs to the Choptank; diffuse sources contributed 60–70% of the TN and TP inputs to the mainstream Chesapeake and Potomac River. The direct deposition of atmospheric wet-fall to the surface waters of these estuaries represented 12% or less of annual TN and TP loads except in the Choptank River (37% of TN and 20% of TP). We found direct, although damped, relationships between annual rates of nutrient input, water-column and sediment nutrient stocks, and nutrient losses via burial in sediments and denitrification. Our budgets indicate that the annual mass balance of TN and TP is maintained by a net landward exchange of TP and, with one exception (Choptank River), a net seaward transport of TN. The budgets for all systems revealed that inorganic nutrients entering these estuaries from terrestrial and atmospheric sources are rapidly converted to particulate and organic forms. Discrepancies between our budgets and others in the literature were resolved by the inclusion of sediments derived from shoreline erosion. The greatest potential for errors in our budgets can be attributed to the absence of or uncertainties in estimates of atmospheric dry-fall, contributions of nutrients via groundwater, and the sedimentation rates used to calculate nutrient burial rates.  相似文献   

4.
The objective of this study was to examine the interaction between the Atchafalaya River and the Atchafalaya Delta estuarine complex. Measurements of suspended sediments, inorganic nutrients (NO3 ?, NH4 +, PO4 3?), chlorophylla (chla), and-salinity were taken monthly from December 1996 to January 1998. These data were compiled by season, and the Atchafalaya River plume data were also analyzed using the Generalized Additive Model technique. There were significant decreases in NO3 ? concentrations during summer, fall, and winter as river water passed through the estuary, that were attributable to chemical and biological processes rather than dilution with ambient water. In some regions there were higher chla concentrations during summer and fall compared to winter and spring, when river discharge and the introduction of inorganic nutrients were highest, suggesting biological processes were active during this study. The presence of NH4 +, as a percentage of available dissolved inorganic nitrogen, increased with distance from the Atchafalaya River, indicative of remineralization processes and NO3 ? reduction. Mean PO4 3? concentrations were often higher in the estuarine regions compared to the Atchafalaya River. During summer total suspended solid (TSS) concentrations increased with distance from the river mouth, suggesting a turbidity maximum. Highest chla concentrations were found in the bayous and shallow water bodies of the Terrebonne marshes, as were the lowest TSS concentrations. The low chla concentrations found in other areas of this study, despite high inorganic nutrient concentrations, suggest light limitation as the major control of phytoplankton growth. Salinity reached near seawater concentrations at the outer edge of the Atchafalaya River plume, but much lower salinities (<10 psu) were observed at all other regions. The Atchafalaya Delta estuarine complex buffers the impact of the Atchafalaya River on the Louisiana coastal shelf zone, with a 41% of 47% decrease in Atchafalaya River NO3 ? concentrations before reaching Gulf waters.  相似文献   

5.
Transport of ammonium (NH4 +), nitrate + nitrite (NO3 ?), total Kjeldahl nitrogen (TKN), soluble reactive phosphate (SRP), and total suspended solids (TSS) was measured in a freshwater tidal bayou located in a marsh system near the mouth of the Atchafalaya River in Louisiana. Sampling was conducted six times over one year and was timed to assess effects of seasonal variation in river flow and mean sea level of the Gulf of Mexico on material fluxes. Net fluxes of all materials were large and ebb directed in all seasons except fall, when net transport was 2 to 3 orders-of-magnitude smaller than in any other season. These results demonstrate that riverine forcing was the primary influence on materials transport in all seasons except fall when tidal forcing was most important. The range of net fluxes (g s?1) for each nutrient was as follows (a negative sign indicates a net export toward the Gulf): NO3 ?, ?0.006 to ?6.69; TKN, 0.09 to ?10.41; NH4 +, ?0.02 to ?1.36; SRP, ?0.001 to ?0.53; TSS, ?2 to ?81. Analysis of nutrient concentrations indicated the marsh/aquatic system removed NO3 ?, SRP, and TSS from the water column from late spring through early fall and released NH4 + and TKN in summer. The results of this study show that net materials export per unit cross section channel area increased as riverine influence increased.  相似文献   

6.
A comparative study of the standing crop of marsh vegetation was made of the Patuxent River and Parker Creek, two tributaries of Chesapeake Bay. The biomass of marsh vegetation in the tidal freshwater and brackish regions of the Patuxent was relatively uniform with regard to salinity, seasonally high concentrations of dissolved nitrogen, and phosphorus and nutrient gradient. Maximum values of biomass occurred in the tidal freshwater and slightly brackish water region of Parker Creek, a system whose nutrient concentrations approximated 20% of those of Patuxent River. Biomass values for the Patuxent River and Parker Creek averaged about 1417 and 895 g m?2 dry weight, respectively. Estimates of total annual marsh production based on the maximum standing crop was 27×103 and 519 metric tons, respectively, for the Patuxent River and Parker Creek.  相似文献   

7.
Nowadays, natural resources are under increasing stress which fosters wastewater reuse planning and emphasizes on the decentralized wastewater treatment. Vermifiltration has been described as a viable alternative to treat domestic and urban wastewater, but few studies have focused on the impact of different filter packings on vermifiltration performance. This study evaluates the effect of vermicompost and sawdust in a single-stage vermifilter (VF) for urban wastewater treatment. After an acclimation period of 45 days, urban wastewater from a combined sewage collection system was applied continuously for 24 h. Earthworm stock density was of 20 g L?1, HRT of 6 h, HLR of 0.89 m3 m?2 day?1 and OLR of 7.38 g BOD5 day?1. System performance was assessed by the removal efficiencies of BOD5, COD, TSS, NH4 +, TN and TP, and fecal coliforms and helminth eggs elimination. Vermicompost (VE) and sawdust (SE) were tested, using an earthworm abundance of 20 g L?1. Treatment efficiencies were 91.3% for BOD5, 87.6% for COD, 98.4% for TSS and 76.5% for NH4 + in VE, and 90.5% for BOD5, 79.7% for COD, 98.4% for TSS and 63.4% for NH4 + in SE. Earthworms contributed to reduce NH4 + and TN removal and to increase NO3 ? concentration. No treatment was able to eliminate fecal coliforms down to guidelines values for wastewater irrigation as helminth eggs were completely eliminated. Single-stage vermifiltration system using both filter packings is inconsistent and cannot meet EU guideline values for discharge in sensitive water bodies and WHO guidelines for irrigation with treated wastewater.  相似文献   

8.
Rates of nitrification along an estuarine gradient in Narragansett Bay   总被引:1,自引:0,他引:1  
Rates of pelagic nitrification, measured using N-Serve-sensitive [14C]bicarbonate uptake, varied by as much as an order-of-magnitude among three sites along the salinity gradient of Narragansett Bay (Rhode Island, United States). Rates were always higher at the Providence River estuary site (0.04–11.2 μmol N I?1 d?1) than at either the lower Narragansett Bay site (0.02–0.98 μmol N I?1d?1) or the freshwater Blackstone River site (0.04–1.7 μmol N I?1d?1). Although temperature was the most important variable regulating the annual cycle of nitrification, ammonium concentrations were most likely responsible for the large differences in rates among the three sites in summer. At the levels found in this estuarine system, salinity and concentrations of oxygen or total suspended matter did not appear to have a direct measurable effect on nitrification and pH did only occasionally. Nitrification played an important role in the nitrogen cycle at all three sites. In Narragansett Bay, nitrification contributed 55% of the NO2 ? and NO3 ? entering annually, and was the major source during spring and summer. Water from offshore was the only other large source of NO2 ? and NO3 ?, contributing 34%. High summer rates of nitrification could support much of the phytoplankton uptake of NO2 ? and NO3 ?. In the Providence River estuary, the largest annual input of NO2 ? and NO3 ? was from rivers (54%), although nitrification (28%) and water from lower portions of the bay (11%) also made large contributions. Again, nitrification was most important in the summer. The high rates of nitrification in the Providence River estuary during summer were also likely to be important in terms of oxygen demand, and the production of nitric and nitrous oxides. In the Blackstone River, NO2 ? and NO3 ? concentrations increased as the river flowed through Rhode Island, and nitrification was a possible source.  相似文献   

9.
Water discharge from the Patuxent River into its estuary was near-average (95%) during the water year 1968–1969 although precipitation was only 79% of the average. Suspended-sediment discharge into the estuary, however, was more then double the normal yield (344 metric tons/km2 compared to 143 metric tons/km2). These increases in runoff and suspended-sediment yields, despite decreased precipitation, must be attributed to urbanization of the drainage basin.The maximum measured suspended-sediment concentrations in the rural Middle Patuxent basin (Piedmont Province) increased only 40-fold during an increase from “average” to high water runoff (15 mg/l to 600 mg/l). In the portion of the Little Patuxent River basin undergoing urbanization (Piedmont portion), stream concentrations increased by over two orders of magnitude (20 mg/l to 2400 mg/l) as a result of heavy rainfall. The area undergoing urbanization of the Little Patuxent yielded more than twice as much suspended sediment per unit area as the rural Middle Patuxent (620 metric tons/km2 versus 290 metric tons/km2). This increase also is interpreted to be the direct result of erosion of soils denuded or disturbed during urban construction.Using the Middle Patuxent as a “standard” for normal erosion rates in rural areas, construction sites contributed about 82% of the suspended sediment discharged by the Patuxent River into its estuary even though such sites represented only 23% of the drainage basin.  相似文献   

10.
Various industrial facilities including a fish-processing factory, a matchbox factory, a flour mill and a landfill, all in Kisumu City in Kenya, were studied and found to discharge significant amounts of NO2 ?–N, NO3 ?–N, org N, total N and total P into River Kisat and Winam Gulf of Lake Victoria, with  % increases in the mean levels at the outlets of these facilities ranging from 9.6 to 200, 5.9 to 43.5, 9.3 to 96.1, 8.1 to 35.5 and 9.7 to 50.5 %, respectively. The concentrations of NO2 ?–N, NO3 ?–N, NH3–N, org N and total N attributable to these facilities increased by 1,509, 51.1, 112.6, 97.5 and 90.6 %, respectively, at the point of entry into Rive Kisat. The Nyalenda Wastewater Stabilization Ponds reduced the mean levels of NO2 ?–N, NO3 ?–N, org N, total N and T-P by 50, 10.4, 16.6, 7.8 and 30.8 %, respectively, indicating low efficacy of their removal and potential impact on water quality in Lake Victoria. The efficacy of the Kisat wastewater treatment plant was also found to be very low with  % reductions of the analysed nutrients ranging from 2.82 to 41.30 %.  相似文献   

11.
The Patuxent River, Maryland, is a nutrient-overenriched tributary of the Chesapeake Bay. Nutrient inputs from sewage outfalls and nonpoint sources (NPS) have grown substantially during the last four decades, and chlorophylla levels have increased markedly with concomitant reductions in water quality and dissolved oxygen concentrations. The Patuxent has gained national attention because it was one of the first river basins in the U.S. for which basin-wide nutrient control standards were developed. These included a reduction in NPS inputs and a limit on both nitrogen (N) and phosphorus (P) loadings in sewage discharges intended to return the river to 1950s conditions. Full implementation of point source controls occurred by 1994, but population growth and land-use changes continue to increase total nutrient loadings to the river. The present paper provides the perspectives of scientists who participated in studies of the Patuxent River and its estuary over the last three decades, and who interacted with policy makers as decisions were made to develop a dual nutrient control strategy. Although nutrient control measures have not yet resulted in dramatic increases in water quality, we believe that without them, more extensive declines in water quality would have occurred. Future reductions will have to come from more effective NPS controls since future point source loading will be difficult to further reduce with present technology. Changing land use will present a challenge to policy makers faced with sprawling population growth and accelerated deforestation.  相似文献   

12.
Fate of riverine nitrate entering a well defined turbid estuary receiving discharges from the Atchafalaya River, a distributary of the Mississippi River, was determined. Seasonal distribution of NO3 and its transformations were measured in Four League Bay (9,300 ha). Denitrification was estimated by incubating wet samples in the presence of acetylene and monitoring N2O production. The annual sediment accumulation of N was also determined within the bay and within the adjacent marshes. Nitrogen accumulation ranged from 6.0 to 23 gN per m2 per yr on the marsh and 6.1 to 11.2 gN per m2 per yr in the bay. Denitrification in this system was controlled by the availability of NO3 ? with fluxes ranging from 2 to 70 ngN per g per hr. The annual (N2O +N2)-N emission was equivalent to 142 and 120 μg per g or 2.1 and 1.7 gN per m2 from the 5 bay and 5 marsh stations, respectively. Approximately 1.95×105 kgN, predominantly as N2, is being returned to the atmosphere via denitrification. We estimate this to be equivalent to 50% of the riverine NO3 ? entering this estuary. A significant amount was also assimilated within the estuary.  相似文献   

13.
Global riverine carbon concentrations and fluxes have been impacted by climate and human-induced changes for many decades. This paper aims to reconstruct the longterm carbon concentrations and carbon fluxes of the Red River, a system under the coupled pressures of environmental change and human activity. Based on (1) the relationships between particulate and dissolved organic carbon (POC, DOC) or dissolved inorganic carbon (DIC), and suspended sediments (TSS) or river water discharge and on (2) the available detailed historical records of river discharge and TSS concentration, the variations of the Red River carbon concentration and flux were estimated for the period 1960–2015. The results show that total carbon flux of the Red River averaged 2555?±?639 kton C year?1. DIC fluxes dominated total carbon fluxes, representing 64% of total, reflecting a strong weathering process from carbonate rocks in the upstream basin. Total carbon fluxes significantly decreased from 2816 kton C year?1 during the 1960s to 1372 kton C year?1 during the 2010s and showed clear seasonal and spatial variations. Organic carbon flux decreased in both quantity and proportion of the total carbon flux from 40.9% in 1960s to 14.9% in 2010s, reflecting the important impact of dam impoundment. DIC flux was also reduced over this period potentially as a consequence of carbonate precipitation in the irrigated, agricultural land and the reduction of the Red River water discharge toward the sea. These decreases in TSS and carbon fluxes are probably partially responsible for different negatives impacts observed in the coastal zone.  相似文献   

14.
Excess nutrient (N and P) loads are recognized as the major cause of serious water quality problems in China. River systems play a very important role in nitrate (NO3 ?) transportation and transformation in the aquatic environment. To understand and clarify the sources and processes affecting NO3 ? in river basins, we have examined spatial and temporal variations of concentration and dual-isotopic composition of NO3 ? in the dam-controlled Jialing River, a major tributary of the Yangtze River where land use is dominated by agriculture. Water samples were collected in July 2008 and February 2009 from the main channel of the Jialing River and its major tributaries. The δ15N and δ18O of NO3 ? range from 1.5 to 11.0 ‰ (average 6.2 ‰) and ?5.0 to 11.1 ‰ (average, 1.6 ‰), respectively. NO3 ? isotope data and δ18O of water interpreted in combination with hydrological and chemical data suggest that most of the NO3 ? input is from nitrification during the rainy season, and discharge of sewage and manure in the upper course and from cities accounts for much of the NO3 ? load during the dry season. The construction of cascade dams has led to retention of Si and a decrease in the Si/N ratio, implying that assimilation and/or denitrification may significantly affect NO3 ? in the dam area, as demonstrated by NO3 ? and dissolved Si concentrations, and \(\updelta^{ 1 5} {\text{N}}_{{{\text{NO}}_{3} }}\) and \(\updelta^{ 1 8} {\text{O}}_{{{\text{NO}}_{3} }}\) values. This study indicates that dual-isotopic data can be used to identify NO3 ? pollution sources and the processes NO3 ? has undergone during its retention and transport in the watershed of the dam-controlled Jialing River.  相似文献   

15.
In groundwater of the Trans-Pecos region of West Texas, unexpectedly high levels of nitrate (NO3 ?) are documented in four basins: Red Light Draw, Eagle Flats, Wild Horse and Michigan Flats, and Lobo and Ryan Flats. NO3 ? concentrations are changing over time in the majority (82.8 %) of wells and are increasing in most (69.8 %). The temporal change raises questions about the potential sources of NO3 ? and about flow dynamics in these basins. Presence of NO3 ? and temporal variability in concentration has implications beyond contamination risk because it indicates relatively rapid recharge (<60 years) to the basin groundwaters which was not expected based on previous estimates from chloride mass balance models and groundwater age-dating techniques. This research combines existing data ranging back to the 1940s with data collected in 2011 to document a multi-decadal trend of overall increasing NO3 ? concentration in deep basin groundwaters. Chlorofluorocarbon analyses of groundwater collected during 2011 indicate the presence of young (<70 years) water in the basins. The authors infer from these data that there are mechanism(s) by which relatively rapid and widespread recharge occurs on the basin floors; that recharge is spatially and temporally variable and that it results from both anthropogenic (irrigated agriculture) and natural (precipitation) sources. In light of these observations, fundamental conceptual models of flow in these basins should be re-evaluated.  相似文献   

16.
This paper aims to reveal the reciprocal influence of Kürtün Dam and wastewaters from the settlements on the water quality in the stream Har?it, NE Turkey. Several key water-quality indicators were measured: water temperature (T), pH, dissolved oxygen (DO), electrical conductivity, water hardness, chemical oxygen demand (COD), ammonium nitrogen (NH4 +–N), nitrite nitrogen (NO2 ?–N), nitrate nitrogen (NO3 ?–N), total Kjeldahl nitrogen (TKN), total nitrogen (TN), orthophosphate phosphorus (PO4 3?–P), and methylene blue active substances (MBAS). The monitoring and sampling studies were conducted every 15 days from March 2009 to February 2010 at two stations selected in the upstream and downstream of the Kürtün Dam. It was concluded that the Kürtün Dam Lake had a high-quality water in terms of T, pH, DO, COD, NH4 +–N, NO2 ?–N and NO3 ?–N values, but slightly polluted water with respect to TKN, PO4 3?–P, and MBAS according to the Turkish Water Pollution Control Regulation. The dam improved the stream water quality by increasing the DO concentration, and decreasing the NO2 ?–N and PO4 3?–P concentrations thanks to its hydraulic residence time despite the wastewater discharge by the nearby settlements. However, the wastewater discharge deteriorated the stream water quality increasing the COD, NH4 +–N, NO3 –N, and TN concentrations.  相似文献   

17.
In an attempt to more fully understand the dissolved inorganic nitrogen dynamics of the Neuse River estuary, 15NH4 + and 15NO3 ? uptake rates were measured and daily depth-integrated rates calculated for seven stations distributed along the salinity gradient. Measurements were made at 2–3-wk intervals from March 1985 to February 1989. Significant dark NH4 + uptake occurred and varied both spatially and seasonally, accounting for as much as 95% of light uptake with the median being 33%. Apparent NH4 + uptake ranged from 0.001 μmol N 1?1 h?1 to 4.2 μmol N 1?1 h?1, with highest rates occurring during late summer-fall in the oligohaline estuary. Apparent NH4 + uptake was significantly related to NH4 + concentration (p<0.01); however, the regression explained <3% of the variation. Daily-integrated NH4 + uptake ranged from 0.1 mmol N m?2 d?1 to 133 mmol N m?2 d?1 and followed the trend of apparent uptake. Annual NH4 + uptake of the estuary was significantly lower in 1988 than for any other year. Dark uptake of NO3 ? was only 14% of maximum light uptake. Apparent NO3 ? uptake rates ranged from 0.001 μmol N 1?1 h?1 to 1.84 μmol N 1?1 h?1 with highest rates occurring in the oligohaline estuary. Apparent NO3 ? uptake was significantly related to NO3 ? concentration (p<0.01); however, the regression explained <5% of the variation. In general, NO3 ? uptake was only 20% of total dissolved inorganic nitrogen (DIN) uptake. Daily-integrated NO3 ? uptake ranged from 0.1 mmol N m?2 d?1 to 53 mmol N m?2 d?1 and followed similar patterns of apparent uptake. Annual NH4 + uptake was 11.39 mol N m?2 yr?1, 10.28 mol N m?2 Yr?1, 10.93 mol N m?2 yr?1, and 7.38 mol N m?2 yr?1, and 1.84 mol N m?2 yr?1, with the 4-yr mean being 10.0. Annual NO3 ? uptake was 3.12 mol N m?2 yr?1, 3.40 mol N m?2 yr?1, 1.96 mol N m?2 yr?1, and 1.84 mol N m?2 yr?1, with the 4-yr mean being 2.6. The total annual DIN uptake was more than twice published estimates of phytoplankton DIN demand, indicating that there is an important heterotrophic component of DIN uptake occurring in the water column. The extrapolation of nitrogen demand from primary productivity results in serious underestimates of estuarine nitrogen demand for the Neuse River estuary and may be true for other estuaries as well.  相似文献   

18.
Eutrophication of lakes and reservoirs has become a worldwide environmental problem, and nitrogen (N) has been recognized as one of the key factors responsible for eutrophication. Nitrogen adsorbed on sediments may be released via chemical and biological processes under changing environmental conditions. Spatial distributions of concentrations of ammonia nitrogen (NH4 +–N), nitrate nitrogen (NO3 ?–N) and total nitrogen (TN) were investigated in sediments and overlying water of Dongting Lake, the second largest freshwater lake in China. The concentration of TN in the sediments exhibited strong spatial variation with relatively high values in the eastern part and relatively low values in the southern part of the lake. The TN concentration in the water of different regions of Dongting Lake was affected by the internal load of sediment N. The vertical distribution of TN in sediment cores showed a decreasing trend with an increase in depth. Concentrations of NH4 +–N in the sediment cores decreased with the depth increase until 6–8 cm and then increased slowly. However, concentrations of NO3 ?–N in the sediment cores showed an opposite trend from those of NH4 +–N. A kinetic release experiment of NH4 +–N showed that the maximum release rate occurred in the first 5 min and the amount of NH4 +–N release reached 77.93–86.34 % of the total amount in 0–10 min. The release of NH4 +–N in the surface sediments of Dongting Lake fits a first-order kinetics function.  相似文献   

19.
Rainfall events cause episodic discharges of groundwaters contaminated with septic tank effluent into nearshore waters of the Florida keys, enhancing eutrophication in sensitive coral reef communities. Our study characterized the effects of stormwater discharges by continuously (30-min intervals) measuring salinity, temperature, tidal stage, and dissolved oxygen (DO) along an offshore eutrophication gradient prior to and following heavy rainfall at the beginning of the 1992 rainy season. The gradient included stations at a developed canal system (PP) on Big Pine Key, a seagrass meadow in a tidal channel (PC), a nearshore patch reef (PR), a bank reef at Looe Key National Marine Sanctuary (LK), and a blue water station (BW) approximately 9 km off of Big PIne Key. Water samples were collected at weekly intervals during this period to determine concentrations of total nitrogen (TN), ammonium (NH4 +), nitrate plus nitrite NO3 ? plus NO2 ?), total phosphorus (TP), total dissolved phosphorus (TDP), soluble reactive phosphorus (SRP), and chlorophyll a (chl a). Decreased salinity immediately followed the first major rainfall at Big Pine Key, which was followed by anoxia (DO <0.1 mg I?1), high concentrations of NH4 + (≈24 μM), TDP (≈1.5 μM), and chl a (≈20 μg I?1). Maximum concentration of TDP (≈0.30 μM) also followed the initial rainfall at the PC, PR, and LK stations. In contrast, NH4 + (≈4.0 μM) and chl a (0.45 μg I?1) lagged the rain event by 1–3 wk, depending on distance from shore. The highest and most variable concentrations of NH4 +, TDP, and chl a occurred at PP, and all nutrient parameters correlated positively with rainfall. DO at all stations was positively correlated with tide and salinity and the lowest values occurred during low tide and low salinity (high rainfall) periods. Hypoxia (DO <2.5 mg I?1) was observed at all stations follwing the stormwater discharges, including the offshore bank reef station LK. Our study demonstrated that high frequency (daily) sampling is necessary to track the effects of episodic rainfall events on water quality and that such effects can be detected at considerable distances (12 km) from shore. The low levels of DO and high levels of nutrients and chl a in coastal waters of the Florida Keys demand that special precautions be exercised in the treatment and discharge of wastewaters and land-based runoff in order to preserve sensitive coral reef communities.  相似文献   

20.
Subterranean estuaries are highly dynamic in processing dissolved inorganic nitrogen (DIN). Here we investigate DIN turnover in surface sediments (0–20 cm depth) at the higher, medium and lower intertidal of a seepage face, i.e., the outer “mouth” of the subterranean estuary, during four consecutive seasons in Sanggou Bay, China. Throughout the studied period, ammonium (NH4+) and nitrite (NO2?) concentrations in the sampled porewaters did not vary significantly with depth or season. In contrast, peaks in porewater nitrate (NO3?) concentration and decreases in δ15N-NO3? and δ18O-NO3? were observed in the 15–20 cm depth (bottom) sediment, particularly during summer and autumn. Coupled with NO3? production, the sediment total nitrogen was also markedly peaking in the bottom layer of the studied seepage face. Together with abundant heterotrophic microbes in the sediment, this NO3? accumulation was linked to a reaction chain including organic matter decomposition, ammonification and nitrification. During winter, porewater enrichment in total nitrogen occurred closer to the surface of the seepage face but triggered also active NO3? production. This pattern reinforced the importance of pelagic organic matter supply on NO3? production. In the shallower depths of the seepage face (<12 cm), active net NO3? removal occurred except in winter. The isotopic fractionation (δ15N-NO3? and δ18O-NO3?) and metagenomic results revealed denitrification as the main pathway for NO3? reduction. Biological assimilation from benthic primary producers may also consume a fraction of NO3? at the sediment water interface. Both NO3? production and removal significantly varied in magnitude with season (?13.6 to 6.2 nmol cm?3 h?1). Substrate supply was the key driver for nitrate cycling, as evidenced by the high NO3? production rate in spring by comparison to autumn. The highest NO3? turnover rates were found in summer, suggesting the combined influence of advection rates and sediment microbiota composition. In spite of active removal (peak NO3? removal capability: 61%), a significant amount of NO3? was still transported from the seepage face into the bay waters. The magnitude of NO3? fluxes ranged from 312 to 476 kg N d?1, accounting for approximately 15% of the total exogenous NO3? loading into the bay. NO3? isotopic fingerprint revealed chemical fertilizer as the main source of terrestrial NO3? in SGD, highlighting the importance of land use to coastal system nitrogen budgets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号