首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
39Ar-40Ar ages and37Ar-38Ar exposure ages of samples representing four different lithologies of the Apollo 17 station 7 boulder were measured. The age of the dark veinlet material77015of3.98 ± 0.04AE is interpreted as representing the time of intrusion of this veinlet into the 77215 clast. The data obtained so far indicate that the vesicular basalt 77135 formed 100–200 m.y. later. However, this has to be confirmed by39Ar-40Ar investigations on separated mineral and/or grain-size fractions. A small clast enclosed in the 77135 basalt gives a well-defined high temperature age of3.99 ± 0.02AE. A sample of the noritic clast 77215 gave4.04 ± 0.03AE, the highest age found so far in this boulder. The39Ar-40Ar ages obtained are in agreement with the age relationships deduced from the stratigraphic evidence.Taking into account the shielding by the boulder itself, an average37Ar-38Ar exposure age of(27.5 ± 2.5)m.y. is obtained for the samples collected from the boulder.  相似文献   

2.
Ar analyses are reported for five coarse-grained, Ca-Al-rich inclusions from the Allende meteorite. The samples were neutron-irradiated in individual evacuated ampoules, and the Ar gas in the ampoules as well as the samples was analyzed. A large fraction (up to 60%) of the39Ar from39K (n, p) reactions was lost out of the inclusions into the ampoules. The39Ar losses resulted in substantial increases in the apparent40Ar-39Ar ages of the samples.39Ar recoil loss during neutron-irradiation is a major effect and must be accounted for in40Ar-39Ar dating. All of the Allende inclusions studied contained substantial trapped36Ar. The origin of the trapped36Ar is unknown, and the possible presence of trapped40Ar cannot be excluded. Ar measurements on Allende inclusions which have yielded anomalously old ages must be re-examined in the context of39Ar recoil loss and possible contributions of trapped40Ar. Allende inclusions appear on both accounts to be poor candidates to search for relicts of presolar materials with well-defined K/Ar ages.  相似文献   

3.
The Kirin meteorite, a large (2800kg) H5 chondrite, fell in Kirin Province, China in 1976. A sample from each of the two largest fragments (K-1, K-2) yield40Ar/39Ar total fusion ages of 3.63 ± 0.02b.y. and 2.78 ± 0.02b.y. respectively.40Ar/39Ar age spectra show typical diffusional argon loss profiles. Maximum apparent ages of 4.36 b.y. (K-1) and ~4.0 b.y. (K-2) are interpreted as possible minimum estimates for the age of crystallization of the parent body.The40Ar/39Ar ages found for gas released at low temperature are about 2.2 b.y. for K-1 and about 0.5 b.y. for K-2, suggesting that this meteorite may have suffered two discrete collisional events that caused degassing of radiogenic argon. Modelling of possible thermal events in the parent body indicates that samples K-1 and K-2 were at a depth of less than 3 m from the base of an impact melt of a thickness less than 7 m and separated by no more than ~2 m from one another at the time of the heating event about 0.5 b.y. ago. Further, the duration of heating was probably less than a few years.Calculations from38Ar data yield exposure ages for samples K-1 and K-2 of about 5 m.y., similar to that found for many other H chondrites.  相似文献   

4.
High resolution40Ar-39Ar age spectra have been measured on plagioclase and glass from two howardites. Both the plagioclase and glass from the gas-rich Bununu howardite show well-defined age plateaux, yielding distinct ages of 4.42 ± 0.04 and 4.24 ± 0.05 AE, respectively. These age patterns are rather well behaved and are interpreted as representing the distinct times of formation of plagioclase from igneous processes and of glass fragments produced by impact on the meteorite body. The release pattern for the glass from the heavily shocked Malvern howardite is undulating at low and intermediate temperatures but does have a high-temperature plateau. Its age spectrum indicates little apparent diffusion loss, but rather an extensive redistribution of either40Ar during the shock event or of39Ar during the neutron irradiation or both. The total K-Ar age of Malvern glass is 3.64 ± 0.04 AE and the high-temperature plateau is 3.73 ± 0.05 AE. The age spectrum of the Malvern plagioclase has an intermediate temperature “plateau” at 3.80 AE that represents 20% of the total40Ar content and increases towards a high-temperature plateau at 4.29 ± 0.04 AE containing 26% of the total gas release. It seems likely that the event which formed the Malvern glass also reset part of the plagioclase. The distinct histories observed for the different phases of these howardites are consistent with their formation from a regolith. The present results along with similar young ages for igneous clasts from Kapoeta clearly show that the regoliths were extant on the parent bodies of howardites and that they were subjected to violent impact events at least as recently as 3.7 AE ago.  相似文献   

5.
40Ar/39Ar step-heating analyses have been performed on 11 samples of basalt from sites near Owyhee Reservoir of southeastern Oregon, U.S.A. These rocks were extruded during the great flood basalt episode of the Pacific Northwest. The whole-rock points are highly correlated on a plot of40Ar/36Ar versus39Ar/36Ar, corresponding to a common age of the samples of 14.3 ± 0.3 m.y. Inspite of this, individual “plateau” plots of the age versus fraction of39Ar released do not give good plateaux. These age spectra exhibit to varying degrees a common structure in which lower age values are found at higher temperatures. This pattern may result from a closed-system redistribution of the argon isotopes. The usefulness of grinding the basalts in removing a loosely held atmospheric argon component is confirmed.  相似文献   

6.
The effects of thermal and compressional treatment on40Ar-39Ar systematics have been investigated on three artificially heated biotite samples (heated for 1 hour at 700°C and 860°C in air and 700°C in vacuum respectively) and uniaxially compressed granite (p = 1400bar) and basalt samples (p = 1650bar). The40Ar-39Ar results for the disturbed samples are compared with those for undisturbed samples. Except for the vacuum-heating case, the effects of the disturbances may be interpreted as the combined effect of a partial loss of radiogenic40Ar from the sample and an incorporation of air Ar into the sample. Common diagnostic effects are (1) reduction of the total fusion age, (2) distortion of the age spectrum and, if the degree of the partial Ar loss is small, (3) approximate preservation of the isochron age, and (4) reduction of the intercept value (40Ar/36Ar) in the isochron plot.The features observed in the age spectra of artificially disturbed samples are rather common in geologically disturbed samples, suggesting that the artificial disturbances simulate the effects of geological disturbances on40Ar-39Ar systematics.  相似文献   

7.
Age plateaux and isochrons in the 40Ar-39Ar and similar dating techniques can be severely altered by processes changing the geometric distribution of one isotope relative to the other. Age plateaux and isochrons can even be generated entirely as experimental artifacts. Alterations of 40Ar-39Ar plateau ages by recoil redistribution of 39Ar, incorporation of trapped 40Ar and prior 40Ar loss provide significant examples.10% shifts in isotopic ratios are very easily obtained and would result in errors in 40Ar-39Ar plateau ages of 4 AE old samples of ~100 m.y., which is comparable to the age differences which must be resolved to develop early lunar and solar system chronology. The possible occurrence of diffusion artifacts must be evaluated in every case to establish that ages and age differences obtained by stepwise thermal release analyses are real.All studies involving the stepwise thermal extraction of multiple isotopic components may show similar diffusion artifacts. Constant isotopic compositions may be obtained during thermal release which do not represent the actual compositions of sample reservoirs.  相似文献   

8.
40Ar-39Ar and Rb-Sr ages have been measured on separated minerals from the potassic volcanics of the Roman Comagmatic Region to test the ability of these methods to accurately data Quaternary geological events. The very high K and Rb contents of the Roman magmas present particularly favorable situations in which the very high concentrations of the radioactive nuclides40K and87Rb result in well resolved in situ enrichments of the daughter isotopes despite the very young ages. Six leucite separates contained Ar with very high bulk40/36 ratios (above 1000) and in which the40Ar and the39Ar were very well correlated, yielding well-defined ages averaging3.38±0.08×105 years. Two leucites contained Ar with lower bulk40/36 ratios (~400), and in at least two release steps from these leucites the40Ar/36Ar ratio was significantly lower than atmospheric. Despite the uncertainty in the composition of the trapped component, these two leucites have ages that do not differ significantly from the ages of the other leucites. For the biotites, it was not possible to obtain through stepwise degassing a good separation of in situ radiogenic40Ar from trapped40Ar and therefore the calculated ages are not as precise as those of the leucites. In three cases the biotite age agrees with the age of the cogenetic leucite, but in the remaining two cases discordant ages are obtained, suggesting caution when using biotites as Quaternary age indicators.Rb-Sr measurements on leucite, biotite, and pyroxene separates hand-picked from each of three tuff samples yielded a dispersion in87Sr/86Sr as large as 16 parts in 104 and87Rb/86Sr as high as 218 for leucites, and permitted the determination of internal isochron ages. The ages obtained range from3.8±0.2×105to3.3±0.2×105 years and are in good agreement with the40Ar-39Ar ages on the leucites. The data for each tuff sample yield a well-defined uniform initial87Sr/86Sr. However, different tuffs show small differences in initial87Sr/86Sr pointing to distinct sources or to assimilation of different materials during the extrusion of the tuffs. These measurements demonstrate the possibility of dating Quaternary materials by both the40Ar-39Ar method and the Rb-Sr method. The observation of concordant ages with a precision of a few percent represents a powerful tool in Quaternary stratigraphy.  相似文献   

9.
In several xenolithic ultramafic rocks from the Kola Peninsula, including a magnetic separate, abnormally high40Ar/39Ar ratios persisted at low and high temperatures. The lowest40Ar/39Ar ratio was consistently observed at intermediate temperatures (900–1100°C), indicating an apparent age of 2.8–3.1 b.y.; however, this may not indicate the formation age.The quantity of excess40Ar was estimated at each temperature fraction, adopting ages inferred from published Rb-Sr ages or the minimum40Ar/39Ar age. Excess40Ar is abundantly trapped both in mineral lattices and nonretentive trapping sites, but the trapping sites are different from those of in-situ radiogenic40Ar. The high temperature component of excess40Ar is considered to represent Ar dissolved during mineral formation in the upper mantle or the lower crust.A correlation between the amount of high temperature excess40Ar and36Ar exists for some samples. The40Arexcess/36Ar ratios of the rocks of probable upper mantle or lower crust origin vary from about 10 000 to 35 000, which may suggest large fluctuations of this ratio in the deep interior of the earth. The high value implies that most36Ar was already degassed from the earth's interior at least 2 or 3 b.y. ago.  相似文献   

10.
Alpine biotites containing excess40Ar have been analysed by step-heating argon analysis of both neutron irradiated and unirradiated samples. In addition to age spectra the data are discussed in terms of the thermal release of40Ar,39Ar,37Ar and36Ar and also displayed on a correlation plot of36Ar/40Ar vs.39Ar/40Ar which is used to interpret the data and present a model of isotopic evolution during metamorphic cooling. This diagram overcomes misleading complications of isochron plots. The samples exhibit the following argon systematics: (1) flat age spectra for 80–90%39Ar release with anomalously old ages but early gas fractions that approximate the accepted cooling ages; (2) each sample shows decreasing36Ar/40Ar with increasing temperature of heating step with three samples having a negative correlation of36Ar/40Ar vs.39Ar/40Ar and one a positive correlation; (3) there appear to be two36Ar components, one released at high temperatures and correlated with radiogenic40Ar and one released at low temperatures which is not correlated with radiogenic40Ar; and (4) there is no significant effect of neutron irradiation on the release of40Ar and36Ar.Interpretation suggests that these biotites contain a record of the evolution and isotopic composition of ambient argon retained within the metamorphic host rocks during cooling. After incorporation of argon of high40Ar/36Ar another argon component, of atmospheric composition, was retained at lower temperature and argon partial pressures.  相似文献   

11.
40Ar/39Ar analyses have been made on phlogopite-bearing peridotite nodules from Bultfontein and phlogopite nodules from Du Toitspan, Kimberley area, South Africa. Neither definite plateau nor isochron age could be obtained due to the occurrence of an excess40Ar in phlogopite. However, the extrusion age of a phlogopite nodule from Du Toitspan has been estimated to be about 86 m.y. from the combination of the youngest40Ar/39Ar age in the intermediate temperature fraction with Rb/Sr age data reported for this area.Excess40Ar correlates with K-derived39Ar in some phlogopites suggesting that it is trapped in K- or K-similar sites and has been incorporated during phlogopite formation.The occurrence of large amounts of excess40Ar in phlogopite suggests that it was not formed at a shallow depth.  相似文献   

12.
This paper reports the results of thermal-release argon analyses of neutron-irradiated samples of the two nakhlite meteorites, Lafayette and Nakhla. The initiation of retention of radiogenic40Ar in Lafayette appears to have been a reasonably well-defined event which occurred (1.33 ± 0.03) × 109 yr ago, as determined by the40Ar-39Ar method. Nakhla also appears to have been retaining argon no longer than 1.3 × 109 yr, but its gas-retention age cannot be considered well-defined because its apparently most-retentive sites have nominal gas-retention ages shorter than those of the less-retentive sites which contain most of its potassium.  相似文献   

13.
K-Ar ages have been determined for sulfide minerals for the first time. The occurrence of adequate amounts of potassium-bearing sulfides with ideal compositions K3Fe10S14 (~10 wt.% K) and KFe2S3 (~16 wt.% K) in samples from a mafic alkalic diatreme at Coyote Peak, California, prompted an attempt to date these materials. K3Fe10S14, a massive mineral with conchoidal fracture, gives an age of 29.4 ± 0.5m.y.(40Ar/39Ar), indistinguishable from the 28.3 ± 0.4m.y.(40Ar/39Ar) and 30.2 ± 1.0m.y.8 (conventional K-Ar) ages obtained for associated phlogopite (8.7 wt.% K). KFe2S3, a bladed, fibrous sulfide, gives a younger age, 26.5 ± 0.5m.y.(40Ar/39Ar), presumably owing to Ar loss.  相似文献   

14.
40Ar/39Ar age data on alkalic and tholeiitic basalts from Diakakuji and Kinmei Seamounts in the vicinity of the Hawaiian-Emperor bend indicate that these volcanoes are about 41 and 39 m.y. old, respectively. Combined with previously published age data on Yuryaku and Ko¯ko Seamounts, the new data indicate that the best age for the bend is 42.0 ± 1.4 m.y.Petrochemical data indicate that the volcanic rocks recovered from bend seamounts are indistinguishable from Hawaiian volcanic rocks, strengthening the hypothesis that the Hawaiian-Emperor bend is part of the Hawaiian volcanic chain.40Ar/39Ar total fusion ages on altered whole-rock basalt samples are consistent with feldspar ages and with40Ar/39Ar incremental heating data and appear to reflect the crystallization ages of the samples even though conventional K-Ar ages are significantly younger. The cause of this effect is not known but it may be due to low-temperature loss of39Ar from nonretentive montmorillonite clays that have also lost40Ar.  相似文献   

15.
40Ar/39Ar incremental heating experiments were applied to hornblendes, coarse-grained biotites and K-feldspars from 1400 m.y. old rocks near the contact with the ~60 m.y. old Eldora stock in the Front Range of Colorado. The aim was to distinguish, on the basis of argon isotopic data alone, a partially re-set K-Ar date from an undisturbed or a completely overprinted K-Ar date. In the laboratory heating of biotites the radiogenic argon (40Ar*) and potassium-derived39Ar (39Ar*) were released in two stages — in the range ~600–900°C and above ~900°C. The two biotites furthest from the contact and the one adjacent to the contact give well-defined apparent-age plateaus at ~1230 m.y. and 63 m.y. respectively for all argon released above ~600°C. The 1230-m.y. date may represent a thermal event or the end of a long cooling while the 63-m.y. date essentially represents the time of reheating. Partially overprinted biotites at intermediate distances have significantly anomalous plunges in apparent ages for argon released above ~900°C, thus distinguishing them from undisturbed and completely outgassed biotites.The bulk of the40Ar* and39Ar* in the hornblendes was released in the range ~950–1100°C. The hornblende furthest from the contact gives a well-defined plateau at 1400 m.y. for the 98% of the argon that was released above ~950°C. A partially overprinted hornblende from near the contact gives an apparent plateau at ~1050 m.y. The existence of such a false plateau precludes the distinction of partially overprinted K-Ar hornblende dates from undisturbed K-Ar hornblende dates without independent evidence. Reasonable estimates of the time of reheating are not recovered in the age spectra for partially overprinted hornblende and biotites.For the feldspars the bulk of the40Ar* and39Ar* was released in the laboratory heating between about 900°C and 1200°C, probably reflecting phase changes near these temperatures. The argon released below about 900°C records reasonable maximum dates for the time of the thermal overprinting. For the microcline 22500 (the sample number specifies the distance, in feet, from the contact) this effect is slight — a minimum date of 147 m.y. occurs in 2.3% of the total39Ar*. For samples 2400, 1070, and 85 the respective minimum dates are similar at 72, 81, and 68 m.y. and dramatically improve on the total or integrated dates of 238, 358 and 211 m.y. The high-temperature (>900°C) apparent ages for these three feldspars do not define plateaus and are geologically meaningless. The high-temperature apparent ages for the last 50% of the39Ar* released from 22500 do define a plateau, but the 1060-m.y. date is also probably geologically meaningless.  相似文献   

16.
The crystallization ages of a suite of Apollo 17 basalts from four different stations have been measured using the39Ar-40Ar stepwise heating technique. The rocks analyzed include all principal petrographic types found at Apollo 17 landing site. A correlation between the ages and the petrographic type exists; plagioclase-poikilitic ilmenite basalts are youngest and olivine porphyritic ilmenite basalts are the oldest. The duration of volcanism in Mare Serenitatis is about 200 m.y., the same as observed for Mare Imbrium, and less than observed for Mare Tranquillitatis, 400 m.y. A relationship between duration of volcanism and gravity anomalies is noted. The cosmic ray exposure ages (in m.y.) for various locations range as: station 4, 58–315; station 5, 85–440; station 6, 110; station 8, 90–160.  相似文献   

17.
A total of 139 breccia and crystalline rock fragments in the size range 2–4 mm from four Apollo 15 soil samples have been examined. Two of the sample stations are on the mare surface (4 and 9A) and two are on the Apennine Front (2 and 6). Approximately 90% of the fragments from the Apennine Front are brown-glass “soil” breccias, but those from the mare surface are 60%–70% basalt. Several textural varieties of mare basalt have been recognized, but within experimental error there is no difference in their40Ar-39Ar ages. The major non-mare (Pre-Imbrian) crystalline rock types in the Apennine Front regolith are KREEP basalt, anorthositic rocks, recrystallized norite (including anorthositic norite) and recrystallized polymict breccias; however, such crystalline rocks are rare in the samples examined. Apparently, the near surface Imbrium ejecta below the regolith has not been thermally recrystallized, and probably there are no outcrops of crystalline rocks upslope from the sample stations.  相似文献   

18.
A biotite dacite that intrudes metamorphic rocks on Okinawa in the Ryukyu island arc has been dated at 12 m.y. by the40Ar/39Ar method. The details of this age measurement and a compilation of radiometric ages for the Ryukyu island arc and adjacent regions are presented. These data suggest that from 65 to 12 m.y. ago the magmatic axis of the Ryukyu arc was confined to a very narrow zone along the arc. In Kyushu and Shikoku, the southern Japanese islands, intrusive and volcanic igneous rocks dated as 21?12 m.y. occur over a much wider zone than in the Ryukyu arc. The apparent difference in width of the magmatic zones may be due to different absolute motions of the overthrust plates of those two regions of subduction. The dissimilarity of available radiometric ages for the Ryukyu arc and for Taiwan suggest different histories for the development of these two features. The occurrence of active volcanoes in association with the Okinawa Trough, northwest of the Ryukyu island arc, may indicate that the trough itself developed in the last 12 m.y.  相似文献   

19.
Determinations of40Ar/39Ar and U-Th-Pb are reported for three clasts from the Abee (E4) enstatite chondrite, which has been the object of extensive consortium investigations. The clasts give40Ar/39Ar plateau ages and/or maximum ages of 4.5 Gy, whereas two of the clasts give average ages of 4.4 Gy. Within the range of 4.4–4.5 Gy these data do not resolve any possible age differences among the three clasts.206Pb measured in these clasts is only ~1.5–2.5% radiogenic, which leads to relatively large uncertainties in the Pb isochron age and in the207Pb/206Pb model ages. The Pb data indicate that the initial207Pb/206Pb was no more than 0.08±0.07% higher than this ratio in Can?on Diablo troilite. The U-Th-Pb data are consistent with the interpretation that initial formation of these clasts occurred 4.58 Gy ago and that the clasts have since remained closed systems, but are contaminated with terrestrial Pb. The40Ar/39Ar ages could be gas retention ages after clast formation or impact degassing ages. The thermal history of Abee deduced from Ar data appears consistent with that deduced from magnetic data, and suggests that various Abee components experienced separate histories until brecciation no later than 4.4 Gy ago, and experienced no appreciable subsequent heating.  相似文献   

20.
40Ar/39Ar incremental heating experiments on igneous plagioclase, biotite, and pyroxene that contain known amounts of excess40Ar indicate that saddle-shaped age spectra are diagnostic of excess40Ar in igneous minerals as well as in igneous rocks. The minima in the age spectra approach but do not reach the crystallization age. Neither the age spectrum diagram nor the40Ar/36Ar versus39Ar/36Ar isochron diagram reliably reveal the crystallization age in such samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号