首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study a set of very high-quality records of first-order overtone Rayleigh waves from the deep-focus earthquake of September 29, 1973, in the Japan Sea. Standard surface wave techniques are used with these overtones, treated as individual seismic phases, to retrieve radiation pattern, Q, moment and phase velocity. A figure of M0 = (6.7 ± 1.4) × 1027dyn-cm is obtained, in total agreement with published values computed from either P waves, or fundamental Rayleigh waves. We also demonstrate the feasibility of using overtones as individual seismic phases in order to investigate their dispersion and attenuation properties.  相似文献   

2.
3.
Nickel partitioning between forsterite and aluminosilicate melt of fixed bulk composition has been determined at 1300°C to 20 kbar pressure. The value of the forsterite-liquid nickel partition coefficient is lowered from >20 at pressures equal to or less than 15 kbar to <10 at pressures above 15 kbar.Published data indicate that melts on the join Na2O-Al2O3-SiO2 become depolymerized in the pressure range 10–20 kbar as a result of Al shifting from four-coordination at low pressure to higher coordination as the pressure is increased. This coordination shift results in a decreasing number of bridging oxygens in the melt. It is suggested that the activity coefficient of nickel decreases with this decrease in the number of bridging oxygens. As a result, the nickel partition coefficient for olivine and liquid is lowered.Magma genesis in the upper mantle occurs in the pressure range where the suggested change in aluminum coordination occurs in silicate melts. It is suggested, therefore, that data on nickel partitioning obtained at low pressure are not applicable to calculation of the nickel distribution between crystals and melts during partial melting in the upper mantle. Application of high-pressure experimental data determined here for Al-rich melts to the partial melting process indicates that the melts would contain about twice as much nickel as indicated by the data for the low-pressure experiments. If, as suggested here, the polymerization with pressure is related to the Al content of the melt, the difference in the crystal-liquid partition coefficient for nickel at low and high pressure is reduced with decreasing Al content of the melt. Consequently, the change ofDNiol-andesite melt is greater than that ofDNiol-basalt melt, for example.  相似文献   

4.
5.
High-Mg (Mg#>45) andesites (HMA) within cratons attract great attention from geologists. Their origin remains strongly debated. In order to examine and provide direct evidence for previous assumptions about HMA’s genesis inferred from petrological and geochemical investigations, we performed reaction experiments between tonalitic melt and mantle olivine on a six-anvil apparatus at high-temperature of 1250–1400°C and high-pressure of 2.0–5.0 GPa. Our experiments in this work simulated the interaction between the tonalitic melt derived from partial melting of eclogitized lower crust foundering into the Earth’s mantle and mantle peridotite. The experimental results show that the reacted melts have very similar variations in chemical compositions to the HMAs within the North China Craton. Therefore, this interaction is probably an important process to generate the HMAs within crations.  相似文献   

6.
In this study, we investigated iron–magnesium exchange and transition-metal trace-element partitioning between magnesium silicate perovskite (Mg,Fe)SiO3 and ferropericlase (Mg,Fe)O synthetised under lower-mantle conditions (up to 115 GPa and 2200 K) in a laser-heated diamond anvil cell. Recovered samples were thinned to electron transparency by focused ion beam and characterized by analytical transmission electron microscopy (ATEM) and nanometer-scale secondary ion mass spectroscopy (nanoSIMS). Iron concentrations in both phases were obtained from X-ray energy dispersive spectroscopy measurements and nanoSIMS. Our results are the first to show that recently reported spin-state and phase transitions in the lower mantle directly affect the evolution of Fe–Mg exchange between both phases. Mg-perovskite becomes increasingly iron-depleted above 70–80 GPa possibly due to the high spin–low spin transition of iron in ferropericlase. Conversely, the perovskite to post-perovskite transition is accompanied by a strong iron enrichment of the silicate phase, ferropericlase remaining in the Fe-rich phase though. Nanoparticles of metallic iron were observed in the perovskite-bearing runs, suggesting the disproportionation of ferrous iron oxide, but were not observed when the post-perovskite phase was present. Implications on the oxidation state of the Earth and core segregation will be discussed. Transition trace-element (Ni, Mn) concentrations (determined with the nanoSIMS) show similar trends and could thus be used to trace the origin of diamonds generated at depth. This study provides new results likely to improve the geochemical and geophysical models of the Earth's deep interiors.  相似文献   

7.
Thermal grooving of low angle tilt boundary of San Carlos olivine in the albite melt were experimentally investigated at 1200–1300°C in mixed CO2 and H2 gases for 1–20 h. The depth, d, of the thermal groove on (010) of olivine along the (100) sub-boundaries is in the function of time and temperatures as follows; d4 = ko · t · exp(− 190 000/RT), in which R is the gas constant, and ko is the material constant.The melt shape changes due to the thermal grooving driven by surface tension and deformation of the upper mantle. Compared with the time scales of these two counteracting mechanisms, it is inferred that the melt shape is unstable in the high temperature and low stress conditions, and that the melt shape takes a stable form during progressive deformation in the low temperature and high stress conditions.  相似文献   

8.
Liquid metal-liquid silicate partitioning of Fe, Ni, Co, P, Ge, W and Mo among a carbon-saturated metal and a variety of silicate melts (magnesian-tholeiitic-siliceous-aluminous-aluminosiliceous basalts) depends modestly to strongly upon silicate melt structure and composition. Low valency siderophile elements, Fe, Ni and Co, show a modest influence of silicate melt composition on partitioning. Germanium shows a moderate but consistent preference for the depolymerized magnesian melt. High valency siderophile elements, P, Mo, and W, show more than an order of magnitude decrease in metal-silicate partition coefficients as the silicate melt becomes more depolymerized. Detailed inspection of our and other published W data shows that polymerization state, temperature and pressure are more important controls on W partitioning than oxidation state. For this to be true for a high and variable valence element implies a secondary role in general for oxidation state, even though some role must be present. Equilibrium core segregation through a magma ocean of ‘ultrabasic’ composition can provide a resolution to the ‘excess’ abundances of Ge, P, W and Mo in the mantle, but the mantle composition alone cannot explain the excess abundances of nickel and cobalt in chondritic proportions.  相似文献   

9.
We determined the partition coefficients of 19 elements between metallic liquid and silicate liquid at 20 GPa and 2500°C, and between metallic liquid and silicate perovskite at 27 GPa and 2200°C. Remarkable differences were observed in the partitioning behaviors of Si, P, W, Re, and Pb among the silicate liquid, perovskite, and magnesiowüstite coexisting with metallic liquid, reflecting incompatibility of the elements in the silicate or oxide phase. We could not observe any significant difference in the partitioning behaviors of V, Cr, Mn, Co, Ni, and Cu among the phases coexisting with metallic liquid.

Comparison of the present partitioning data with those obtained previously at lower pressure and temperature suggests that the exchange partition coefficients, Kmet/sil, of Co, Ni, Mo, and W decrease, whereas those of V, Cr, and Mn increase and tend to approach unity with increasing pressure and temperature. We also made preliminary experiments to clarify the effect of sulfur on the partitioning behaviors. Sulfur lowers the exchange partition coefficients, Kmet/sil, of Mo and W between metallic liquid and silicate liquid significantly at 20 GPa and 2300°C.

The mantle abundances of Co, Ni, Cu, Mo, and W calculated for the metal-silicate equilibrium model are lower than those of the real mantle, whereas P, K, and Mn are overabundant in the calculated mantle. The discrepancies in the abundances of Co and Ni could be explained by the chemical equilibrium at higher pressure and temperature. Large discrepancies in Mo and W between the calculated and real mantles could be accounted for by the effect of sulfur combined with the effects of pressure and temperature on the chemical equilibrium. The mantle abundances of P, K, and Cu could be accounted for by volatile loss in the nebula, perhaps before accretion of the Earth, combined with the chemical equilibrium at higher pressure and temperature. Thus the observed mantle abundances of P, K, Co, Ni, Cu, Mo, and W may be consistent with a model of sulfur-bearing metal-silicate equilibrium in lower-mantle conditions.  相似文献   


10.
High pressure experiments using the sink/float method have bracketed the density of hydrous iron-rich ultrabasic silicate melt from 1.35 to 10.0 GPa at temperatures from 1400 to 1860 °C. The silicate melt composition was a 50–50 mixture of natural komatiite and synthetic fayalite. Water was added in the form of brucite Mg(OH)2 and was present in the experimental run products at 2 wt.% and 5 wt.% levels as confirmed by microprobe analyses of total oxygen. Buoyancy marker spheres were olivines and garnets of known composition and density. The density of the silicate melt with 5 wt.% water at 2 GPa and 1500 °C is 0.192 g cm? 3 less than the anhydrous form of this melt at the same P and T. This density difference gives a partial molar volume of water in silicate melt of ~ 7 cm3 mol? 1, which is similar to previous studies at high pressure. The komatiite–fayalite liquids with 0 and 2 wt.% H2O, have extrapolated density crossovers with equilibrium liquidus olivine at 8 and 9 GPa respectively, but there is no crossover for the liquid with 5 wt.% H2O. These results are consistent with the hypothesis that dense hydrous melts could be gravitationally stable atop the 410 km discontinuity in the Earth. The results also support the notion that equilibrium liquidus olivine could float in an FeO-rich hydrous martian magma ocean. Extrapolation of the data suggests that FeO-rich hydrous melt could be negatively buoyant in the Earth's D″-region or atop the core–mantle-boundary (CMB), although experiments at higher pressure are needed to confirm this prediction.  相似文献   

11.
The axial ratio of basalt pillows in some shallow water pillow lava sequences from Azores and Iceland, is defined as V/H, where V and H represent the vertical and horizontal axes in cross section perpendicular to the elongate direction of undisturbed pillows. The axial ratios show a great spread of overlapping values for pillows from different sequences. However, alkaline olivine basaltic pillows tend to be more flattened than the olivine tholeiitic pillows. Another, and probably more discriminative feature between the two, is the difference in the maximum size of V and H of a pillow body. The limit for V and H for alkaline olivine basalt pillows is significantly lower than that of the olivine tholeiite pillows. A lower viscosity for alkaline olivine basalt than for olivine tholeiite probably accounts for the differences.  相似文献   

12.
Summary The relationship between the phonon conductivity at room temperature (K N ) and the seismic parameter () for silicate minerals is suggested. The considerations are based on the Debye model of thermal energy transport phenomena in solids and on the seismic equation of state for silicates and oxides given byAnderson (1967). The semiempirical relationship is the formK N = 0.430.82 where is in km2/s2 andK N in mcal/cm s K, and the empirical relationship isK N =(0.528±0.006) –(8.18±2.11). The laboratory data on thermal and elastic properties for several silicates were taken fromHorai andSimmons (1970).  相似文献   

13.
JGR(Journal of Geophysical Research:Solid Earth)于2012年10月12日,发表了题为"Multi-technique equation of state for Fe2SiO4melt and the density of Fe-bearing silicate melts from 0to 161GPa"的文章指出,地球早期地幔的冷凝结晶可能始于核幔边界或下地幔。地球形成初期,地幔可能是一个整体熔融或局部熔融的巨大岩浆洋,其深度直达核幔边界。尽管目前地幔的物质大多都是固  相似文献   

14.
The homologues temperature of a crystalline material is defined as T/T_m, where T is temperature and T_m is the melting(solidus) temperature in Kelvin. It has been widely used to compare the creep strength of crystalline materials. The melting temperature of olivine system,(Mg,Fe)_2SiO_4, decreases with increasing iron content and water content, and increases with confining pressure. At high pressure, phase transition will lead to a sharp change in the melting curve of olivine. After calibrating previous melting experiments on fayalite(Fe_2SiO_4), the triple point of fayalite-Fe_2SiO_4 spinel-liquid is determined to be at 6.4 GPa and 1793 K. Using the generalized means, the solidus and liquidus of dry olivine are described as a function of iron content and pressure up to 6.4 GPa. The change of T/T_m of olivine with depth allows us to compare the strength of the upper mantle with different thermal states and olivine composition. The transition from semi-brittle to ductile deformation in the upper mantle occurs at a depth where T/T_m of olivine equals 0.5. The lithospheric mantle beneath cratons shows much smaller T/T_m of olivine than orogens and extensional basins until the lithosphere-asthenosphere boundary where T/T_m 0.66, suggesting a stronger lithosphere beneath cratons. In addition, T/T_m is used to analyze deformation experiments on olivine. The results indicate that the effect of water on fabric transitions in olivine is closely related with pressure. The hydrogen-weakening effect and its relationship with T/T_m of olivine need further investigation. Below 6.4 GPa(200 km), T/T_m of olivine controls the transition of dislocation glide from [100] slip to [001] slip. Under the strain rate of 10~(-12)–10~(-15) s~(-1) and low stress in the upper mantle, the [100](010) slip system(A-type fabric) becomes dominant when T/T_m 0.55–0.60. When T/T_m 0.55–0.60, [001] slip is easier and low T/T_m favors the operation of [001](100) slip system(C-type fabric). This is consistent with the widely observed A-type olivine fabric in naturally deformed peridotites, and the C-type olivine fabric in peridotites that experienced deep subduction in ultrahigh-pressure metamorphic terranes. However, the B-type fabric will develop under high stress and relatively low T/T_m. Therefore, the homologues temperature of olivine established a bridge to extrapolate deformation experiments to rheology of the upper mantle. Seismic anisotropy of the upper mantle beneath cratons should be simulated using a four-layer model with the relic A-type fabric in the upper lithospheric mantle, the B-type fabric in the middle layer, the newly formed A- or B-type fabric near the lithosphere-asthenosphere boundary, and the asthenosphere dominated by diffusion creep below the Lehmann discontinuity. Knowledge about transition mechanisms of olivine fabrics is critical for tracing the water distribution and mantle flow from seismic anisotropy.  相似文献   

15.
Clinopyroxene-silicate liquid partition coefficients for U and Th have been determined by particle track radiography from 1 atm crystallization experiments at controlledfO2. Two natural basaltic and one synthetic composition were studied atfO2 values from the NiNiO oxygen buffer to 1 log unit more oxidizing than FeFeO (IW+ 1). Over the range offO2 values and compositions studied,DUcpx/liq = 0.0034–0.015,DThcpx/liq = 0.008–0.036, andDThDU= 3.4–1.1. With decreasingfO2,DThDU can decrease by up to a factor of 3 for a given composition, primarily from an increase inDUcpx/liq, which we interpret as resulting from an increase in the proportion of tetravalent U in the system with decreasingfO2. This demonstrates that crystal-liquid UTh fractionation isfO2 dependent and that U in terrestrial magmas is not entirely tetravalent.DThcpx/liq appears to decrease in the two basalts at the lowestfO2, possibly as a result of changes in composition withfO2.

Our data show the sense of UTh fractionation by clinopyroxene-liquid partitioning is consistent with previous experimental determinations, in thatDThcpxDUcpx> 1 in all cases. This indicates that, during partial melting, the liquid will have aTh/U ratio less than the clinopyroxene in the source. The observed238U230Th disequilibrium in MORB requires that the partial melt should have aTh/U ratio greater than the bulk source, and, therefore, cannot result from clinopyroxene-liquid partitioning. Further, the magnitudes of the measured partition coefficients are too small to generate significant UTh fractionation in either direction. Assuming that clinopyroxene contains the bulk of the U and Th in MORB source, our results indicate that238U230Th disequilibrium in MORB may not be caused by partial melting at all.  相似文献   


16.
Some of the factors which control the solubility of ferrous iron and olivine in basaltic liquids have been determined from experiments conducted in equilibrium with metallic iron at temperatures of 1150° to 1306°C and oxygen fugacities of log?O2 = ?12.5to?14.5atm. In order to insure that the samples were in equilibrium with metallic iron and the gas atmosphere during the experiment, the samples were continuously mixed (60 r.p.m.) for at least 90 hours with a metallic iron mixing rod.The solubility of ferrous iron and olivine in basaltic liquid was found to decrease as the alkali and alumina content of the liquid increased. The activity coefficient of ferrous iron in the liquid was calculated from the oxygen fugacity and mole fraction of ferrous oxide in the liquid and varied from 0.79 to 2.00. The ferrous iron/magnesium ratio in the liquid relative to olivine was insensitive to the changing alkali content as measured by the constant distribution coefficient of0.30 ± 0.03 (SD). The calculated silica activity of these liquids varied from 0.11 to 0.50 and the distribution coefficient of ferrous iron-manganese between olivine and liquid was found to be1.4 ± 0.2 (SD). It was found that the major element content of olivine does not exert a strong structural control on the manganese content of olivine.The magnitude of depletion in the liquid of the metal oxides by the crystallization of olivine is in the order Ni > Mg > Co > Fe > Mn, which reflects the relative octahedral site preference of these elements. The composition of the crystallizing olivine reflects the ratio of the above elements in the liquid and is relatively insensitive to temperature, variation of the other elements in the liquid or to the changing magnesium/ferrous iron ratio in the olivine.  相似文献   

17.
通过分析镁橄榄石相变长大率方程的指前系数和亥姆霍兹活化能在不同含水条件下的实验拟合值,本文研究了橄榄石相变长大率与水含量的关系. 结果表明含水量较高的镁橄榄石在相变过程中对应较低的亥姆霍兹活化能,而长大率方程中的指前系数几乎是一个与含水量无关的常数.这个常数的数值在晶界控制长大的晶体相变动力学经典理论中相应于晶界是一层或几层分子的厚度.亥姆霍兹活化能随水含量的增加而降低的结果既和利用淬火实验得到的结论相一致,也和流变学实验研究的结论相一致.应用以上结果,我们估算了含水量对亚稳态橄榄石存在深度的影响.镁橄榄石的亚稳性受到水的影响很大,具体表现是橄榄石到其高压相瓦士利石的动力学相变界面从下压了几十公里到一直下压到660 km间断面附近.地幔橄榄石与镁橄榄石的亚稳性存在差异.名义上干的地幔橄榄石实验结果显示出地幔橄榄石具有更小的亚稳性,相变完成10%的深度比镁橄榄石浅了20 km左右.以上结果仍然支持在冷的俯冲带中存在可探测的亚稳态橄榄石楔但很难达到660 km间断面深度的结论.  相似文献   

18.
The distribution of Triclosan within the Hudson River Estuary can be explained by a balance among the overall effluent inputs from municipal sewage treatment facilities, dilution of Triclosan concentrations in the water column with freshwater and seawater inputs, removal of Triclosan from the water column by adsorption to particles, and loss to photodegradation. This study shows that an average water column concentration of 3 ± 2 ng/l (in the lower Hudson River Estuary) is consistent with an estimate for dilution of average wastewater concentrations with seawater and calculated rates of adsorption of Triclosan to particles. An average Triclosan sediment concentration of 26 ± 11 ng/g would be in equilibrium with the overlying water column if Triclosan has a particle-to-water partitioning coefficient of kd  104, consistent with laboratory estimates.  相似文献   

19.
20.
Large olivine samples were hot-pressed synthesized for shock wave experiments. The shock wave experiments were carried out at pressure range between 11 and 42 GPa. Shock data on olivine sample yielded a linear relationship between shock wave velocity D and particle velocity u described by D=3.56(?0.13)+2.57(?0.12)u. The shock temperature is determined by an energy relationship which is approximately 790°C at pressure 28 GPa. Due to low temperature and short experimental duration, we suggest that no phase change occurred in our sample below 30 GPa and olivine persisted well beyond its equilibrium boundary in metastable phase. The densities of metastable olivine are in agreement with the results of static compression. At the depth shallower than 410 km, the densities of metastable olivine are higher than those of the PREM model, facilitating cold slab to sink into the mantle transition zone. However, in entire mantle transition zone, the shock densities are lower than those of the PREM model, hampering cold slab to flow across the "660 km" phase boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号