首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metallic contaminants associated with sediments showed various behaviours depending on physicochemical conditions. A contaminated sediment core from a harbour in the Bay of Seine was sampled to derive information about metal solubilization from anoxic sediment. In these anaerobic surroundings, physicochemical processes depended on the organic matter cycle, on vertical variation of redox conditions and on precipitation conditions of iron and manganese. In the studied core, anoxic conditions were developed at -15 cm depth. A three-step sequential extraction procedure, modified from the BCR method (now the SM&T), was applied to the anoxic sediment in order to evaluate the potential mobility of fixed metals. Zinc was the most labile metal, recovered in the first extraction stages, and was associated with the non-residual fraction of sediment. Lead was the least labile metal, with up to 70% associated with the residual fraction of the sediment. Copper was associated with organic matter, and its mobility was controlled by the concentration and degradation of the organic fraction. Discharge of organic-rich dredged sediments at sea results in degradation of contained organic matter and may affect the environmental impact of these metals significantly. These results therefore help to improve the waste management of such contaminated sediments.  相似文献   

2.
A nomogram is developed to show that pH, redox potentials (EhNHE) and measures of dissolved sulfides (H2S + HS + S2−)(total free S2−) can be used to classify organic enrichment impacts in marine sediments. The biogeochemical cycle of sulfur in marine sediments is described to show that changes in macrobenthic infauna community structure associated with high levels of organic matter supply result from stress due to oxygen deficiency (hypoxia and anoxia) and toxic effects of S2−. The changes reflect enhancement of microbial sulfate reduction under conditions of high organic matter sedimentation and the progressive formation of hypoxic–anoxic conditions measured by decreased EhNHE and increased concentrations of S2−. The nomogram provides a basis for classification of the oxic status of marine sediments based on changes in inter-related biological and biogeochemical variables along an organic enrichment gradient.  相似文献   

3.
郑利  徐小清 《湖泊科学》2003,15(3):245-251
提要沉积物中酸挥发性硫化物(AVS)是硫化物的生成、氧化和扩散等综合作用的反映,有机物的供给、硫酸盐的还原等因素都能影响其分布特征。本文对武汉东湖三个污染程度不同站点的AVS深度分布特征进行了研究,结果表明,AVS含量在一定深度沉积物中具有最大值,东湖沉积物中AVS的深度分布具有两种不同的模式,Ⅰ站和Ⅱ站AVS浓度峰在5cm左右的表层沉积物中,且AVS还原层深度较狭窄,而Ⅲ站AVS浓度峰处于10-20cm深度范围,沉积物中有机质负荷的差异是导致这种分布特征的重要原因。沉积物中有机质含量对AVS的深度分布具有重要影响,高有机质负荷导致AVS浓度峰向表层迁移,且AVS还原层分布于较狭窄的深度范围,对方涛等对流-扩散模型的应用表明,该模型在高有机质负荷沉积物中(Ⅰ、Ⅱ站)AVS深度分布的应用较为理想,然而低有机质负荷沉积物中(Ⅲ站)不能准确反映AVS的深度分布特征,说明其应用范围具有一定的局限性。  相似文献   

4.
Sedimentation and sediment metabolism was measured at eight active milkfish fish pens and at one abandoned site in the Bolinao area, Philippines in order to examine the interactions between sediment and water in this shallow coastal zone. The rates of sedimentation were high in the area due to siltation, but the activities in the fish pens also contributed to enhanced sedimentation as indicated by the difference between the abandoned and active sites. The sediment metabolism appeared to decrease with increasing rates of sedimentation indicating that the microbial activity reached a saturation level in the fish pen sediments. Anaerobic processes dominated the organic matter decomposition, and sulfate reduction rates are among the highest measured in fish farm sediments. The rates decreased with increasing organic loading despite high concentrations of sulfate (>10 mM) at all sites. Presence of methane bubbles in the sediments suggests that sulfate reduction and methanogenesis were coexisting. The sediment metabolism was significantly reduced at the abandoned site indicating that the stimulation of microbial activities is due to active fish production. The anaerobic activity remained high at the abandoned site indicating that the sediment biogeochemical conditions remain affected long time after fish production has ceased.  相似文献   

5.
A model framework is presented for simulating nitrogen and carbon cycling at the sediment–water interface, and predicting oxygen consumption by oxidation reactions inside the sediments. Based on conservation of mass and invoking simplifying assumptions, a coupled system of diffusive–reactive partial differential equations is formulated for two-layer conceptual model of aerobic–anaerobic sediments. Oxidation reactions are modeled as first-order rate processes and nitrate is assumed to be consumed entirely in the anoxic portion of the sediments. The sediments are delineated into a thin oxygenated surface layer whose thickness is equal to the oxygen penetration depth, and a lower, but much thicker anoxic layer. The sediments are separated from the overlying water column by a relatively thin boundary layer through which mass transfer is diffusion controlled. Transient solutions are derived using the method of Laplace transform and Green’s function, which relate pore-water concentrations of the constituents to their concentrations in the bulk water and to the flux of decomposable settling organic matter. Steady-state pore-water concentrations are also obtained including expressions for the extent of methane saturation zone and methane gas flux. A relationship relating the sediment oxygen demand (SOD) to bulk water oxygen is derived using the two-film concept, which in combination with the depth-integrated solutions forms the basis for predicting the extent of oxygen penetration in the sediment. Iterative procedure and simplification thereof are proposed to estimate the extent of methane saturation zone and thickness of the aerobic layer as functions of time. Sensitivity of steady-state solutions to key parameters illustrates sediment processes interactions and synergistic effects. Simulations indicate that for a relatively thin diffusive boundary layer, d, oxygen uptake is limited by biochemical processes inside the sediments, whereas for a thick boundary layer oxygen transfer through the diffusive boundary layer is limiting. The results show an almost linear relationship between steady-state sediment oxygen demand and bulk water oxygen. For small d methane and nitrogen fluxes are sediment controlled, whereas for large d they are controlled by diffusional transfer through the boundary layer. It is shown that the two-layer model solution converges to the one-layer model (anaerobic layer) solution as the thickness of the oxygenated layer approaches zero, and that the transient solutions approach asymptotically their corresponding steady-state solutions.  相似文献   

6.
We have constructed a high-resolution Bayesian sedimentation model spanning the last 5500 years based on 25 AMS radiocarbon dated sediments of bulk organic matter (OM) sampled from the NW Black Sea anoxic waters of the continental slope. The corrections for the 14C ages due to marine reservoir effect (MRE) and detritus organic carbon are correlated with exogenous information such as 210Pb dating, metallurgy pollution and human-induced soil erosion, highlighting the Danube influence on the geochemistry and chronology of the NW Black Sea sediments through the input of terrigenous organic matter. The results show excellent agreement with some of the previous studies, supporting a total age offset for the bulk OM of 60 years as MRE and 580 years as detritus organic carbon influence. The revisited chronology pinpoints the first and second invasion of the coccolithophores Emiliania huxleyi at 2524 ± 87 and 625 ± 65 years cal. BP. Sedimentation rate shows an increase of about three times with the starting of the late Medieval, which correspond to the highest observed sediment discharge of the Danube as are considered the last 500-300 years. This type of high-resolution sedimentation model is an important step for constructing the carbon budget in bottom waters of variable oxygen concentration.  相似文献   

7.
8.
Summary The influence of suspended matter from Argen and Schussen, two affluents to the Lake of Constance, on the mouth areas has been determined by means of sediment samples. The results of the granulometric analysis prove an evident primary division of the ground, which is disturbed by allochthone materials. With increasing amount of coarse-grained material the water content of the sediments is decreasing. Quartz, carbonates and feldspars predominate close to the mouth. With progressive distance from the mouth they are mixed and replaced more and more by clay minerals, coming from affluents of the vicinity too. According to these changes an increase of autochthone components (calcite) takes place. The results of the chemical analysis show a large-faced pollution of the sediments by organic matter. In contrast to carbon and nitrogen autochthone organic phosphorus is mineralized until the analytical limit. Therefore the C/P-relation oscillates with the station where the sediment sample has been taken, but the C/N-quotient is nearly constant. As a proof for pollution of the sediments by organic matter the determination of total-ammonium is adapted. A high concentration gradient exists between interstitial water and lake water. An exchange takes place mainly at areas with polluted sediments, because the density of the Tubificidae population here is high too.   相似文献   

9.
A whole-core injection method was used to determine depth-related rates of microbial mineralization of (14)C-phenanthrene added to both contaminated and clean marine sediments of Puget Sound, WA. For 26-day incubations under micro-aerobic conditions, conversions of (14)C-phenanthrene to (14)CO(2) in heavily PAH-contaminated sediments from two sites in Eagle Harbor were much higher (up to 30%) than those in clean sediments from nearby Blakely Harbor (<3%). The averaged (14)C-phenanthrene degradation rates in the surface sediment horizons (0-3 cm) were more rapid (2-3 times) than in the deeper sediment horizons examined (>6 cm), especially in the most PAH polluted EH9 site. Differences in mineralization were associated with properties of the sediments as a function of sediment depth, including grain-size distribution, PAH concentration, total organic matter and total bacterial abundance. When strictly anaerobic incubations (in N(2)/H(2)/CO(2) atmosphere) were used, the phenanthrene biodegradation rates at all sediment depths were two times slower than under micro-aerobic conditions, with methanogenesis observed after 24 days. The main rate-limiting factor for phenanthrene degradation under anaerobic conditions appeared to be the availability of suitable electron acceptors. Addition of calcium sulfate enhanced the first order rate coefficient (k(1) increased from 0.003 to 0.006 day(-1)), whereas addition of soluble nitrate, even at very low concentration (<0.5 mM), inhibited mineralization. Long-term storage of heavily polluted Eagle Harbor sediment as intact cores under micro-aerobic conditions also appeared to enhance anaerobic biodegradation rates (k(1) up to 0.11 day(-1)).  相似文献   

10.
氧化还原条件对红枫湖沉积物磷释放影响的微尺度分析   总被引:7,自引:0,他引:7  
选取贵州红枫湖为研究对象,在实验室条件下模拟了自然、好氧和厌氧条件下沉积物内源磷的释放过程,联合应用微电极技术和沉积物磷形态分析对沉积物—水界面开展了微尺度观测与研究.结果表明,厌氧条件下红枫湖沉积物总磷含量显著降低,且主要是NaOH提取态磷(NaOH-P)和残渣态磷(rest-P)含量降低所致,厌氧条件下沉积物孔隙水中磷酸盐浓度明显升高,而好氧条件下沉积物孔隙水磷酸盐浓度显著降低,反映厌氧条件显著促进了红枫湖沉积物磷释放.厌氧条件下沉积物内部溶解氧浓度下降、硫还原活动增强可能是导致NaOH-P释放的主要原因.O_2浓度的降低加速了沉积物还原作用并产生大量H2S,进而与二价铁离子形成硫化亚铁沉淀,最终导致NaOH-P(Fe-P)释放到孔隙水中.好氧条件向厌氧条件的转换可通过改变沉积物内部pH值分布和微生物活动促使rest-P释放:厌氧条件下,厌氧微生物不仅可以消耗硫酸根产生H_2S,导致pH值降低,还可消耗有机质,将有机磷转变为无机磷.上述研究结果表明,沉积物—水界面氧化还原环境可影响沉积物氧渗透深度、pH值分布、微生物活动、硫循环以及有机质降解过程,进而控制沉积物磷的形态转化与释放.联合应用微电极技术和沉积物磷形态分析对湖泊沉积物—水界面开展微尺度观测研究是揭示沉积物内源磷释放机制与控制因素的有效途径.  相似文献   

11.
12.
To understand the origin of the methane distributions in sediments of Eckernförde Bay, three sites were sampled in May 1994 for determination of methane, sulfate and chloride concentrations in the sediment porewaters. In much of the Bay, bubbles of biogenic methane gas within the sediments lead to widespread ‘acoustic turbidity’ seen in acoustic surveys, masking the sedimentary structure below the gassy horizon. Acoustic windows, where the gas does not appear to be present, occur in several locations in the Bay, often surrounded by acoustically turbid sediments. Pockmarks, shallow depressions in the sediment, are also found in Bay sediments and may show acoustic turbidity at even shallower depths below the interface than surrounding sediments. One site of each type was sampled in this study. The site probably representative of much of the bay below 20 m water depth, revealed methane saturated conditions by about 75 cm depth below the interface, confirming inferences from acoustic scattering data that free gas was present in the sediment. Above this, the methane concentration profile was concave-upward, indicative of methane oxidation in the overlying, sulfate-reducing sediments. These porewaters showed a slightly decreasing chlorinity with depth. At an acoustic window site, methane concentrations rose to a maximum at about 125 cm depth, but did not reach saturation. Below this depth they decreased in a concave-down pattern. Chloride concentrations decreased markedly with depth, indicative of vertical freshwater flow from below. The third site was a pockmark exhibiting very shallow acoustic turbidity at about 25 cm depth. Here methane concentrations rose to exceed saturation within 25 cm depth below the interface and the porewaters became almost fresh by 1.5 m depth, indicative of a stronger flow of freshwater from below. These groundwater flows have competing effects on the methane inventory. They help exclude sulfate from the sediment, allowing the earlier/shallower onset of methanogenesis, but they also aid loss of methane through advection. A diagenetic model that couples the biogeochemistry of sulfate and methane is used to explain the presence or absence of methane gas in these sediments in relation to the flow rate of fresh groundwater from below. Model results indicate that acoustic windows within otherwise acoustically turbid sediments of the bay are likely due to relatively higher rates of vertical advection of fresh groundwater. The gassy pockmark, however, with an even higher vertical advection rate, seems to require the input of additional reactive organic carbon to explain its vertical methane distribution.  相似文献   

13.
A laboratory incubation experiment was conducted using replicate cores collected from a muddy-sand sediment facies offshore Sydney, Australia to determine what components and processes would be affected by the addition of sewage organic matter. Sewage effluent has a solid phase composition of 40% carbon (35% organic carbon), 5% nitrogen, 1% phosphorus and 5% silicate. The molecular C:N:P ratio is 92:10:1, compared to the Redfield ratio of 106:16:1 in marine phytoplankton. Sediment cores were incubated at in situ temperature in a darkened room for periods up to 95 days. Sewage organic matter was added to the cores at three different loads equivalent to 0 (T0), 65 (T1) and 130 (T2) g m−2 of sediment. Following the addition of sewage organic matter, fluxes of oxygen (into the sediments), ammonia and phosphate (from the sediments) increased, reflecting an enhanced organic carbon supply to the sediments. Oxygen penetrated to a depth of 6 mm in the ambient cores, but the sediment oxygen content was severely depleted following the addition of the sewage-derived organic matter. Sediment porewater data, together with nutrient flux data indicate that oxygen reduction, nitrate reduction and sulphate reduction occurs within these sediments. Following the addition of sewage organic matter, increases in total nitrogen, total phosphate and total organic carbon were measured to depths of 5 cm in the sediments, suggesting that bioturbation influences nutrient and organic carbon distributions. Additionally, irrigation of the surficial sediments may play an important role in the metabolism of organic matter. These results indicate that oxygen penetration, oxygen fluxes, nitrate concentrations within porewaters, ammonia flux rates, and solid phase concentrations of total organic carbon and nutrients may be useful indicators of sediments affected by high rates of organic matter deposition onto Sydney's offshore sediments. The EPA has recently predicted maximum deposition rates of sewage particulate matter to be approximately 1 g m−2 day−1. Because of the similarities in CNP ratios of sewage organic matter and marine organic matter, the effects of sewage organic matter and marine organic matter inputs to coastal sediments may not be easily distinguishable.  相似文献   

14.
有机质对城市污染河道沉积物铵态氮吸附-解吸的影响   总被引:2,自引:0,他引:2  
采集污染程度不同的城市河道沉积物(通吕运河、濠河和通甲河),在分析H2O2对沉积物有机质和铵态氮影响的基础上,分析沉积物在去除有机质前后铵态氮释放动力学和吸附热力学过程,研究城市污染河道沉积物有机质对铵态氮吸附-解吸的影响.结果表明:单位体积H2O2对有机质去除率随H2O2使用量增多而降低;去除有机质后,沉积物铵态氮含量显著增加,通吕运河、濠河和通甲河铵态氮最大含量分别是有机质去除前的4.16、3.55和2.85倍;沉积物对铵态氮的饱和吸附量随有机质含量减少而下降;沉积物铵态氮释放过程均表现为先快速释放,后减缓至平衡过程;去除有机质后,随着有机质含量的减少,沉积物铵态氮的最大释放量呈增大趋势;沉积物有机质和铵态氮含量是影响沉积物铵态氮释放的主要因素.  相似文献   

15.
The significance of organic matter origin for carbon oxidation via sulfate and iron reduction in the sediments of three acid mine lakes is analyzed. Carbon reactivity was estimated by fitting first‐order expressions to measured rates. Carbon oxidation rates via sulfate and ferric iron reduction ranged from 3.4 to 4.7 mmol m–2 d–1 and resembled those reported for freshwater lakes. The estimated reaction constants increased from about 10–3 a–1 at the interface to the former mine grounds to 0.05 to 0.2 a–1 at the current sediment‐water interface. Aquatic organic matter accounted for an estimated 45...75% of total carbon oxidation rates while it amounted only to about 5...14% of the total organic matter that had been deposited. The results of this study suggest that in highly acidic mine lakes the reactivity of the deposited organic matter can rapidly increase after flooding, enhancing carbon oxidation and internal neutralization rates in the sediments.  相似文献   

16.
滇池表层沉积物铵态氮吸附特征   总被引:1,自引:0,他引:1  
为研究滇池内源污染特征,2013年利用GIS软件针对滇池全湖布设36个采样点,采集表层沉积物,研究滇池表层沉积物铵态氮(NH_4+-N)吸附特征,同时分析沉积物的理化性质对NH_4+-N吸附特性的影响.结果表明:滇池表层沉积物对NH_4+-N的吸附量在前2 h之内呈增长趋势,吸附速率较大,之后沉积物对NH_4+-N的吸附量不随时间变化而变化,基本达到平衡,最大吸附速率均发生在0~5 min内;不同区域表层沉积物NH_4+-N最大吸附速率平均值表现为:外海南部湖心区外海北部草海,最大吸附量平均值表现为:湖心区外海南部外海北部草海,吸附效率平均值表现为:外海北部草海湖心区外海南部;沉积物对NH4+-N的吸附量与NH_4+-N的初始浓度大致呈线性关系,并且低浓度下表现出很好的吸附/解吸特征;滇池表层沉积物NH_4+-N的吸附解吸平衡浓度(ENC0)高于上覆水中NH_4+-N浓度,表明沉积物中NH_4+-N有向上覆水中释放的风险,沉积物在很长一段时间内起到水体污染"源"的作用;ENC0与沉积物中总氮、NH_4+-N含量呈显著正相关,本底吸附量和有机质总量呈显著负相关,沉积物吸附NH_4+-N主要受有机质的影响.  相似文献   

17.
18.
P, Fe, Mn, and S species were analyzed in water samples from the sediment-water interface collected at four seasonally different times during the course of a year at two sampling sites in the southern basin of Lake Lugano (Lago di Lugano). The results reveal the strong influence of the biogeochemical processes in the sediment on the chemical composition of the lake water above. Consumption of oxygen and nitrate under oxic to microoxic conditions in the water column as well as sequential release of reduced manganese and iron under anoxic conditions was observed as a direct or indirect consequence of microbially mediated degradation of organic matter. The seasonal pattern observed for the release and the retainment of dissolved reduced iron and manganese correlates well with the one for dissolved phosphate. Iron, manganese and phosphorus cycling are coupled tightly in these sediments. Both sediment types act as sinks for hydrogen sulfide and sulfate. An inner-sedimentary sulfur cycle is proposed to couple iron, manganese and phosphorus cycling with the degradation of organic matter. Nutrient cycling at the sediment-water interface might thus be driven by a microbially regulated electron pumping mechanism. The results contribute to a better understanding of the role of sediment processes in the lake's internal phosphorus cycle and its seasonal dynamics.  相似文献   

19.
采用室内培养的方法,以富营养化湖泊太湖为例,研究了沉积物有机质矿化过程中碳、氮、磷的迁移特征.结果表明,在沉积物中的有机质矿化过程中,碳以溶解性无机碳释放至水中,同时以CH4和CO2形式释放至大气中,培养结束时,CH4和CO2累积排放含量分别为1492.21和498.96 mg/g(dw),其中CH4占气态碳的89.16%(以C质量计);此外,大量的氮、磷营养盐释放至上覆水体,水中总氮、总磷和铵态氮的最高浓度分别是初始浓度的62.16、28.16和139.45倍,而硝态氮浓度在整个培养过程中逐渐下降,培养末期浓度是初期的0.21倍;厌氧条件下,沉积物有机质的矿化,不仅可以生成大量的CH4、CO2气体,还能够促使沉积物中铵态氮和磷的释放;而沉积物有机质矿化释放的碳、氮、磷营养元素又能加剧湖泊富营养化程度,促进湖泊水体的初级生产力,从而增加湖泊沉积物有机质输入.这样的循环方式可能是湖泊富营养化自维持的重要机制之一.  相似文献   

20.
Recent sediments in lakes and gulfs are a sensi-tive recorder of the information about environmentalchanges in the catchment areas during recent geologi-cal history. Precise determination of the ages of sedi-ments is the key to deciphering the environmental re-cords. The 210Pb dating technique and the markertechnique based on fallout radionuclide 137Cs havefound wide applications in sedimentation rate on atime scale of several tens to one hundred years, as wellas the varve chron…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号