首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although the sources of the ore metals remain problematic in most Iron-oxide Cu and Au (IOCG) deposits, external sulphur, either from surficial basinal brines and seawater (e.g., Central Andean and Carajás deposits) or from formation water and metamorphic fluids (e.g., the Cloncurry deposits), or introduced by magmatic assimilation of metasedimentary units (e.g., Phalaborwa), has been documented in many major Cu-rich IOCG centres. However, only the evaporite-sourced fluids yield diagnostically high δ34S values (i.e., > 10‰), while sedimentary formation water or metamorphic fluids commonly have lower values and are less clearly distinguishable from magmatic fluids, as in the Cloncurry deposits in which the involvement of external fluids is revealed by other evidence, such as noble gas isotopes. On the basis of these arguments, IOCG deposits could be redefined as a clan of Cu (AuAgU) deposits containing abundant hypogene iron oxide (magnetite and/or hematite), in which externally-derived sulphur probably plays an important role for the Cu (AuAgU) mineralization. In this definition, all “Kiruna-type” magnetite deposits, hydrothermal iron deposits (e.g., skarn Fe deposits) and magnetite-rich porphyry CuAu and skarn CuAu deposits are excluded. Two subtypes of IOCG deposits are recognized on the basis of the predominant iron oxide directly associated with the Cu (Au) mineralization, whether magnetite or hematite. Neither magnetite- nor hematite-rich IOCG deposits show any preference for specific host rocks, and both range in age from Neoarchean to Pleistocene, within a broad tectonic environment.  相似文献   

2.
The AuPbZn low-sulfidation epithermal ore deposits of Troita, Trestia, and Magura (Apuseni Mountains, Romania) are spatially related to the Bolcana Cu-porphyry. In an attempt to demonstrate the connection between these mineralizations, a geometric study was made based on structural measurements and GOCAD© geomodeller 3D representation of deposits. This study indicates that a specific spatial distribution of the different Au and PbZn veins of the epithermal deposits occurs around the Cu-porphyry, which cannot result from telescoped systems. To cite this article: O. Cardon et al., C. R. Geoscience 337 (2005).  相似文献   

3.
SmNd, RbSr and ThUPb zircon ages for four syn-tectonic and two post-tectonic granitoids from the Axum area of northern Ethiopia are determined. Two of the syn-tectonic granitoids (the Azeho and Deset) are intrusions into structurally southeast facing, predominantly tholeiitic arc metavolcanics and associated metasediments situated west of the central steep zone in the area. The other two syn-tectonic granitoids (the Chila and Rama) are intrusions into structurally northwest facing metasediments and calc-alkaline metavolcanics at the eastern part of the steep zone. One of the post-tectonic granites (the Sibta Granite) occurs west of the central steep zone and the second (the Shire Granite) cuts the central steep zone. Preliminary geochemical data of all the granitoids show that they are enriched in large ion lithophile elements, depleted in high field strength elements and have 1-type characteristics, similar to calc-alkaline granitoids in subduction-related volcanic arc setting. The geochronological data indicate three discrete intrusive events: ∼800 Ma to the east of the central steep zone, ∼750 Ma to the west and a post-tectonic intrusion at around 550 Ma. The ∼-750 and ∼800 Ma ages of the intrusives are interpreted as minimum ages of arc magmatism in the respective blocks across the central steep zone, and the ∼550 Ma age of the post-tectonic granites records the final magmatic event in the region. The contrast of age across the central steep zone emphasises that this zone is a major structural element that might have played a significant role during the accretion of structurally and lithologically contrasting tectonostratigraphical blocks.  相似文献   

4.
海拉尔盆地乌南凹陷南一段时期断裂和火山作用强烈, 导致岩石碎屑组成具有多样性。碎屑成分有火山碎屑、变质岩碎屑和其他剥蚀碎屑。碎屑多样性使本区岩性及其分区具有鲜明的特色。岩性丰度、矿物组合、阴极发光及其重矿物组合研究显示, 区内存在4个单岩性区和2个混合区。单岩性区是变质岩碎屑岩区、火山碎屑沉积岩区、熔结火山碎屑岩区和火山碎屑岩区。根据岩石中各碎屑组成的体积分数可将混合区分为正常沉积碎屑占优势的混合区和火山碎屑占优势的混合区。各单岩性区与构造单元相符合, 变质岩碎屑岩区对应乌西断阶带, 火山碎屑沉积岩区和熔结火山碎屑岩区对应巴彦塔拉构造带, 火山碎屑岩区为乌东弧形构造带的一部分。地球化学数据显示本区源岩岩浆属于壳源花岗质岩浆, 同时受到明显的幔源岩浆影响, 重稀土较富集。乌西断阶带具有高的稀土总量和不明显的Eu负异常, 变质源岩岩浆壳幔混染程度高;巴彦塔拉构造带具有低的稀土总量和明显的Eu负异常, 源岩岩浆壳幔混染程度中等;乌东弧形构造带具有高的稀土总量和明显的Eu负异常, 源岩岩浆壳幔混染程度低。Dickinson图解显示, 乌东弧形构造带源区没有深切割, 而巴彦塔拉构造带源区经过了深切割。德尔布干断裂的正滑移导致嵯岗构造片麻岩发育和嵯岗隆起相对隆升, 为乌西断阶带提供变质碎屑沉积物, 形成扇三角洲沉积体系;同时断裂又为幔源岩浆的上升提供了通道。巴彦塔拉断裂的伸展走滑使得幔源岩浆上升发生壳幔混染并发生火山喷发, 在巴彦塔拉构造带发育熔结火山碎屑岩-火山碎屑沉积岩, 塑造了火山碎屑扇三角洲沉积体系。巴彦山隆起区壳幔混染程度低, 但幔源岩浆的底垫作用导致壳源岩浆的强结晶分异作用、火山活动和地表隆升, 在乌东弧形构造带发育火山碎屑岩, 塑造了火山碎屑三角洲沉积体系。  相似文献   

5.
The Zapug–Duobuza magmatic arc (ZDMA), located along the southern edge of the south Qiangtang terrane in western Tibet, extends east–west for ~ 400 km. Small scattered granite and porphyry intrusions crop out in the ZDMA, but a large amount of granite may be buried by Late Cretaceous to Paleogene thrusting. Two stages of magmatism have been identified, at 170–150 Ma and 130–110 Ma. The widely distributed Middle–Late Jurassic granite intrusions in the ZDMA exhibit SrNd isotopic characteristics similar to those of ore-bearing porphyries in the Duolong giant CuAu deposit, and their εHf(t) values mostly overlap those of other porphyry CuMo deposits in the ZDMA and the Gangdese zone. The SrNdHf isotopic geochemistry suggests variable contributions of mantle and Qiangtang crustal sources, and indicates the presence of two new ore districts with potentials for CuAu, Fe, and PbZn ores, located in the Jiacuo–Liqunshan and Larelaxin–Caima areas. Except for the Duolong ore-forming porphyries, which show significant contributions of mantle components intruded into an accretionary mélange setting, the Early Cretaceous granites in other areas of the belt are of mostly crustal origin, from sources in Qiangtang felsic basement and Permo-Carboniferous strata, indicating the weak ore-forming potential of skarn-type Fe and PbZn deposits. The ephemeral but deep Bangong Co–Nujiang ocean in the Early Jurassic evolved into a shallow compressional marine basin in the Middle–Late Jurassic, possibly transitioning to northward flat subduction of oceanic crust at this time. The subducted slab broke off in the Early Cretaceous, initiating a peak in arc magmatism and metallogenesis at 125–110 Ma.  相似文献   

6.
桐柏—大别山构造混杂岩带对比研究   总被引:1,自引:0,他引:1  
金维浚  宋鸿林 《现代地质》1996,10(3):372-381
桐柏—大别山造山带地球化学、变质作用以及野外地质调查研究表明:七角山岩组和浒湾岩组是具有相似构造环境、形成于晋宁期的构造混杂岩。高压榴辉(闪)岩原岩是形成多种构造环境的变玄武岩,桐柏固庙、信阳柳林高压榴闪岩的发现说明区内高压变质带沿北坡向西延伸。定远岩组、随县岩群、耀岭河岩群反映了板块拼合后所形成的陆内裂谷、造山后火山弧环境  相似文献   

7.
The giant Yulong porphyry CuMo deposit was formed in postsubduction setting in eastern Tibet. Origin of the ore-related Yulong intrusion remains a matter of debate. This study presents new whole-rock major and trace element geochemistry, in-situ apatite SrNd and zircon HfO isotopes, and mineralogical chemistry of the Yulong intrusion. Least-altered samples from the Yulong intrusion have high SiO2 (66.3–69.5 wt%) and Al2O3 (14.9–15.5 wt%) contents, high La/Yb (36.4–68.0) and Sr/Y (46.0–76.3) ratios, and low MgO (0.63–1.24 wt%) and Cr (<30 ppm) contents, similar to adakitic rocks deriving from thick juvenile lower crust. They are enriched in large ion lithophile elements (LILEs) and depletion in high field strength elements (HFSEs), and show listric REE patterns. In-situ apatite SrNd isotopes show limited variations ((87Sr/86Sr)i = 0.7060–0.7068, εNd(t) = −4.8–0.2), which plot between Paleo-Tethys ocean-related arc magmas and the ancient crust in eastern Tibet. Zircon grains from this study and published studies have mostly positive yet variable εHf(t) values (−20.6 to +12.2) and young Hf model ages that overlap those of the Paleo-Tethys ocean-related arc magmas. The above Sr-Nd-Hf isotopes, together with the elevated zircon δ18O values (6.4 to 9.3‰) and arc-like trace element patterns, collectively suggest that the Yulong intrusion may have originated from partial melting of juvenile lower arc crust related to the subduction of the Paleo-Tethys ocean, with incorporation of a small amount of ancient crustal materials.Two generations of amphibole were recognized at Yulong. Their compositions are used to calculate crystallization depths, magmatic oxidation states, and water contents. The caculated results show that the early-stage euhedral high-Al (5.87–8.51 wt%) amphibole phenocrysts may have crystallized in the underlying magma chamber (7.1–12.5 km in depth), whereas the late-stage xenomorphic low-Al (3.47–4.87 wt%) amphibole grains may have crystallized in the porphyritic stock (4.0–5.6 km). Magmatic water contents decrease from early- (3.5–4.6 wt%) to late-stage (2.8–3.5 wt%) amphibole, which is interpreted to indicate fluid exsolution from the magma chamber during emplacement of the Yulong intrusion. Caculated oxidation states increase from early- (ΔNNO = 0.6–1.5) to late-stage (ΔNNO = 1.9–2.3) amphibole. Plagioclase phenocrysts show periodic or reverse core-to-rim zonation of An contents (range up to 25 mol%), which are coupled by FeO contents, probably suggesting magma recharge events. Collectively, we propose that the magma chamber beneath Yulong was recharged by a less evolved magma, and was saturated in fluids to produce intensive alteration and mineralization. The relatively high oxidation states allow the metals to be enriched in the evolving magma, and to be deposited in the hydrothermal alteration stage.  相似文献   

8.
黄亮  王冬兵  王晓林  刘小春  丛峰  朱勋早  方雄 《地球科学》2021,46(11):3861-3879
滇西崇山变质杂岩带位于三江造山带"峰腰"的北段,带内构造挤压变质作用强烈,主体由一套中-深变质岩系(崇山岩群)和晚期花岗岩组成.其中崇山岩群历来被认为是元古代的结晶基底,但至今无精确的年龄依据,其形成时代和构造属性存在较大争议,严重制约了对区域构造演化的认识.对滇西漕涧地区崇山岩群中的岩石组分开展了碎屑锆石U-Pb年代学及岩石地球化学研究,结果显示副变质岩中的锆石均具明显的磨圆特征和较大的岩浆核,其中3件样品的最小一组碎屑锆石年龄分别为366~412 Ma(平均值为395 Ma)、435~508 Ma(平均值为473 Ma)和673~704 Ma(平均值为689 Ma),指示了其原始沉积时代应不早于395 Ma;岩石地球化学表明,副变质岩是一套活动大陆边缘或被动大陆边缘构造背景有关的大陆岛弧碎屑岩,变质基性岩和变质中性岩为同源异相,均具活动大陆边缘的弧火山岩特征.结合副变质岩和两类正变质岩的构造属性相同以及普遍具相互伴生关系的特点,该3类岩石应属同一套地层系统的不同物质组分,崇山岩群主体为一套成岩于晚古生代(236~395 Ma)和形成于陆缘弧环境的火山-沉积地层单元;并与南东侧澜沧增...  相似文献   

9.
GEOCHEMISTRY OF VOLCANIC ROCKS IN WESTERN PART OF JINSHAJIANG STRUCTURAL BELT AND ITS TECTONIC SETTING  相似文献   

10.
The Pailin Crystalline Complex, which consists of amphibolites, metagabbros, and felsic igneous rocks, is located in western Cambodia. We used the geochemistry of the amphibolites and the zircon UPb ages of felsic igneous rocks to constrain the origin of the Pailin Crystalline Complex and to gain insights into the tectonic framework of Southeast Asia. Geochemical analyses indicate that the amphibolites are normal (N-type) mid-ocean ridge basalts, similar to the Sa Kaeo Back-arc Basin basalts of southeastern Thailand. The zircon UPb ages are 283 ± 2 Ma (anorthosite dike), 280 ± 2 Ma (aplite dike), and 275 ± 2 Ma (plagiogranite). The geochemistry and detrital zircon UPb ages of sandstones adjacent to the Pailin Crystalline Complex suggest that they are sediments that filled the Sa Kaeo Back-arc Basin during the Triassic. We infer that the Pailin Crystalline Complex is part of a dismembered ophiolite related to the back-arc basin, and that the igneous rocks formed during the Early Permian. Most of the metamorphism occurred during continental collision in Southeast Asia. However, the amphibolites of the Pailin Crystalline Complex also experienced ocean-floor metamorphism at a back-arc spreading center, in a tectonic setting similar to that of the mafic metamorphic rocks of the Nan Back-arc Basin, northern Thailand. We conclude that the Pailin Crystalline Complex is the southernmost extension of a back-arc basin related to subduction of Paleo-Tethys oceanic crust and the Sukhothai Arc.  相似文献   

11.
Remnants of the Proto-Tethys are mainly preserved in the region between south of the North China-Tarim Block and north of Qiangtang-Sibumasu/Baoshan Blocks. Magmatic-metallogenic events related to the Proto-Tethyan subductions were rarely reported, and the subduction history and polarity of the Proto-Tethyan are still under debate. Here, we presented new data of zircon UPb ages, whole-rock Sr–Nd–Pb isotopes, major and trace elements and zircon Hf isotopes for the volcanic rocks in the northeastern Altyn Mountains. Information of over 14 volcanic-hosted deposits/prospects in the region has been compiled. These volcanic ore hosts consist mainly of basaltic andesite, andesite, dacite and rhyolite rocks. The andesite and rhyolite rocks are newly zircon UPb dated to be Late Cambrian-Early Ordovician (andesite: 490.5 ± 5.2 Ma; rhyolite: 492.6 ± 2.9 Ma and 491.6 ± 5.6 Ma), representing the timing of volcanism and VMS (Volcanogenic Massive Sulfide) mineralization. All the volcanic rocks belong to the high-K calc-alkaline and shoshonite series: the andesite rocks from the Kaladawan area in north of the region display arc geochemical affinities and contain (87Sr/86Sr)i (0.7082–0.7083) and εNd(t) (−9.7 to −7.6), indicating that they were likely formed by partial melting of the mantle wedge with subducted sediment inputs. The rhyolite rocks from the Kaladaban area in south of the region are characterized by high SiO2 (64.46–78.55 wt%), low alkali (Na2O + K2O, 3.46–7.17 wt%), and contain (87Sr/86Sr)i (0.7063–0.7095), εNd(t) (−6.6 to −1.5), and zircon εHf(t) (−5.5 to 5.4), indicating that they were likely derived from partial melting of the lower crust with depleted mantle inputs. Rock assemblage and geochemistry suggest that volcanic rocks in the northeastern Altyn Mountains may have formed in a continental arc setting. Their spatial distributions with respect to the ophiolites in the region suggest that the subduction was likely south-dipping. This subduction-related arc magmatism may have formed the many important VMS and porphyry–skarn deposits in the region.  相似文献   

12.
N. I. Volkova  V. I. Budanov 《Lithos》1999,47(3-4):201-216
The Fan–Karategin metamorphic belt, South Tianshan, Tajikistan, is regarded to be an ancient subduction–accretionary complex and is composed of three tectonostratigraphic units which display lithologies consistent with different tectonic settings. The mafic schists, which make up the major part of the older unit of the belt, contain both alkali and tholeiitic metabasalts. On the basis of rare-earth and other immobile element characteristics, the alkali metabasalts are akin to within-plate ocean island basalts, whereas the tholeiitic metabasalts resemble E-type MORB. The association is interpreted to have been formed on seamount-like structures under a within-plate plume. Bedded cherts and marbles in the unit are regarded as ancient pelagic sediments and carbonate caps developed upon basaltic seamounts, respectively. Dismemberment of the seamount-related basalts and pelagic sediments and the high-P/low-T prograde metamorphism of the unit rocks up to transitional blueschist/greenschist facies was the result of paleoseamount submergence into a subduction zone. This unit is tectonically overlain by arc-derived metavolcanic unit and a disrupted, mainly clastic unit of Upper Ordovician–Lower Silurian age. Metavolcanic and metasedimentary rocks of the two upper units have geochemical characteristics compatible with subduction-related origin. The lithological assemblages of the individual units and their juxtaposition suggest an origin involving collision–accretionary processes. The Fan–Karategin belt is a subduction–accretionary complex which formed during subduction of oceanic crust under a volcanic arc and was subjected to tectonic juxtaposition and imbrication of seamount, deep-sea, trench and volcanic arc sequences.  相似文献   

13.
The Adrar Souttouf belt (Western Sahara) lies in the northern part of the Mauritanide belt and was considered as a part of the Hercynian Mauritanian-Appalachian belt. Recently the presence of a Panafrican protolith (595 Ma) was evidenced by the age of inherited zircons from an eclogitic unit and led to consider complex Panafrican events included in the Hercynian belt, as in the central and southern Mauritanide belt. Our new field survey completed by ten KAr dating (whole rocks and separate minerals) confirmed that multiphased Panafrican formations outcrop within the center of the Adrar Souttouf massif. Diverse events ranged from ca. 1000 to 500 Ma, some of them being indicative of an oceanic type environment and metamorphism. The 1000 Ma metamorphic event is recorded for the first time in the West African craton. A large Hercynian remobilisation is also evidenced. To cite this article: M. Villeneuve et al., C. R. Geoscience 338 (2006).  相似文献   

14.
In this study, we link zircon UPb SHRIMP and LA-ICP-MS geochronology and the LuHf isotopic composition of eclogites and their host gneisses/schists with whole-rock geochemistry of eclogites in the Dulan area to constrain their protoliths and metamorphic relationships. UPb dating suggests that the protolith of one of the eclogites was a Neoproterozoic mafic intrusive rock (828 ± 58 Ma) and the protolith of enclosing orthogneiss was an early-Neoproterozoic granitoid (923 ± 12 Ma). Detrital zircons from Grt-bearing mica-schists yield ages of 0.9–2.5 Ga, with a dominant range of 1.0–1.8 Ga, indicating sedimentary sources from Neoproterozoic to Neoarchean crust and a depositional age ≤ 0.9 Ga. The matching metamorphic ages of eclogites (438 ± 5 Ma, 436 ± 4 Ma) and their country rocks (Grt-bearing mica-schists: 438 ± 4 Ma, 439 ± 8 Ma; orthogneiss: 427 ± 8 Ma) indicate that all studied samples experienced coeval Early Paleozoic HP/UHP metamorphism. The UPb ages and Hf isotopic compositions of the inherited magmatic zircon cores of an eclogite sample (εHf (800) = 2.6–9.2, TDM1 = 1.0–1.3 Ga, TDM2 = 1.1–1.4 Ga) suggest that the protolith may be derived from Neoproterozoic depleted mantle with variable proportions of an older crustal component. The magmatic zircon cores of the orthogneiss (εHf (900) = ? 7.3 to ? 0.2; TDM2 = 1.8–2.1 Ga) suggest that the parental magma was derived from a Paleoproterozoic crustal source. Hf isotopic compositions of the detrital zircons from the metasediments (εHf(t) = ? 19.4 to + 10.6) suggest three crust formation and reworking events: (1) Archean (TDM2 = 2.7–2.9 Ga) juvenile crust reworked at ~ 2.5 Ga; (2) early Paleoproterozoic (TDM2 = 2.3–2.5 Ga) juvenile crust reworked at ~ 1.8 Ga; and (3) late Paleoproterozoic (TDM2 = 1.5–1.9 Ga) juvenile crust reworked in the Neoproterozoic.Whole-rock geochemical data suggest that the protoliths of the Dulan eclogites were probably derived from a continental rift or an incipient oceanic basin rather than a large, long-lived ocean basin. Thus, combined with field relationships, petrology, geochemistry, zircon UPb dating and the LuHf isotopic analysis presented in this paper and reported from previous studies, we suggest that the Dulan eclogites and their country rocks experienced a common UHP metamorphism during Late Ordovician deep continental subduction.  相似文献   

15.
Stable Zn isotopes may be applied to trace the source of ore-forming metals in various types of PbZn deposits. To test this application, Zn and Pb isotope systematics for sulfides and associated basement rocks as well as FeMn carbonates (gangue) from the Zhaxikang PbZn deposit in South Tibet have been analyzed. The basement in this region includes metamorphosed mafic to felsic rocks (dolerite, quartz diorite, rhyolite porphyry, pyroclastics and porphyritic monzogranite). These rocks have similar δ66Zn values of 0.33 to 0.37‰, with an average value of 0.36 ± 0.03‰ (2σ), except for the more evolved porphyritic monzogranite that has a heavier value of 0.49‰. FeMn carbonates are present as hydrothermal veins and were probably precipitated from magmatic fluids. They have an average δ66Zn value of 0.27 ± 0.05‰, which is slightly lighter than the basement rocks, possibly representing δ66Zn isotopic compositions of the hydrothermal fluids. Sphalerite and galena have similar Zn isotopic compositions with δ66Zn ranging from 0.03 to 0.26‰ and 0.21 to 0.28‰, respectively. Considering the Zn isotope fractionation factor between sphalerite and fluids of − 0.2‰ at ~ 300 °C as reported in literature, hydrothermal fluids from which these sulfides precipitated will have δ66Zn values of ca. 0.39 ± 0.10‰, which are consistent with the values of basement rocks and the FeMn carbonates. This similarity supports a magmatic-hydrothermal origin of the Zhaxikang PbZn deposit. Both Pb and S isotopes in these sphalerite and galena show large variations and are consistent with being derived from a mixture of basement and sedimentary rocks in various proportions. Zn isotopic compositions of the sulfides significantly extend the range of regional basement rocks, suggesting that sedimentary rocks (e.g., shales) are also a significant source of Zn. However, the Zn isotopic compositions of sphalerite and galena differ from those of marine carbonates and those of typical SEDEX-type deposits (e.g. Kelley et al., 2009), confirming a magmatic-hydrothermal model. Combined with regional geological observations and the age constraints of ~ 20 Ma (Zheng et al., 2012, 2014), the results of our investigation indicate that the Zhaxikang PbZn deposit is most likely a magmatic-hydrothermal deposit.  相似文献   

16.
Jebel Mecella and Sidi Taya F–(BaPbZn) deposits are located within the Fluorite Zaghouan Province (NE Tunisia). The mineralization occurs along the unconformity surface between the Jurassic limestones and Upper Cretaceous rocks. The mineralization consists mainly of fluorite, barite, sphalerite, and galena. The δ34S values of barite at Jebel Mecella (14.8–15.4‰) and at Sidi Taya (21.6–22.2‰) closely match those of the Triassic evaporites and Messinian seawater, respectively. The range of δ34S values of galena and sphalerite in both deposits (?6.9 to +2.4‰) suggests the involvement of thermochemical sulfate reduction and possibly organically-bound sulfur in the generation of sulfur. Lead isotope data with 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of 18.893–18.903, 15.684–15.699, and 38.850–38.880, respectively suggests a single homogeneous source reservoir of Paleozoic age and/or the homogenization of the Paleozoic–Cretaceous multireservoir-derived fluids along their long migration paths to the loci of deposition during the Alpine orogeny.  相似文献   

17.
中祁连北缘奥陶纪岩浆弧地层   总被引:3,自引:1,他引:3  
奥陶纪是祁连山加里东期构造带俯冲-碰撞格局奠定时期。通过区域填图和沉积环境分析及岩石地球化学研究,系统分析了沉积及岩浆作用过程, 认为在肃北县野牛台地区的晚奥陶世地层是中祁连地块西段北缘岩浆弧的组成部分。该地层为一套浅变质的基性-中性火山岩、碎屑岩及少量含化石灰岩组合,由下部海相安静深水还原环境向上部近岸水下河道-滨岸过渡,上部夹有冲积扇-河流相沉积,物源区为近源的岩浆弧和古老结晶基底,反映出自下向上水体变浅、盆地收缩的进积序列。其中的火山岩自下向上由基性向中性转变、由岛弧拉斑-钠质碱性玄武岩向钾质碱性玄武岩过渡,反映出与挤压构造环境相关的成熟岩浆弧火山岩组合特点。晚奥陶世岩浆弧地层、侵入岩与其北的同期构造蛇绿混杂岩带的相伴产出,暗示北祁连西段该时期洋壳在北部向北俯冲的同时,南部还向南俯冲并形成汇聚大陆边缘。  相似文献   

18.
The petrogenesis and tectonic evolution of the Mesozoic ophiolitic mélanges in the western section of the Yarlung Zangbo suture zone (YZSZ) remain controversial. In this paper, we present the results of whole-rock geochemical and SrNd isotope analyses, zircon UPb ages and in situ LuHf isotopic data obtained from mafic rocks of the northern and southern sub-belts of the western YZSZ Mesozoic ophiolitic mélanges to help us understand these controversial issues. Diabases and dolerites from the northern sub-belt and gabbros from the southern sub-belt exhibit variable fore-arc basalt (FAB)-like geochemical compositions and have zircon UPb ages of ∼126.4–120.3 Ma. In addition, gabbro-diabases from the northern sub-belt have boninite series affinities and yield a zircon UPb age of ∼125.7 Ma. These results, along with previous studies on the YZSZ Mesozoic ophiolitic mélanges and the Gangdese arc, reveal that the western YZSZ Mesozoic ophiolites were likely generated over multiple stages in the epicontinental Gangdese fore-arc basin as the Yarlung Zangbo Neo-Tethyan Ocean subducted northward in front of the Lhasa terrane. The Early Cretaceous FAB-like and boninite series mafic rocks were formed by the reinitiation of subduction, which was followed by a retreat of the subduction zone and the creation of the fore-arc basin and strong hyperextension, accompanied by asthenosphere upwelling at ∼130–120 Ma. During this process, the upwelling asthenosphere underwent decompressional melting with limited penetration of slab-derived fluids and gave rise to the N-MORB (normal mid-ocean ridge basalt)-like basaltic magmas that intruded the overlying, previously generated depleted mantle as FAB-like gabbro, diabase and dolerite sills or dykes. Then, boninitic magmas represented by boninitic gabbro-diabases were generated by remelting the extremely depleted residual mantle source, which was metasomatized by a small amount of slab-derived fluids, following previous extractions of FAB-like magma.  相似文献   

19.
At its southern margin along the Hoher Bogen mountain, the Teplá-Barrandian (Bohemian massif, Central Europe) is made up of a 1- to 4-km wide belt of amphibolites. An upper amphibolite/lower granulite facies Variscan metamorphism has brought forth coarse-grained, weakly foliated rocks with hbl+pl±cpx±opx±grt parageneses. Since the beginning of this century, these rocks, together with fine-grained or mylonitized amphibolites, have been regarded as metamorphic gabbros (gabbro amphibolites) of the Neukirchen-Kdyne igneous complex. Relics of magmatic textures, however, cannot be found anywhere. The amphibolites are therefore reinterpreted as metamorphic basalts. The Hoher Bogen amphibolites (HBA) derive from N-type MORB. The most primitive samples have Mg#s between 60 and 65. Locally occurring (garnet-)hornblendites and leucodioritic mobilisates are the products of partial melting of amphibolites during the Variscan metamorphism and do not belong to the primary magmatic rock association. Ultramafic rocks are tectonically emplaced between the HBA belt and the metapelitic rocks of the Moldanubian. At the very least, the metapyroxenites among them seem to have a cumulus origin. Together with the ultramafic rocks, the HBA belt may be regarded as a metaophiolite, comparable to the Mariánské Lazne complex. The reinterpretation of the former "gabbro amphibolites" as a metaophiolite has consequences for the geology of the Teplá-Barrandian: the size of the Neukirchen-Kdyne igneous complex is reduced. The HBA belt is a piece of oceanic crust which is possibly younger than the Precambrian metasedimentary/metavolcanic country rock of the Neukirchen-Kdyne igneous complex.  相似文献   

20.
The metavolcanic rocks of the Kvakhona Formation exposed on the western slopes of the Sredinnyi Range metamorphic massif are represented by two sequences. The lower sequence occupying the most part of the exposed formation is dominated by porphyric and aphyric clinopyroxene-plagioclase metabasalts and their tuffs with subordinate metapicritic basalts, metaandesites and their tuffs, and metadacites. The latter form isolated bodies in the northern part of the Kvakhona exposures. The upper sequence is composed of metaandesites, metabasalts, and their tuffs intercalated with terrigenous rocks (siltstones, sandstones, and carbonate graywacke) and metadacite bodies. The rocks were subjected to intense metamorphism under the greenschist facies conditions (t = 250–420°C, P s around 1 kbar) with the replacement of clinopyroxene phenocrysts (or their clasts in the tuff varieties) by actinolite, chlorite, and epidote, while plagioclase phenocrysts are replaced by albite, muscovite, chlorite, and epidote. In the metabasalts enriched in ore minerals, clinopyroxene is replaced by very thin veinlets and the finest grains (about 20–30 μm) of Ca-Na and Na amphiboles (winchite, ferrowinchite, glaucophane, and ferroglaucophane). The groundmass of the rocks (or tuff cement) consists of variable combinations of titanite, magnetite, chlorite, epidote, silpnomelane, and albite. The metabasalts of the formation belong to the high-Fe and often high-Ti rocks, which makes them similar to the tholeiitic basalts of mid-ocean ridges or rifting zones. The metaandesites and metadacites also preserved an elevated Fe content and belong to calc-alkaline series rocks typical of island arcs and active continental margins. It is suggested that the primary rocks of the Kvakhona Formation were formed within volcanic centers on the floor of a vast Cretaceous epicontinental marginal basin, which accumulated thick sequences of terrigenous rocks. The detrital material for these rocks was supplied from the northeastern Asian continent. The geological and geochemical data testify to the similarity of the Kvakhona metavolcanic rocks and the greenstone altered volcanic rocks of the Pensantain Range of Western Kamchatka, which are dated by the U-Pb SHRIMP method at 90–100 Ma. The protolith of the metavolcanic rocks of the Kvakhona Formation was presumably formed within the same age interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号