首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of a suite of ferromanganese nodules and crusts from the dredge Y73-3-22D in the Bauer Deep (13°40′S, 102°08′W) shows distinct differences between the nodules and crusts. Ultra-slow-scan X-ray diffraction shows that the nodules are more enriched in todorokite while the crusts are more enriched in δ MnO2. Both have phillipsite and smectite as accessory minerals as well as minor amounts of apatite, barite, and quartz. Chemical analyses show that the nodules also have higher abundances of Mn, Ni, Cu, Zn, and Ba, while crusts are more enriched in Fe, Co, and Ca. We suggest that normal authigenic precipitation of ferromanganese oxyhydroxides from seawater controls the mineralogy and chemistry of the crusts, while nodule mineralogy and chemistry are governed by small-scale diagenetic reactions in the sediment. Todorokite may form because iron in the Fe-Mn oxyhydroxide material dispersed in the sediment reacts with amorphous silica to form iron-rich smectites. The remaining oxyhydroxide material recrystallizes as todorokite.  相似文献   

2.
Samples of a new Martian meteorite of the nakhlite family (NWA 817) contain traces of an iron-rich alteration product. Textural arguments indicate that this alteration product has been formed on the parent body of the meteorite (Mars). The chemical composition and structural data (X-ray diffraction, transmission electron microscopy and vibrational spectroscopy) show that the alteration mineral is a hydrous phase from the smectite family. Major elements and rare earth elements suggest that the formation of the alteration phase is related to the circulation of an aqueous fluid which composition is controlled by the dissolution of feldspars to account for a positive Eu anomaly, olivine and possibly apatite. Hydrogen isotope data display negative δD values ranging from −60 to −280‰ in olivine and pyroxenes and from −140 to −181‰ in the alteration phase. The values of δD for the alteration product show a small scatter with a mean value of −170±14‰. These values are lower than those previously obtained on other Martian meteorites, which give mainly positive δD values. These positive values have been interpreted as resulting from the interaction of the Martian meteorites with water from the Martian atmosphere. Ruling out the effect of terrestrial alteration, it is suggested that alteration in the NWA 817 meteorite was likely produced on Mars by the circulation of an aqueous fluid originating from a chemical reservoir, such as the Martian mantle, which has not equilibrated with a fractionated Martian atmosphere.  相似文献   

3.
Thirty-four samples from the Changjiang and Huanghe were analyzed to characterize their rare earth element (REE) compositions. Although REE concentrations in the Changjiang sediments are higher than those of the Huanghe sediments, the former are less variable. Bulk samples and acid-leachable fractions have convex REE patterns and middle REE enrichments relative to upper continental crust, whereas flat patterns are present in the residual fractions. Source rock composition is the primary control on REE composition, and weathering processes play a minor role. Grain size exerts some influence on REE composition, as demonstrated by the higher REE contents of clay minerals in sediments from both rivers. Heavy minerals contribute about 10-20% of the total REE in the sediments. Apatite is rare in the river sediments, and contributes less than 2% of the REE content, but other heavy minerals such as sphene, allanite and zircon are important reservoirs of residual REE fractions. The Fe-Mn oxides phase accounts for about 14% of bulk REE content in the Changjiang sediments, which could be one of the more important factors controlling REE fractionation in the leachable fraction.  相似文献   

4.
Thorough understanding of the shock metamorphic signatures of zircon could be the basis for the use of this mineral as a powerful tool for the study of old, deeply eroded, and metamorphically overprinted impact structures and formations. This study of the cathodoluminescence (CL) and Raman spectroscopic signatures of experimentally (20-60 GPa) shock-metamorphosed zircon single crystals contributes to the understanding of high-pressure microdeformation in zircon. For all samples, an inverse relationship between the brightness of the backscattered electron (BSE) signal and the corresponding cathodoluminescence intensity was observed. The unshocked sample shows crosscutting, irregular fractures. The 20 GPa sample displays some kind of mosaic texture of CL brighter and darker domains, but does not exhibit any shock metamorphic features in BSE or CL images. The 40 GPa sample shows a high density of lamellar features, which might be explained by the phase transformation between zircon- and scheelite-structure phases of zircon and resulting differences in the energy levels of the activator elements. The CL spectra of unshocked and shocked (20, 40, and 60 GPa) zircon samples are dominated by narrow emission lines and broad bands in the region of visible light and in the near-UV range. The emission lines result from rare earth element activators and the broad bands might be associated with lattice defects. Raman spectra revealed that the unshocked and 20 GPa samples represent zircon-structure material, whereas the 40 GPa sample yielded additional peaks with relatively high peak intensities, which are indicative of the presence of the scheelite-type high-pressure phase. The 60 GPa sample has a Raman signature that is similar to that of an amorphous phase, in contrast to the observations of an earlier TEM study that the crystalline scheelite-structure phase is stable at this shock pressure. The 60 GPa Raman signature cannot be explained at this stage. The results show a clear dependence of the CL and Raman properties of zircon on shock pressure, which confirm the possible usage of these methods as shock indicators.  相似文献   

5.
Tuite has been suggested as a potential reservoir for trace elements in the deep mantle,but no evidence confirms this supposition.By using a natural apatite as starting material,the trace-element-bearing tuite large crystals were obtained under highpressure and high-temperature conditions(15 GPa and 1800 K).X-ray diffraction pattern and Micro-Raman spectrum of the run product confirm that tuite was synthesized.The concentrations of trace elements in tuite crystals were analyzed by laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS).The rare earth element patterns of tuite show enrichment of light rare earth elements relative to heavy rare earth elements.Tuite shows high concentrations of Th and Sr,and negative anomalies of Rb,Nb,and Hf.The results show that tuite can accommodate a large amount of trace elements.Tuite might be an important host to accommodate trace elements if there is much apatite subducted into the deep mantle.  相似文献   

6.
A fragment found in soil from the Apollo 12 site (12037, from the rim of Bench Crater) appears to be a unique type of chondrite, petrologically and chemically distinct from other chondrites and lunar rocks. Inclusions consisting of shocked pyroxene rimmed by euhedral troilite crystals are set in a black aphanitic matrix. Abundant magnetite in the matrix exhibits microscopic morphologies (framboids and plaquets) characteristic of C1 chondrites. The bulk composition of this sample has high Mg/Si and low Fe/Si relative to other chondrites, and P and S are strongly enriched. Most compositional differences between this meteorite and other chondrites may be explained by fractionation of Fe phases, such as magnetite and troilite. Low refractory element contents preclude mixing with lunar materials. This sample may be a surviving fragment of the meteoritic component present in the lunar regolith. Its characteristics suggest that ancient meteoritic debris sampled by the moon may be significantly different from that captured by the present-day earth.  相似文献   

7.
New rare earth element (REE) data for Archaean basalts and spinifex-textured peridotites (STP) show a range of La/Sm ratios (chondrite-normalized) from 0.36 to 3.5, with the bulk of the data in the range 0.7–1.3. This supports the hypothesis, based on Sr isotope initial ratios, that the Archaean mantle was chemically heterogeneous. We suggest that the bulk mantle source for Archaean basaltic magmas was close to an undepleted earth material. An average chemical composition of the Archaean mantle is estimated using chemical regularities observed in Archaean STP and high-magnesian basalts. TiO2 and MgO data show an inverse correlation which intersects the MgO axis at about 50% MgO (Fo92). TiO2 abundance in the mantle source is measured on this plot by assigning anMgO= 38% for the mantle. Concentrations of other elements are also estimated and these data are then used to obtain a composition for the bulk earth. We suggest an earth model with about 1.35 times ordinary chondrite abundances of refractory lithophile elements and about 0.2 times carbonaceous type 1 chondrite abundances of moderately volatile elements (such as Na, Rb, K, Mn). P shows severe depletion in the model earth relative to carbonaceous chondrites, a feature either due to volatilization or core formation (preferred). Our data support the hypothesis of Ringwood that the source material for the earth is a carbonaceous chondrite-like material.The generation of mid-ocean ridge basalts (MORB) is examined in the light of the model earth composition and Al2O3/TiO2, CaO/TiO2 ratios. It is suggested that for primitive basalts, these values can be used to predict the residual phases in their source. Comparison of chemical characteristics of inferred sources for 2.7-b.y. Archaean basalts and modern “normal” MORB indicates that the MORB source is severely depleted in highly incompatible elements such as Cs, Ba, Rb, U, Th, K, La and Nb, but has comparable abundances of less incompatible elements such as Ti, Zr, Y, Yb. The cause of the depletion in the MORB source is examined in terms of crust formation and extraction of silica-undersaturated melts. The latter seems to be a more likely explanation, since the degree of enrichment of highly incompatible elements in the crust only accounts for up to 40% of their abundances in the bulk earth and cannot match the depletion pattern in normal MORB. A large volume of material, less depleted than the source for normal MORB must therefore exist in the mantle and can serve as the source for the ocean island basalts and “normal” MORB.Three different mantle evolution models are examined and each suggests that the mantle is stratified with respect to abundances of incompatible trace elements. We suggest that no satisfactory model is available to fully explain the spectrum of geochemical and geophysical data. In particular the Pb and Sr isotope data on oceanic basalts, the depletion patterns of MORB and the balance between lithophile abundances in the crust and mantle, are important geochemical constraints to mantle models. Further modelling of the mantle evolution will be dependent on firmer information on the role of subduction, mantle convection pattern, and basalt production through geologic time together with a better understanding of the nature of Archaean crustal genesis.  相似文献   

8.
Ferromanganoan sediments containing little or no CaCO3 have been found to occur extensively throughout the region between the East Pacific Rise and the Galapagos Rise. Concentrations of Fe and Mn of up to 18 and 6.5%, respectively, accompany low concentrations of Al and Ti. The concentrations of Cu, Ni, and Zn are also high relative to more typical pelagic sediments.While chemically similar to the non-carbonate fraction of metalliferous sediments previously described from the East Pacific Rise, the mineralogy is markedly different. A non-detrital smectite makes up the bulk of sediment (70 to 90%) and is the most important iron bearing phase. Fe and Mn oxides, occurring primarily as micro-nodules, comprise 10 to 20% of the sediment. Detrital material is relatively rare, amounting to less than 10% in all samples.  相似文献   

9.
Clay mineral formation in DSDP Leg 34 basalt   总被引:1,自引:0,他引:1  
A blue-green smectite (iron-rich saponite) and green mica (celadonite) are the dominant sheet silicates in veins within the 10.5 m of basalt cored during DSDP Leg 34, Site 321, in the Nazca plate. Oxygen isotopic analyses of these clays, and associated calcite, indicate a formation temperature of≤25°C.Celadonite contains appreciable Fe2O3, K2O and SiO2, intermediate MgO, and very little Al2O3. Celadonite is commonly associated with goethite and hematite, which suggests that this phase formed by precipitation within a dominantlyoxygenated environment of components leached from basalt and provided by seawater. A mass balance estimate indicates that celadonite formation can remove no more than 15% of the K annually transported to the oceans by rivers. In contrast, iron-rich saponite containing significant Al2O3 appears to have precipitated from anon-oxidizing, distinctly alkaline fluid containing a high Na/K ratio relative to unmodified seawater.Seawater-basalt interaction at low temperatures, resulting in the formation of celadonite and smectite may explain chemical gradients observed in interstitial waters of sediments overlying basalts.  相似文献   

10.
Major and trace element zonation patterns were determined in ultrahigh-pressure eclogite garnets from the Western Gneiss Region (Norway). All investigated garnets show multiple growth zones and preserve complex growth zonation patterns with respect to both major and rare earth elements (REE). Due to chemical differences of the host rocks two types of major element compositional zonation patterns occur: (1) abrupt, step-like compositional changes corresponding with the growth zones and (2) compositionally homogeneous interiors, independent of growth zones, followed by abrupt chemical changes towards the rims. Despite differences in major element zonation, the REE patterns are almost identical in all garnets and can be divided into four distinct zones with characteristic patterns.In order to interpret the major and trace element distribution and zoning patterns in terms of the subduction history of the rocks, we combined thermodynamic forward models for appropriate bulk rock compositions to yield molar proportions and major element compositions of stable phases along the inferred pressure-temperature path with a mass balance distribution of REEs among the calculated stable phases during high pressure metamorphism. Our thermodynamic forward models reproduce the complex major element zonation patterns and growth zones in the natural garnets, with garnet growth predicted during four different reaction stages: (1) chlorite breakdown, (2) epidote breakdown, (3) amphibole breakdown and (4) reduction in molar clinopyroxene at ultrahigh-pressure conditions.Mass-balance of the rare earth element distribution among the modelled stable phases yielded characteristic zonation patterns in garnet that closely resemble those in the natural samples. Garnet growth and trace element incorporation occurred in near thermodynamic equilibrium with matrix phases during subduction. The rare earth element patterns in garnet exhibit distinct enrichment zones that fingerprint the minerals involved in the garnet-forming reactions as well as local peaks that can be explained by fractionation effects and changes in the mineral assemblage.  相似文献   

11.
An iron-rich deposit dredged from the upper flank of Dellwood Seamount in the Northeast Pacific has been analyzed for major and trace elements, rare-earth contents and uranium isotopic composition. In terms of mineralogy and overall chemical composition, the deposit resembles other iron-rich deposits variously attributed to volcanic hydrothermal activity. Both the relative concentrations of the rare-earth elements and the isotopic composition of uranium rule out seawater as the sole source of elements in this deposit. The rare-earth element pattern indicates that these elements were derived from the underlying basalt. The234U/238U ratio is significantly higher than in seawater and can best be explained by preferential leaching of234U generated by decay from its parent238U in the underlying rock and subsequent redeposition of the excess234U together with the Fe and minor metals. These data are consistent with a model for the origin of submarine metal-rich solutions involving mobilization of elements from the interior of slowly cooling basalts by circulating seawater.  相似文献   

12.
In order to recognize lateral and seasonal variations in composition of suspended particulate matter (SPM) in the Odra Estuary, samples were taken at four sites in the period July 1996 - July 1997 monthly if possible. The contents of the elements Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P, C, S as well as Ba, Cr, Sr, V, Zn, Cu, Zr, and of the minerals illite, chlorite, smectite, kaolinite and others have been determined. The decreasing influence of the river Odra towards the open sea could be realized with the help of the contents of the minerals quartz, smectite, and of the elements Ba, Cr, K, P, Si and other. 60% of the seasonal and lateral variations can be explained by changing contents of total carbon (TC), total organic carbon (TOC), Al, Fe, Si, Ti, P, Mn, and Ba. They are mainly caused by differences in the production of organic matter, resuspension, riverine input, and redox-sensitive processes.  相似文献   

13.
Stable carbon isotope measurements of the organic matter associated with the carbonate globules and the bulk matrix material in the ALH84001 Martian meteorite indicate that two distinct sources are present in the sample. The delta 13C values for the organic matter associated with the carbonate globules averaged -26% and is attributed to terrestrial contamination. In contrast, the delta 13C values for the organic matter associated with the bulk matrix material yielded a value of -15%. The only common sources of carbon on the Earth that yield similar delta 13C values, other then some diagenetically altered marine carbonates, are C4 plants. A delta 13C value of -15%, on the other hand, is consistent with a kerogen-like component, the most ubiquitous form of organic matter found in carbonaceous chondrites such as the Murchison meteorite. Examination of the carbonate globules and bulk matrix material using laser desorption mass spectrometry (LDMS) indicates the presence of a high molecular weight organic component which appears to be extraterrestrial in origin, possibly derived from the exogenous delivery, of meteoritic or cometary debris to the surface of Mars.  相似文献   

14.
Mineralogy and geochemistry of the four main workable coal seams (No.6, No.7, No.8, and No.11) of Late Permian age from the Songzao Coalfield, Chongqing, Southwest China, were examined using in- ductively coupled plasma-mass spectrometry (ICP-MS), X-ray fluorescence spectrometry (XRF), cold-vapor absorption spectrometry (CV-AAS), ion-selective electrode (ISE), scanning electron mi- croscopy equipped with an energy-dispersive X-ray spectrometer (SEM-EDX), and X-ray diffraction analysis (XRD). The results showed that the main workable No.8 Coal that accounts for about 60% of the total coal reserves in the Songzao Coalfield was not enriched in hazardous trace elements. The No.11 Coal has high concentrations of alkaline elements, Be (9.14 μg/g), Sc (12.9 μg/g), Ti (9508 μg/g), Mn (397 μg/g), Co (23.7 μg/g), Cu (108 μg/g), Zn (123 μg/g), Ga (32 μg/g), Zr (1304 μg/g), Nb (169 μg/g), Hf (32.7 μg/g), Ta (11.4 μg/g), W (24.8 μg/g), Hg (0.28 μg/g), Pb (28.1 μg/g), Th (24.1 μg/g), and rare earth elements (509.62 μg/g). The concentration of Nb and Ta in the No. 11 Coal is higher than the industrial grade, and their potential utilization should be further studied. Besides pyrite, quartz, calcite, and clay minerals, trace minerals including chalcopyrite, marcasite, siderite, albite, mixed-layer clay minerals of illite and smectite, monazite, apatite, anatase, chlorite, and gypsum were found in the No.11 Coal. It should be noted that alabandite of hydrothermal origin and anatase occurring as cement were identi- fied in coal. In addition, the clayey microbands derived from alkaline volcanic ashes were identified in the coal. The dominant compositions of these clayey microbands were mixed-layer clay minerals of illite and smectite, which were interlayered with organic bands. The modes of occurrence of alkaline volcanic ash bands indicate that the volcanic activities were characterized by the multiple eruptions, short time interval and small scale for each eruption during peat accumulation. The alkaline volcanic ashes were the dominant factors for the enrichment of alkaline elements, Nb, Ta, Zr, Hf, and rare earth elements, and the sulfide minerals are the main carriers of Ga, Cu, and Hg in the No. 11 Coal.  相似文献   

15.
洞庭湖水质评价(2002-2004年)   总被引:7,自引:0,他引:7  
采用化学连续提取和等离子质谱仪(ICP-MS)测定法,对安徽巢湖悬浮颗粒物中稀土元素的含量、赋存形态和配分模式进行了研究.结果表明:巢湖悬浮物中稀土总量在19.20-174.82mg/kg之间,东西两个湖区含量差异明显,东半湖区高于西半湖区.巢湖东西湖区悬浮物残渣态稀土元素具有截然不同的页岩标准化配分模式,东半湖区为轻稀土富集型,西半湖区为重稀土富集型,说明巢湖东西湖区具有明显不同的物质来源.巢湖东半湖区和西半湖区悬浮物稀土元素赋存形态比例也不同,东半湖区为残渣态>铁锰氧化物结合态>>有机结合态、AEC态;西半湖区为铁锰氧化物结合态>残渣态>>有机结合态、AEC态,这是由于巢湖水体从西到东受到的污染强度减轻造成的,稀土元素赋存形态可以作为判别湖泊污染程度的新依据.  相似文献   

16.
A submersible dive on a turbidite-covered spreading axis in Guaymas Basin photographed and sampled extensive terraces and ledges of talc. The rock contains siliceous microfossils, smectite, and euhedral pyrrhotite as well as rather pure iron-rich talc. Sulfur and oxygen isotopes indicate precipitation around a hydrothermal vent, at about 280°C.  相似文献   

17.
Alkali basalt, trachybasalt and basanite magmas, containing abundant xenoliths of upper mantle origin, were erupted during the Plio-Pleistocene (2.4-0.14 Ma) in northern Sardinia. The magmas are enriched in K, Rb, Th and Ba relative to mid-ocean ridge basalts (MORB) and most ocean island basalts (OIB), resulting in high K/Nb, Th/Nb, Ba/Nb and Rb/Nb ratios. The large number of spinel peridotite inclusions in these lavas suggests that these chemical features cannot be explained by combined assimilation and fractional crystallization within the continental crust. However, volcanic rock chemistry can be explained by the assimilation of sialic rocks by turbulently convecting, mafic magmas during their ascent to the surface. Fractionation of Ba and K from the light rare earth elements (LREE) is required to explain the positive correlation of K/La and Ba/La with 87Sr/86Sr(i). Consequently, bulk assimilation of crystalline basement rocks by rising, hot basaltic magmas cannot explain the observed chemical trends, and preferential melting of a low melting quartzo-feldspathic crustal component probably occurred, leaving the REE in residual phases such as apatite, zircon, sphene and amphibole. Alternatively, large ion lithophile element (LILE) enrichment may have been related to interaction of rising mafic lavas with metasomatized lithospheric mantle or enriched asthenosphere.  相似文献   

18.
Numerous green polished stone axes have been excavated from the Sannai-Maruyama site, one of Japan's largest archeological sites in the Jomon period (5.9–4.2 cal kyr BP). The axes are composed of weakly metamorphosed fine-grained volcaniclastic rock having a peculiar texture that includes numerous acicular actinolites growing in random directions within a quartz and albite matrix. Cobbles of Aotora stone found along the Nukabira River, Biratori town, southern Hokkaido, are the most likely raw material for these stone axes. Aotora stones have alternate bands of a soft dark-green picritic layer and a hard SiO2-rich pale-green layer. The pale-green layer has a texture similar to the stone axes. Basaltic and picritic volcanic rocks of the Sorachi-Yezo Belt occupy the area along the Shidoni River, a tributary of the Nukabira River. Volcaniclastic rocks similar in texture, mineralogy, and bulk rock compositions to the Aotora stone are exposed in the area. These rocks underwent metamorphism under the actinolite-pumpellyite facies conditions. Their protolith is submarine hyaloclastic rocks that are intercalated with laminated picrite detritus. The stone axes, pale-green layers of Aotora stone, and those of the volcaniclastic rocks of the Shidoni River area all have high SiO2 (~ 55 wt%), Cr (~ 840 μg/g), and Ni (~ 370 μg/g). The rare earth element patterns with abundant light rare earth elements and depleted heavy rare earth elements of stone axes were also consistent with the pale-green layers of the outcrop. These pale-green layers, interleaved with dark-green layers of picritic detritus, were the likely source rock of the stone axes. The high SiO2 content in the pale-green layer caused the crystallization of quartz and albite in the matrix, which resulted in high-quality raw material for making stone axes.  相似文献   

19.
The characteristic textures of eclogitic veins infilling the interstitial spaces among zoisite-glaucophanite pillows, the fractures crosscutting massive zoisite-glaucophanites and the relic conduits within the eclogite boudins demonstrate that the eclogitization of glaucophanites was accompanied by the presence of a free fluid phase in the Western Tianshan high-pressure metamorphic belt. Non-planar populations of fluid inclusions, parallel toC-axis, have been preserved within the omphacites in eclogitic veins. The microthermometric results indicate that fluids are low-salinity (1–4 wt%NaCl) aqueous fluids. The chemical compositions of major, trace and rare earth elements of eclogitic veins and related host rocks indicate that the eclogitization of glaucophanites required the addition of external Si and Na elements, and was accompanied by the loss of large-ion lithophile elements, rare earth elements and water. The record of eclogitization of glaucophanites along fractures and zones of high permeability by fluid infiltration has been preserved in the Wetsern Tianshan high-pressure metamorphic belt.  相似文献   

20.
The concentrations of the rare earth elements (REE), K, Rb, Sr, Ba, U, Zr and Cr for the Luna 20 soil and four different Apollo 16 soils are reported. These trace element abundances imply: (1) that the lunar highlands consist of a mixture of rocks rich in large ion lithophile (LIL) elements and LIL-element impoverished anorthosites; or (2) that the bulk of the aluminum-rich crust did not originate by upward segregation of plagioclase in a primitive liquid shell. The Luna 20 soil is distinguished from the Apollo 16 soil by lower aluminum and LIL element abundances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号