首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relative paleointensities are obtained from a 6-m sediment core from Lake St. Croix, Minnesota, spanning the time range from 445 to 1740 years B.P. To normalize the natural remanent magnetization (NRM) for variations in the magnetic content, a laboratory-induced remanence is chosen, whose alternating field (AF) demagnetization curves most closely resemble the NRM demagnetization curves. By plotting the ratio of the NRM to the normalizing remanence versus AF demagnetizing field, HAF, for samples of the same sediment horizon, as well as for samples from different horizons, estimates are obtained for expected uncertainties in the relative paleointensities. For the Lake St. Croix sediments the anhysteretic remanence (ARM) demagnetization curves are very similar to those of the NRM's, and ARM is therefore used as the normalization parameter. Because the sediment exhibits homogeneous remanence properties throughout, and HAF = 100Oe is the optimum “cleaning” field for the entire core, NRM100/ARM100 is evaluated to represent the fluctuations of the relative paleointensity. Our relative paleointensity data exhibit the same general features as obtained from archeomagnetic studies. The intensity increases as one goes back in time with a peak near 800 years B.P., representing an increase in the intensity of up to 60%. Apparent periodicities in the intensity of 300–400 years are observed.  相似文献   

2.
The relative intensities of anhysteretic remanent magnetization (RAM) and thermoramanent magnetization (TRM) are strongly dependent on grain size, blocking temperature and applied field, and are poorly predicted by existing theories. Analog techniques that substitute ARM for TRM probably yield adequate relative paleointensities in suites of mineralogically similar rocks, but they yield uncertain estimates of absolute paleointensity.  相似文献   

3.
To test the reliability of the Thellier method for paleointensity determinations, we studied six historic lavas from Hawaii and two Gauss-age lava flows from Raiatea Island (French Polynesia). Our aim is to investigate the effects of the NRM fraction and concave-up behavior of NRM–thermal remanent magnetization (TRM) diagrams on paleointensity determinations. For the Hawaiian samples, the paleointensity results were investigated at both sample and site levels. For consistency and confidence in the paleointensity results, it is important to measure multiple samples from each cooling unit. The results from the Raiatea Island samples confirm that reliable paleointensities can be obtained from NRM–TRM diagrams with concave-up curvature, provided the data are accompanied by successful partial TRM (pTRM) checks and no significant chemical remanent magnetization (CRM) production. We conclude that reliable determinations of the paleofield strength require analyses of linear segments representing at least 40–50% of the total NRM. This new criterion has to be considered for future studies and for evaluating published paleointensities for calculating average geomagnetic field models. Using this condition together with other commonly employed selection criteria, the observed mean site paleointensities are typically within 10% of the Definitive Geomagnetic Reference Field (DGRF). Our new results for the Hawaii 1960 lava flow are in excellent agreement with the expected value, in contrast to significant discrepancies observed in some earlier studies.

Overestimates of paleointensity determinations can arise from cooling-rate dependence of TRM acquisition, viscous remanent magnetization (VRM) at elevated temperatures, and TRM properties of multidomain (MD) particles. These outcomes are exaggerated at lower temperature ranges. Therefore, we suggest that, provided the pTRM checks are successful and there is no significant CRM production, it is better to increase the NRM fraction used in paleointensity analyses rather than to maximize correlation coefficients of line segments on the NRM–TRM diagrams.

We introduce the factor, Q = Nq, to assess the quality of the weighted mean paleointensity, Hw, for each cooling unit.  相似文献   


4.
We test the possibility of using the pseudo-Thellier method as a means of determining absolute paleointensity. Thellier analysis of anhysteretic remanent magnetization (ARM) and pseudo-Thellier analysis of thermoremanent magnetization (TRM) have been carried out on a large collection of sized synthetic magnetites and natural rocks. In all samples, the intensity of TRM is larger than that of ARM and the ratio R (=TRM/ARM) is strongly grain size dependent. The best-fit slope (bTA) from pseudo-Thellier analysis of TRM shows a linear correlation with R. The ratio bTA/R yielded approximately correct paleointensities, although uncertainties are larger than in typical Thellier-type determinations. For single-domain and multidomain magnetites, alternating field and thermal stabilities of ARM and TRM are fairly similar. However, for ∼0.24 μm magnetite, ARM is both much less intense and less resistant to thermal demagnetization than TRM, reflecting different domain states for the two remanences and resulting in severely non-linear Arai plots for Thellier analysis of ARM.  相似文献   

5.
The coercivity spectrum of low-field high-temperature partial thermoremanent magnetization (PTRM) of a synthetic hematite powder, extremely high at room temperature, decreases very slowly with increasing temperature up to 500°C then decreases rapidly, especially above 600°C. From the AF demagnetization curves at 600 and 650°C it is calculated, following the Néel's theory of single-domain particles that the grains carrying the PTRM have a mean coercive force of 23 ± 5 kOe and a mean grain size of 0.40 ± 0.15 μm, which is not significantly different from the mean grain size of 0.48 ± 0.03 μm from electron micrograph observations.  相似文献   

6.
A single-heating procedure is presented which makes possible the determination of two partially independent values of paleofield intensity for a given sample, one serving as a check to the other. The approach combines data required for Shaw-type and “ARM-method” determinations and in so doing furnishes a value of the ratio of TRM to ARM acquisition efficiency (f′) corrected for any physicochemical alteration to the magnetic carriers which may have occurred during laboratory heating.

Applicability of the Shaw-method to Fe-bearing samples is favorably demonstrated through simulated paleointensity determinations conducted on synthetic samples containing multi-domain grains. Moreover, coercivity spectra corresponding to anhysteretic remanent magnetization (ARM) are found to be considerably more sensitive to thermally induced alteration when compared with those corresponding to thermoremanent magnetization (TRM).

The combined Shaw-ARM procedure was successfully applied to lunar basalt sample 10017,135 rendering a paleointensity of 0.82 ± 0.11 Oe. The Thellier-Thellier method, however, was not able to provide a meaningful determination on the neighboring chip (number 136). These apparently conflicting findings may be explained by one or more of the following possible interpretations: (1) multiple step-wise heatings cause considerably more damage to the carriers of remanence than does a single-heating procedure; (2) the rock possesses extreme variability in magnetic properties from one sub-sample to the other; (3) the natural remanent magnetization in this lunar basalt is not a simple TRM.  相似文献   


7.
Samples of basalt containing homogeneous titanomagnetite have been subjected to heat treatment in air, in the laboratory, under conditions which produce multiphase oxidation products. The evolution of the microstructure in the titanomagnetite was monitored using the electron microscope and by measuring the rotational-hysteresis characteristics of the samples. This latter technique proves to be very sensitive to small changes which are undetectable by the optical or electron microscopes. Rotational-hysteresis curves and coercivity spectra, derived from acquisition of IRM and AF demagnetization of IRM, all indicate an appreciable fraction of coercivities in excess of 1 kOe in optically homogeneous (Class I) titanomagnetitie with submicroscopic microstructure. It is possible to divide Class I of the petrological scale into three or four subclasses. Class-I basalts may be assigned to the subclasses on the basis of the effect of slight laboratory heating on the rotational-hysteresis characteristic.  相似文献   

8.
采薇海山位于西北太平洋麦哲伦海山区,是由中国发现、命名并负责资源勘探的重点调查区之一.本文利用大洋27航次在采薇海山北坡MABC-05站获得的箱式沉积物样品,开展了详细的岩石磁学研究.结果显示表层沉积物中的磁性矿物以颗粒较细的、矫顽力较低的磁铁矿为主;利用对数正态分布函数可以区分三个具有不同矫顽力值的磁性颗粒组分,并发现磁性颗粒的矫顽力值变化可以有效指示沉积物埋藏后的早期成岩特征.在参考现代物理海洋过程的基础上,我们推测南极底层水团的演化和太阳辐射的变化可能共同影响了采薇海山区海洋底层环境过程.这一结果为探讨南极气候状况对北太平洋的可能影响,评估海洋上层与底层的相互作用等重要科学问题提供了新途径.  相似文献   

9.
New values of critical grain-size thresholds, ds and d0, for magnetite and Fe have been obtained using a rigorous theoretical approach. The temperature dependence of these thresholds is interesting in that they point up the existence of certain grains which, when cooled from above their blocking temperature, pass sequentially through the following magnetization states: superparamagnetic→single-domain→non-uniform magnetization. Such grains will yield correct paleointensities by the Wilson or Shaw method but not by the well-known method due to Thellier and Thellier.  相似文献   

10.
Various rock magnetic techniques were applied to characterize magnetically the samples of a soil profile taken from west-central Minnesota. There is a marked change in magnetic properties as a function of depth in the core. X-ray analysis and Curie temperature measurements carried out on the magnetic fractions indicate that magnetite is the dominant iron oxide in both the top soil and the subsoil. The intensity of anhysteretic remanent magnetization (ARM) decreases sharply as the depth increases. In contrast, the stability of ARM was found to be higher for the subsoil. The surface soil sample was capable of acquiring a significant amount of viscous remanent magnetization (VRM). The VRM acquisition coefficient (Sa) of the subsoil (Sa= 3.18 × 10?6emu g?1, 3.18 × 10?6A m2 kg?1) was about ten times weaker than that of the top soil sample (Sa = 3.868 × 10?7emu g?1, 3.868 × 10?7A m2 kg?1). The magnetic domain state indicator, the ratio of coercivity of remanence to coercive force, Hcr/Hc, was 1.5 and 3.85 for the top soil and subsoil, respectively. It appears that the observed variations in magnetic properties down the present soil core is due only to a difference in grain size. We conclude that the magnetic grains in surface soil samples were more single-domain (SD) like whereas the magnetite grains in the subsoil samples were more likely in pseudo-single-domain (PSD) or small multidomain (MD) range. The observed lower stability for the surface soil samples is attributed to the presence of superparamagnetic grains whose presence was confirmed by transmission electron micrographs.  相似文献   

11.
We report normalized AF demagnetization curves of anhysteretic remanences (ARM's) produced by 1-, 10- and 40-Oe steady fields and of saturation isothermal remanence (IRMs) in a suite of dispersed, unannealed magnetite powders with median sizes of 2, 4, 6, 10 and 14 μm (pseudo-single-domain or PSD size range) and 100 μm (multidomain or MD size). Interpreted in the light of the domain structure test first proposed by Lowrie and Fuller [12], the relative stability trend of curves for the 2 μm sample is of single-domain (SD) type, the 1-Oe ARM being most resistant to demagnetization followed by the 10-Oe and 40-Oe ARM's and IRMs. For the 100-μm sample, the trend is exactly reversed and is of MD-type. In the 4–14 μm samples, hitherto undescribed transitional trends between SD-type and MD-type occur. At 6 μm, 1-Oe, 10-Oe and 40-Oe ARM's preserve an SD-type trend but for all AF's > 75 Oe, IRMs is more resistant than any of these remanences. At 10 μm, this trend is unmistakable, and only at 14 μm do the 1-Oe, 10-Oe and 40-Oe ARM curves merge. We conclude (1) that the Lowrie-Fuller test distinguishes between small MD grains enhanced by PSD remanence and large MD grains lacking PSD remanence, rather than between SD and MD structures per se, and (2) that in the PSD transition region from 6 to 14 μm in magnetite, IRMs changes over to MD-type relative stability around 6 μm, whereas 10-Oe and 40-Oe ARM's achieve an MD-type trend around 14 μm, in accord with the predicted field dependence of the PSD threshold size.Our theoretical interpretation assumes that the intrinsic (internal field) coercive force spectra of weak-field and strong-field remanences are identical but that the observed (external field) spectrum is shifted to lower fields as a result of the internal demagnetizing field — NJr of the remanence Jr. The effect is slight for weak-field Jr's but substantial for IRMs. Since all coercivities, high as well as low, are shifted, the result of the Lowrie-Fuller test is determined simply by the shape of the intrinsic coercivity spectrum or the corresponding AF demagnetization curve. Depending on the model of self-demagnetization used, either subexponential or sublinear AF decay curves of weak-field remanence will automatically lead to an MD-type trend, whereas by either model the decay curves that characterize SD and PSD remanences (decaying slowly initially and then more rapidly) will always produce and SD-type trend.  相似文献   

12.
The Early Arenig Slockenray Formation within the Ballantrae Ophiolite, southwest Scotland, displays a multivectorial magnetisation structure. Two components (S and M) are identified delineated by differing blocking temperature/ coercivity spectra. Component S is removed around 200°C/10 mT, and is regarded to be of recent viscous origin. Component M forms the characteristic formation magnetisation and resides in both magnetite and haematite. Extensive sampling of all exposed lithologies reveals an (in situ) non-Fisherian distribution of the characteristic magnetisation defining an envelope from SE moderate positive to SW shallow negative directions. A negative infra-formation conglomerate test identifies this component as a pervasive overprint.

A second conglomerate test performed in the overlying Benan Conglomerate of Llandeilo age, reveals dispersely directed magnetisation with a stability range equivalent to that of component M. This field test therefore defines a maximum remagnetisation window of 30 million years for the characteristic remanence. “Hard” viscous magnetisations are identified both in the Benan Conglomerate and at some sites within the Slockenray Formation.

Structurally corrected site mean results from the Slockenray Formation define a non-Fisherian distribution and form a small circle partial arc centred on a vertical axis (NW moderate positive to SW moderate positive directions). A combined palaeomagnetic fold and fault test suggests that acquisition of component M pre-dates both folding and faulting.

The resulting palaeolatitude of remanence acquisition (28.8°S) implies a tectonic position close to the southern Laurentian margin for the Ballantrae ophiolite in Arenig times.  相似文献   


13.
We document three cases of observed Quaternary or much older secondary magnetizations in red beds. A better than usual knowledge about past and present temperature conditions enables us to compare these secondary magnetizations with theoretical relationships between relaxation time and the temperature of acquisition of viscous partial thermo remanent magnetizations (VpTRM's). Arguments can be made for a viscous-thermal origin of the secondary magnetizations in two of the red bed collections, involving Beltian argillites from Montana and Late Precambrian red beds from the Michigan basin. In the third cases, involving Upper Keweenawan sediments from the Upper Peninsula of Michigan, a chemical origin must be assigned to the secondary magnetizations, because thermal and viscous cuases can be ruled out. Stability, blocking-temperature ranges, and discreteness of secondary and characteristics magnetizations are very similar for all three of the red bed collections, so that apparently no magnetic criteria exist to distinguish between partial remagnetizations of thermal or chemical origin in red beds. However, when thermal causes can be documented the theory of VpTRM acquisition offers possibilities for palaeo-heat-flow determinations.  相似文献   

14.
If it is assumed that mantle convection is shallow, i.e. limited to an upper layer of ~700 km, then the extent of surface plates must be such that aspect ratios are noticeably large, in contrast to many laboratory and numerical experiments. A rheology which depends strongly on temperature and pressure is provided as an explanation of why this may occur. The aspect ratio, it is suggested, is preferentially large because of the unwillingness of the stiff plates to subduct, which raises the problem of how subduction occurs. A hypothesis is proposed that this is caused by viscous heating in the asthenosphere, and the preferred aspect ratio is large enough such that partial melting takes place underneath the sinking slab, causing it to sink by releasing the sub-lithospheric pressure so that a transverse buckling may occur.  相似文献   

15.
Experiments comparing anhysteretic remanence (ARM) and thermoremanence (TRM) in samples containing natural and synthetic magnetite, whose mean particle sizes range from single domain to multidomain, show that ARM and TRM are very similar (but not identical) in their stabilities with respect to alternating field (AF) demagnetization, temperature cycles in zero field to below magnetite's isotropic temperature near 130°K, and stability with respect to spontaneous decay in zero field. Therefore, for magnetites, ARM can be used to model (with reasonable success) these stability properties of TRM. The field dependence of the acquisition of ARM and TRM shows that the low field susceptibility ratio, χARMTRM, has a particle size dependence, increasing from 0.1 for certain submicron particles to 2.0 for large multidomain crystals. Even for samples whose remanence is predominantly carried by submicron particles χARMTRM is highly variable, 0.11 ≤ χARMTRM ≤ 0.50. Therefore, ARM paleointensity methods which do not take into account the large variability in and the particle size dependence of χARMTRM are subject to order-of-magnitude uncertainties.  相似文献   

16.
The Thellier method for paleointensity determinations has been applied to prepared samples containing magnetites whose mean particle sizes range from single domain, SD, to multidomain, MD. Linear (ideal) PNRM-PTRM curves are obtained for samples containing SD and submicron magnetite particles. However, for MD particles non-linear (concave-up) PNRM-PTRM curves are observed such that a linear approximation to the lower blocking-temperature data leads to apparent paleointensities that are higher than the actual paleofield; however, the ratio of the end-points, NRM/TRM, yields the correct (laboratory) intensity. The non-linear (concave-up) PNRM-PTRM curves for the MD particles are explained in terms of the lack of symmetry of the domain-wall movements during the two heatings of the Thellier experiment. Low stabilities with respect to alternating fields and with respect to temperature cycles below magnetite's isotropic temperature are diagnostic in detecting samples most likely to exhibit non-linearities due to the MD effect.  相似文献   

17.
Thermal remanent magnetization (TRM) and anhysteretic remanent magnetization (ARM) components were imposed on natural rock samples. The artificial laboratory components had different directions and the blocking temperature and/or coercivity spectra were overlapping. Two methods, principal component analysis (PCA) by Kirschvink and analytical modelling of demagnetization data (by Stupavsky and Symons, S&S) were used to resolve these components. The PCA technique calculated lines fitted to the demagnetization path with ASD = 10° (angular standard deviation), and the S&S method used four types of intensity decay curves for calculated components.

Both methods (PCA and S&S) resolved perfectly the one-component case. The two- or three-component case results strongly depended on spectra overlapping, and on the angles between component directions and magnetic minerals in samples. Principal component analysis gave more reliable results for separated spectra of TRM and thermally cleaned samples, whereas the S&S technique was more efficient for the case of strong spectra overlapping of ARM components and the alternative current field (AF) demagnetization method. Remarkable anisotropy of RM was observed which influences the results for the haematite-bearing samples.  相似文献   


18.
Paleofield intensity determinations involving a comparison of the stable natural remanence (NRM) component with a laboratory thermoremanence (TRM) were carried out on nine chondrites selected in Brecher and Fuhrman (1979a, this issue, hereafter called Paper I), as well as on two manifestly unsuitable controls. To judge their reliability: (1) heat-alteration was monitored by comparing saturation coercivity spectra before and after heating; and (2) the NRM and TRM intensity and stability were compared to those of residual magnetization following zero-field cooling (TRM0) from above the Curie point of kamacite (Ni---Fe). The latter criterion separates the role of an external magnetic field (of 0.43 Oe) at cooling from intrinsic contributions to magnetic grain alignments, due to accretionary, metamorphic or shock-oriented petrofabrics.

In some chondrites (e.g., Brownfield, H3B; Holyoke, H4C; Farley, H5A), a surprisingly large (10% NRM) and stable TRM0 proved so similar to NRM and TRM, that sizeable spurious “paleofields” — comparable to paleointensities obtained — were derived by the standard method for zero-field cooling. In other chondrites, with negligible TRM0 (1% of NRM) and irregular AF demagnetization curves, more reliable paleofield strengths in the range 0.01–0.09 Oe were obtained (e.g., Cavour, H6C). These seem representative of magnetic fields at the end of metamorphism intervals (107 years after accretion) and/or at post-shock cooling. Thus, field strengths obtained from ordinary chondrites are typically weaker (by factors of 10–100) than those reliably determined from carbonaceous chondrites and ureilites, suggesting temporal decay of nebular magnetic fields, from the end of accretion until the end of metamorphism and early catastrophic-collisional stages.  相似文献   


19.
Magnetic susceptibility (MS) of natural specimens of hematite and goethite is studied under continuous heating with various additives: with carbon (sugar), nitrogen (carbamide), and elemental sulfur. It is found that heating of hematite with carbon above 450°C results in the formation of single-domain magnetite, while the magnetic susceptibility rises by a factor of 165. The increase in magnetic susceptibility on heating of hematite with nitrogen above 540°C reflects the generation of a single-domain maghemite with the Curie point of about 650°C, which is stable to heating. After the first heating, the magnetic susceptibility increases by 415 times. The subsequent cycle of thermal treatment results in the transition of maghemite to hematite, a decrease of MS, and an increase of coercivity. Heating with sulfur produces a stable single-domain magnetite at a temperature above the Curie point, which is manifested in the cooling curves. Here, the MS increases by a factor of 400. The heating curves for goethite exhibit a sharp drop in susceptibility to a temperature of 350–360°C, which reflects the transition of hematite to goethite. Heating of hematite with carbon produces stable maghemite at above 530°C, and with sulphur and nitrogen, it produces magnetite. When heated with pyrite, hematite reduces to magnetite under the action of sulfur released from pyrite.  相似文献   

20.
The behaviour of some magnetic properties of natural and synthetic haematite of different grain size is examined. The natural haematite was obtained from the hydrothermal deposit Kada (Czech and Slovak Federal Rep.). Six grain-size fractions ranging from 120 to 40 μm were prepared by means of sieving and two further fractions down to 5 μm by wet ultrasonic sieving. Since the behaviour of the fractions is similar, that of only four representative samples is reported. In addition, the behaviour of one submicron synthetic haematite fraction (0.5 μm) prepared by oxidation of ferrous sulphate (uniform in size and shape) was investigated.

The initial remanence value (Jr) seems to increase with decreasing grain size. During alternating field (AF) demagnetization, all fractions behaved similarly, except for the submicron fraction which is considerably softer than the others. Normalized (isothermal remanent magnetization) IRM acquisition curves were similar for all fractions.

Parameters of the anisotropy of magnetic susceptibility (AMS) display significant changes, mainly during IRM acquisition. During AF demagnetization, the anisotropy degree P exhibits a slight increase (some %), while the behaviour of the shape factor T is complicated. The anisotropy ellipsoid exhibits a tendency to rotate. Significant changes in the AMS parameters occur during IRM acquisition. Curves of P and T vs. IRM acquisition field, for various grain-size fractions, show no coherent pattern. For all the samples studied, the T vs. H curve exhibits a threshold value at which change in the type of arrangement of easy axis of magnetization occurs. For the IRM acquisition fields higher than some 320 kA m−1, the minimum susceptibility axis parallels the direction of the IRM acquisition field.

Hysteresis curves of the fractions are similar to each other. The Preisach distribution function was determined and it indicates that the reversible part of the magnetization process plays an important role comparatively. Based on the coercivity data presented no unambiguous conclusion could be drawn from the single-domain (SD)-multidomain (MD) transition, associated with a coercivity maximum.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号